2022-04-07 18:46:57 +02:00

99 lines
3.0 KiB
C++

/*
This file is part of Nori, a simple educational ray tracer
Copyright (c) 2015 by Wenzel Jakob
Nori is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License Version 3
as published by the Free Software Foundation.
Nori is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include <nori/common.h>
#include <nori/ray.h>
NORI_NAMESPACE_BEGIN
/**
* \brief Homogeneous coordinate transformation
*
* This class stores a general homogeneous coordinate tranformation, such as
* rotation, translation, uniform or non-uniform scaling, and perspective
* transformations. The inverse of this transformation is also recorded
* here, since it is required when transforming normal vectors.
*/
struct Transform {
public:
/// Create the identity transform
Transform() :
m_transform(Eigen::Matrix4f::Identity()),
m_inverse(Eigen::Matrix4f::Identity()) { }
/// Create a new transform instance for the given matrix
Transform(const Eigen::Matrix4f &trafo);
/// Create a new transform instance for the given matrix and its inverse
Transform(const Eigen::Matrix4f &trafo, const Eigen::Matrix4f &inv)
: m_transform(trafo), m_inverse(inv) { }
/// Return the underlying matrix
const Eigen::Matrix4f &getMatrix() const {
return m_transform;
}
/// Return the inverse of the underlying matrix
const Eigen::Matrix4f &getInverseMatrix() const {
return m_inverse;
}
/// Return the inverse transformation
Transform inverse() const {
return Transform(m_inverse, m_transform);
}
/// Concatenate with another transform
Transform operator*(const Transform &t) const;
/// Apply the homogeneous transformation to a 3D vector
Vector3f operator*(const Vector3f &v) const {
return m_transform.topLeftCorner<3,3>() * v;
}
/// Apply the homogeneous transformation to a 3D normal
Normal3f operator*(const Normal3f &n) const {
return m_inverse.topLeftCorner<3, 3>().transpose() * n;
}
/// Transform a point by an arbitrary matrix in homogeneous coordinates
Point3f operator*(const Point3f &p) const {
Vector4f result = m_transform * Vector4f(p[0], p[1], p[2], 1.0f);
return result.head<3>() / result.w();
}
/// Apply the homogeneous transformation to a ray
Ray3f operator*(const Ray3f &r) const {
return Ray3f(
operator*(r.o),
operator*(r.d),
r.mint, r.maxt
);
}
/// Return a string representation
std::string toString() const;
private:
Eigen::Matrix4f m_transform;
Eigen::Matrix4f m_inverse;
};
NORI_NAMESPACE_END