/* This file is part of Nori, a simple educational ray tracer Copyright (c) 2015 by Wenzel Jakob Nori is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License Version 3 as published by the Free Software Foundation. Nori is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #pragma once #include #include NORI_NAMESPACE_BEGIN /** * \brief Homogeneous coordinate transformation * * This class stores a general homogeneous coordinate tranformation, such as * rotation, translation, uniform or non-uniform scaling, and perspective * transformations. The inverse of this transformation is also recorded * here, since it is required when transforming normal vectors. */ struct Transform { public: /// Create the identity transform Transform() : m_transform(Eigen::Matrix4f::Identity()), m_inverse(Eigen::Matrix4f::Identity()) { } /// Create a new transform instance for the given matrix Transform(const Eigen::Matrix4f &trafo); /// Create a new transform instance for the given matrix and its inverse Transform(const Eigen::Matrix4f &trafo, const Eigen::Matrix4f &inv) : m_transform(trafo), m_inverse(inv) { } /// Return the underlying matrix const Eigen::Matrix4f &getMatrix() const { return m_transform; } /// Return the inverse of the underlying matrix const Eigen::Matrix4f &getInverseMatrix() const { return m_inverse; } /// Return the inverse transformation Transform inverse() const { return Transform(m_inverse, m_transform); } /// Concatenate with another transform Transform operator*(const Transform &t) const; /// Apply the homogeneous transformation to a 3D vector Vector3f operator*(const Vector3f &v) const { return m_transform.topLeftCorner<3,3>() * v; } /// Apply the homogeneous transformation to a 3D normal Normal3f operator*(const Normal3f &n) const { return m_inverse.topLeftCorner<3, 3>().transpose() * n; } /// Transform a point by an arbitrary matrix in homogeneous coordinates Point3f operator*(const Point3f &p) const { Vector4f result = m_transform * Vector4f(p[0], p[1], p[2], 1.0f); return result.head<3>() / result.w(); } /// Apply the homogeneous transformation to a ray Ray3f operator*(const Ray3f &r) const { return Ray3f( operator*(r.o), operator*(r.d), r.mint, r.maxt ); } /// Return a string representation std::string toString() const; private: Eigen::Matrix4f m_transform; Eigen::Matrix4f m_inverse; }; NORI_NAMESPACE_END