2022-04-07 18:46:57 +02:00

719 lines
16 KiB
C++

///////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012, Industrial Light & Magic, a division of Lucas
// Digital Ltd. LLC
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Industrial Light & Magic nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
///////////////////////////////////////////////////////////////////////////
//----------------------------------------------------------------------------
//
// class ImageView
//
//----------------------------------------------------------------------------
#include "ImageView.h"
#include <ImathMath.h>
#include <ImathFun.h>
#include <ImathLimits.h>
#include <halfFunction.h>
#include <algorithm>
#include <stdio.h>
#if defined PLATFORM_WINDOWS || defined _WIN32
#include <windows.h>
#include <FL/Fl.H>
#include <GL/gl.h>
#elif defined __APPLE__
#include <FL/Fl.H>
#include <OpenGL/gl.h>
#else
#include <FL/Fl.H>
#include <GL/gl.h>
#endif
using std::min;
using std::max;
using std::cout;
using std::endl;
using std::cerr;
using namespace IMATH;
ImageView::ImageView (int x, int y,
int w, int h,
const char label[],
const IMF::Rgba pixels[],
float* dataZ[],
unsigned int sampleCount[],
int zsize,
int dw, int dh,
int dx, int dy,
Fl_Box *rgbaBox,
float farPlane,
float gamma,
float exposure,
float defog,
float kneeLow,
float kneeHigh)
:
Fl_Gl_Window (x, y, w, h, label),
_gamma (gamma),
_exposure (exposure),
_defog (defog),
_kneeLow (kneeLow),
_kneeHigh (kneeHigh),
_rawPixels (pixels),
_dataZ (dataZ),
_sampleCount (sampleCount),
_fogR (0),
_fogG (0),
_fogB (0),
_farPlane (farPlane),
_dw (dw),
_dh (dh),
_dx (dx),
_dy (dy),
_zsize (zsize),
_rgbaBox (rgbaBox),
_screenPixels (dw * dh * 3)
{
computeFogColor();
updateScreenPixels();
//
// initialize z value chart
//
_chartwin = new Fl_Window (600, 300);
_chartwin->label("Deep Pixel Display");
_chart = new Fl_Chart (20, 20,
_chartwin->w()-40,
_chartwin->h()-40,
"Sample #");
_chartMax = new Fl_Chart (20, 20,
_chartwin->w()-40,
_chartwin->h()-40,
"");
_chartMin = new Fl_Chart (20, 20,
_chartwin->w()-40,
_chartwin->h()-40,
"");
findZbound();
//
// initialize Deep 3d window
//
_gl3d = NULL;
}
void
ImageView::setExposure (float exposure)
{
_exposure = exposure;
updateScreenPixels();
redraw();
}
void
ImageView::setDefog (float defog)
{
_defog = defog;
updateScreenPixels();
redraw();
}
void
ImageView::setKneeLow (float kneeLow)
{
_kneeLow = kneeLow;
updateScreenPixels();
redraw();
}
void
ImageView::findZbound()
{
//
// find zmax and zmin values of deep data to set bound
//
float zmax = limits<float>::min();
float zmin = limits<float>::max();
_maxCount = 0;
for (int k = 0; k < _zsize; k++)
{
float* z = _dataZ[k];
unsigned int count = _sampleCount[k];
if (_maxCount < count)
_maxCount = count;
for (unsigned int i = 0; i < count; i++)
{
double val = double(z[i]);
if (val > zmax && val < _farPlane)
zmax = val;
if (val < zmin)
zmin = val;
}
}
if ( zmax > zmin)
{
cout << "z max: "<< zmax << ", z min: " << zmin << endl;
_chart->bounds (zmin, zmax);
}
_zmax = zmax;
_zmin = zmin;
}
void
ImageView::setPixels(const IMF::Rgba pixels[/* w*h */],
float* dataZ[/* w*h */],
unsigned int sampleCount[/* w*h */],
int zsize,
int dw, int dh, int dx, int dy)
{
//
// update data of imageview
//
_rawPixels = pixels;
_dw = dw;
_dh = dh;
_dx = dx;
_dy = dy;
_dataZ = dataZ;
_sampleCount = sampleCount;
_zsize = zsize;
_screenPixels.resizeErase(dw*dh*3);
findZbound();
//
// update Deep 3d window
//
GlWindow* temp;
temp = _gl3d;
_gl3d = NULL;
if (_gl3d != NULL){
delete temp;
}
updateScreenPixels();
redraw();
}
void
ImageView::clearDataDisplay()
{
_chart->clear();
if (_gl3d != NULL)
_gl3d->hide();
}
void
ImageView::setKneeHigh (float kneeHigh)
{
_kneeHigh = kneeHigh;
updateScreenPixels();
redraw();
}
void
ImageView::draw()
{
if (!valid())
{
glLoadIdentity();
glViewport (0, 0, w(), h());
glOrtho(0, w(), h(), 0, -1, 1);
}
glClearColor (0.3, 0.3, 0.3, 1.0);
glClear (GL_COLOR_BUFFER_BIT);
if (_dx + _dw <= 0 || _dx >= w())
return;
for (int y = 0; y < _dh; ++y)
{
if (y + _dy < 0 || y + _dy >= h())
continue;
glRasterPos2i (max (0, _dx), y + _dy + 1);
glDrawPixels (_dw + min (0, _dx), // width
1, // height
GL_RGB, // format
GL_UNSIGNED_BYTE, // type
_screenPixels + // pixels
static_cast <ptrdiff_t> ((y * _dw - min (0, _dx)) * 3));
}
}
void
ImageView::computeFogColor ()
{
_fogR = 0;
_fogG = 0;
_fogB = 0;
for (int j = 0; j < _dw * _dh; ++j)
{
const IMF::Rgba &rp = _rawPixels[j];
if (rp.r.isFinite())
_fogR += rp.r;
if (rp.g.isFinite())
_fogG += rp.g;
if (rp.b.isFinite())
_fogB += rp.b;
}
_fogR /= _dw * _dh;
_fogG /= _dw * _dh;
_fogB /= _dw * _dh;
}
void
ImageView::drawChart (int x, int y, bool initChart)
{
if (x >= 0 && x < w() && y >= 0 && y < h())
{
int px = x - _dx;
int py = y - _dy;
if (px >= 0 && px < _dw && py >= 0 && py < _dh)
{
float* z = _dataZ[py * _dw + px];
unsigned int count = _sampleCount[py * _dw + px];
cout << "\nsample Count: " << count << endl;
cout << "x: " << px << ", y: " << py << endl;
for (unsigned int i = 0; i < count; i++)
{
printf ("pixel Z value %d: %.3f\n", i, float(z[i]));
}
const IMF::Rgba &p = _rawPixels[py * _dw + px];
cout << "R = " << p.r << ", G = " << p.g << ","
" B = " << p.b <<endl;
//
// draw the chart
//
drawChartRef();
for (unsigned int i = 0; i < count; i++)
{
double val = double(z[i]);
if (val < _farPlane)
{
static char val_str[20];
sprintf (val_str, "%.3lf", val);
_chart->add (val, val_str, FL_BLUE);
}
}
redraw();
if (initChart)
{
_chartwin->resizable (_chartwin);
_chartwin->set_non_modal(); // make chart on top
if (!_chartwin->shown())
_chartwin->show();
}
}
}
}
void
ImageView::drawChartRef ()
{
_chart->clear();
_chart->bounds(_zmin, _zmax);
_chart->type (FL_LINE_CHART);
_chart->label("Sample #");
_chartMax->clear();
_chartMax->type (FL_SPIKE_CHART);
static char val_str[20];
sprintf (val_str, "Zmax : %.3lf", _zmax);
_chartMax->label(val_str);
_chartMax->align(FL_ALIGN_TOP_LEFT);
_chartMax->box(FL_NO_BOX);
_chartMin->clear();
_chartMin->type (FL_SPIKE_CHART);
static char val_str1[20];
sprintf (val_str1, "Zmin : %.3lf", _zmin);
_chartMin->label(val_str1);
_chartMin->align(FL_ALIGN_BOTTOM_LEFT);
_chartMin->box(FL_NO_BOX);
}
int
ImageView::handle (int event)
{
if (event == FL_PUSH)
{
// We want to get the other associated events for this widget so
// return a non-zero value here.
return 1;
}
if (event == FL_MOVE)
{
//
// Print the red, green and blue values of
// the pixel at the current cursor location.
//
int x = Fl::event_x();
int y = Fl::event_y();
if (x >= 0 && x < w() && y >= 0 && y < h())
{
int px = x - _dx;
int py = y - _dy;
if (px >= 0 && px < _dw && py >= 0 && py < _dh)
{
const IMF::Rgba &p = _rawPixels[py * _dw + px];
sprintf (_rgbaBoxLabel,
"r = %.3g g = %.3g b = %.3g",
float (p.r), float (p.g), float (p.b));
}
else
{
sprintf (_rgbaBoxLabel, " ");
}
_rgbaBox->label (_rgbaBoxLabel);
if (_chartwin->shown() && _zsize > 0)
{
int x = Fl::event_x();
int y = Fl::event_y();
drawChart (x, y, false);
}
}
}
if (event == FL_RELEASE && Fl::event_button() == FL_LEFT_MOUSE)
{
//
// Open a sample chart and print the z values of
// the pixel at the current cursor location
//
if(_zsize > 0)
{
int x = Fl::event_x();
int y = Fl::event_y();
drawChart (x, y, true);
}
}
if (event == FL_RELEASE && Fl::event_button() == FL_RIGHT_MOUSE)
{
if(_zsize > 0)
{
if (_gl3d == NULL)
{
//
// initialize Deep 3d display
//
_gl3d = new GlWindow(10, 10, 500, 500,
"3D View", _rawPixels,
_dataZ, _sampleCount,
_dw, _dh, _zmax, _zmin,
_farPlane);
_gl3d->show();
}
else
{
_gl3d->show();
}
}
}
return Fl_Gl_Window::handle (event);
}
namespace {
//
// Conversion from raw pixel data to data for the OpenGL frame buffer:
//
// 1) Compensate for fogging by subtracting defog
// from the raw pixel values.
//
// 2) Multiply the defogged pixel values by
// 2^(exposure + 2.47393).
//
// 3) Values that are now 1.0 are called "middle gray".
// If defog and exposure are both set to 0.0, then
// middle gray corresponds to a raw pixel value of 0.18.
// In step 6, middle gray values will be mapped to an
// intensity 3.5 f-stops below the display's maximum
// intensity.
//
// 4) Apply a knee function. The knee function has two
// parameters, kneeLow and kneeHigh. Pixel values
// below 2^kneeLow are not changed by the knee
// function. Pixel values above kneeLow are lowered
// according to a logarithmic curve, such that the
// value 2^kneeHigh is mapped to 2^3.5. (In step 6,
// this value will be mapped to the the display's
// maximum intensity.)
//
// 5) Gamma-correct the pixel values, according to the
// screen's gamma. (We assume that the gamma curve
// is a simple power function.)
//
// 6) Scale the values such that middle gray pixels are
// mapped to a frame buffer value that is 3.5 f-stops
// below the display's maximum intensity. (84.65 if
// the screen's gamma is 2.2)
//
// 7) Clamp the values to [0, 255].
//
float
knee (double x, double f)
{
return float (IMATH::Math<double>::log (x * f + 1) / f);
}
float
findKneeF (float x, float y)
{
float f0 = 0;
float f1 = 1;
while (knee (x, f1) > y)
{
f0 = f1;
f1 = f1 * 2;
}
for (int i = 0; i < 30; ++i)
{
float f2 = (f0 + f1) / 2;
float y2 = knee (x, f2);
if (y2 < y)
f1 = f2;
else
f0 = f2;
}
return (f0 + f1) / 2;
}
struct Gamma
{
float g, m, d, kl, f, s;
Gamma (float gamma,
float exposure,
float defog,
float kneeLow,
float kneeHigh);
float operator () (half h);
};
Gamma::Gamma
(float gamma,
float exposure,
float defog,
float kneeLow,
float kneeHigh)
:
g (gamma),
m (IMATH::Math<float>::pow (2, exposure + 2.47393)),
d (defog),
kl (IMATH::Math<float>::pow (2, kneeLow)),
f (findKneeF (IMATH::Math<float>::pow (2, kneeHigh) - kl,
IMATH::Math<float>::pow (2, 3.5) - kl)),
s (255.0 * IMATH::Math<float>::pow (2, -3.5 * g))
{}
float
Gamma::operator () (half h)
{
//
// Defog
//
float x = max (0.f, (h - d));
//
// Exposure
//
x *= m;
//
// Knee
//
if (x > kl)
x = kl + knee (x - kl, f);
//
// Gamma
//
x = IMATH::Math<float>::pow (x, g);
//
// Scale and clamp
//
return clamp (x * s, 0.f, 255.f);
}
//
// Dithering: Reducing the raw 16-bit pixel data to 8 bits for the
// OpenGL frame buffer can sometimes lead to contouring in smooth
// color ramps. Dithering with a simple Bayer pattern eliminates
// visible contouring.
//
unsigned char
dither (float v, int x, int y)
{
static const float d[4][4] =
{
{0.f / 16, 8.f / 16, 2.f / 16, 10.f / 16},
{12.f / 16, 4.f / 16, 14.f / 16, 6.f / 16},
{3.f / 16, 11.f / 16, 1.f / 16, 9.f / 16},
{15.f / 16, 7.f / 16, 13.f / 16, 5.f / 16}
};
return (unsigned char) (v + d[y & 3][x & 3]);
}
} // namespace
float
ImageView::findKnee (float x, float y)
{
return findKneeF (x, y);
}
void
ImageView::updateScreenPixels ()
{
halfFunction<float>
rGamma (Gamma (_gamma,
_exposure,
_defog * _fogR,
_kneeLow,
_kneeHigh),
-HALF_MAX, HALF_MAX,
0.f, 255.f, 0.f, 0.f);
halfFunction<float>
gGamma (Gamma (_gamma,
_exposure,
_defog * _fogG,
_kneeLow,
_kneeHigh),
-HALF_MAX, HALF_MAX,
0.f, 255.f, 0.f, 0.f);
halfFunction<float>
bGamma (Gamma (_gamma,
_exposure,
_defog * _fogB,
_kneeLow,
_kneeHigh),
-HALF_MAX, HALF_MAX,
0.f, 255.f, 0.f, 0.f);
for (int y = 0; y < _dh; ++y)
{
int i = y * _dw;
for (int x = 0; x < _dw; ++x)
{
int j = i + x;
const IMF::Rgba &rp = _rawPixels[j];
unsigned char *sp = _screenPixels + j * 3;
sp[0] = dither (rGamma (rp.r), x, y);
sp[1] = dither (gGamma (rp.g), x, y);
sp[2] = dither (bGamma (rp.b), x, y);
}
}
}