431 lines
11 KiB
C++
431 lines
11 KiB
C++
///////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (c) 2007, Industrial Light & Magic, a division of Lucas
|
|
// Digital Ltd. LLC
|
|
//
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Industrial Light & Magic nor the names of
|
|
// its contributors may be used to endorse or promote products derived
|
|
// from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
///////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
//-----------------------------------------------------------------------------
|
|
//
|
|
// function blurImage() -- performs a hemispherical blur
|
|
//
|
|
//-----------------------------------------------------------------------------
|
|
|
|
#include "blurImage.h"
|
|
|
|
#include "namespaceAlias.h"
|
|
|
|
#include <resizeImage.h>
|
|
#include <cstring>
|
|
#include "Iex.h"
|
|
#include <iostream>
|
|
#include <algorithm>
|
|
#include <string.h>
|
|
|
|
|
|
using namespace IMF;
|
|
using namespace std;
|
|
using namespace IMATH;
|
|
|
|
|
|
inline int
|
|
toInt (float x)
|
|
{
|
|
return int (x + 0.5f);
|
|
}
|
|
|
|
|
|
inline double
|
|
sqr (double x)
|
|
{
|
|
return x * x;
|
|
}
|
|
|
|
|
|
void
|
|
blurImage (EnvmapImage &image1, bool verbose)
|
|
{
|
|
//
|
|
// Ideally we would blur the input image directly by convolving
|
|
// it with a 180-degree wide blur kernel. Unfortunately this
|
|
// is prohibitively expensive when the input image is large.
|
|
// In order to keep running times reasonable, we perform the
|
|
// blur on a small proxy image that will later be re-sampled
|
|
// to the desired output resolution.
|
|
//
|
|
// Here's how it works:
|
|
//
|
|
// * If the input image is in latitude-longitude format,
|
|
// convert it into a cube-face environment map.
|
|
//
|
|
// * Repeatedly resample the image, each time shrinking
|
|
// it to no less than half its current size, until the
|
|
// width of each cube face is MAX_IN_WIDTH pixels.
|
|
//
|
|
// * Multiply each pixel by a weight that is proportinal
|
|
// to the solid angle subtended by the pixel as seen
|
|
// from the center of the environment cube.
|
|
//
|
|
// * Create an output image in cube-face format.
|
|
// The cube faces of the output image are OUT_WIDTH
|
|
// pixels wide.
|
|
//
|
|
// * For each pixel of the output image:
|
|
//
|
|
// Set the output pixel's color to black
|
|
//
|
|
// Determine the direction, d2, from the center of the
|
|
// output environment cube to the center of the output
|
|
// pixel.
|
|
//
|
|
// For each pixel of the input image:
|
|
//
|
|
// Determine the direction, d1, from the center of
|
|
// the input environment cube to the center of the
|
|
// input pixel.
|
|
//
|
|
// Multiply the input pixel's color by max (0, d1.dot(d2))
|
|
// and add the result to the output pixel.
|
|
//
|
|
|
|
const int MAX_IN_WIDTH = 40;
|
|
const int OUT_WIDTH = 100;
|
|
|
|
if (verbose)
|
|
cout << "blurring map image" << endl;
|
|
|
|
EnvmapImage image2;
|
|
EnvmapImage *iptr1 = &image1;
|
|
EnvmapImage *iptr2 = &image2;
|
|
|
|
int w = image1.dataWindow().max.x - image1.dataWindow().min.x + 1;
|
|
int h = w * 6;
|
|
|
|
if (iptr1->type() == ENVMAP_LATLONG)
|
|
{
|
|
//
|
|
// Convert the input image from latitude-longitude
|
|
// to cube-face format.
|
|
//
|
|
|
|
if (verbose)
|
|
cout << " converting to cube-face format" << endl;
|
|
|
|
w /= 4;
|
|
h = w * 6;
|
|
|
|
Box2i dw (V2i (0, 0), V2i (w - 1, h - 1));
|
|
resizeCube (*iptr1, *iptr2, dw, 1, 7);
|
|
|
|
swap (iptr1, iptr2);
|
|
}
|
|
|
|
while (w > MAX_IN_WIDTH)
|
|
{
|
|
//
|
|
// Shrink the image.
|
|
//
|
|
|
|
if (w >= MAX_IN_WIDTH * 2)
|
|
w /= 2;
|
|
else
|
|
w = MAX_IN_WIDTH;
|
|
|
|
h = w * 6;
|
|
|
|
if (verbose)
|
|
{
|
|
cout << " resizing cube faces "
|
|
"to " << w << " by " << w << " pixels" << endl;
|
|
}
|
|
|
|
Box2i dw (V2i (0, 0), V2i (w - 1, h - 1));
|
|
resizeCube (*iptr1, *iptr2, dw, 1, 7);
|
|
|
|
swap (iptr1, iptr2);
|
|
}
|
|
|
|
if (verbose)
|
|
cout << " computing pixel weights" << endl;
|
|
|
|
{
|
|
//
|
|
// Multiply each pixel by a weight that is proportinal
|
|
// to the solid angle subtended by the pixel.
|
|
//
|
|
|
|
Box2i dw = iptr1->dataWindow();
|
|
int sof = CubeMap::sizeOfFace (dw);
|
|
|
|
Array2D<Rgba> &pixels = iptr1->pixels();
|
|
|
|
double weightTotal = 0;
|
|
|
|
for (int f = CUBEFACE_POS_X; f <= CUBEFACE_NEG_Z; ++f)
|
|
{
|
|
if (verbose)
|
|
cout << " face " << f << endl;
|
|
|
|
CubeMapFace face = CubeMapFace (f);
|
|
V3f faceDir (0, 0, 0);
|
|
int ix = 0, iy = 0, iz = 0;
|
|
|
|
switch (face)
|
|
{
|
|
case CUBEFACE_POS_X:
|
|
faceDir = V3f (1, 0, 0);
|
|
ix = 0;
|
|
iy = 1;
|
|
iz = 2;
|
|
break;
|
|
|
|
case CUBEFACE_NEG_X:
|
|
faceDir = V3f (-1, 0, 0);
|
|
ix = 0;
|
|
iy = 1;
|
|
iz = 2;
|
|
break;
|
|
|
|
case CUBEFACE_POS_Y:
|
|
faceDir = V3f (0, 1, 0);
|
|
ix = 1;
|
|
iy = 0;
|
|
iz = 2;
|
|
break;
|
|
|
|
case CUBEFACE_NEG_Y:
|
|
faceDir = V3f (0, -1, 0);
|
|
ix = 1;
|
|
iy = 0;
|
|
iz = 2;
|
|
break;
|
|
|
|
case CUBEFACE_POS_Z:
|
|
faceDir = V3f (0, 0, 1);
|
|
ix = 2;
|
|
iy = 0;
|
|
iz = 1;
|
|
break;
|
|
|
|
case CUBEFACE_NEG_Z:
|
|
faceDir = V3f (0, 0, -1);
|
|
ix = 2;
|
|
iy = 0;
|
|
iz = 1;
|
|
break;
|
|
}
|
|
|
|
for (int y = 0; y < sof; ++y)
|
|
{
|
|
bool yEdge = (y == 0 || y == sof - 1);
|
|
|
|
for (int x = 0; x < sof; ++x)
|
|
{
|
|
bool xEdge = (x == 0 || x == sof - 1);
|
|
|
|
V2f posInFace (x, y);
|
|
|
|
V3f dir =
|
|
CubeMap::direction (face, dw, posInFace).normalized();
|
|
|
|
V2f pos =
|
|
CubeMap::pixelPosition (face, dw, posInFace);
|
|
|
|
//
|
|
// The solid angle subtended by pixel (x,y), as seen
|
|
// from the center of the cube, is proportional to the
|
|
// square of the distance of the pixel from the center
|
|
// of the cube and proportional to the dot product of
|
|
// the viewing direction and the normal of the cube
|
|
// face that contains the pixel.
|
|
//
|
|
|
|
double weight =
|
|
(dir ^ faceDir) *
|
|
(sqr (dir[iy] / dir[ix]) + sqr (dir[iz] / dir[ix]) + 1);
|
|
|
|
//
|
|
// Pixels at the edges and corners of the
|
|
// cube are duplicated; we must adjust the
|
|
// pixel weights accordingly.
|
|
//
|
|
|
|
if (xEdge && yEdge)
|
|
weight /= 3;
|
|
else if (xEdge || yEdge)
|
|
weight /= 2;
|
|
|
|
Rgba &pixel = pixels[toInt (pos.y)][toInt (pos.x)];
|
|
|
|
pixel.r *= weight;
|
|
pixel.g *= weight;
|
|
pixel.b *= weight;
|
|
pixel.a *= weight;
|
|
|
|
weightTotal += weight;
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// The weighting operation above has made the overall image darker.
|
|
// Apply a correction to recover the image's original brightness.
|
|
//
|
|
|
|
int w = dw.max.x - dw.min.x + 1;
|
|
int h = dw.max.y - dw.min.y + 1;
|
|
size_t numPixels = w * h;
|
|
double weight = numPixels / weightTotal;
|
|
|
|
Rgba *p = &pixels[0][0];
|
|
Rgba *end = p + numPixels;
|
|
|
|
while (p < end)
|
|
{
|
|
p->r *= weight;
|
|
p->g *= weight;
|
|
p->b *= weight;
|
|
p->a *= weight;
|
|
|
|
++p;
|
|
}
|
|
}
|
|
|
|
{
|
|
if (verbose)
|
|
cout << " generating blurred image" << endl;
|
|
|
|
Box2i dw1 = iptr1->dataWindow();
|
|
int sof1 = CubeMap::sizeOfFace (dw1);
|
|
|
|
Box2i dw2 (V2i (0, 0), V2i (OUT_WIDTH - 1, OUT_WIDTH * 6 - 1));
|
|
int sof2 = CubeMap::sizeOfFace (dw2);
|
|
|
|
iptr2->resize (ENVMAP_CUBE, dw2);
|
|
iptr2->clear ();
|
|
|
|
Array2D<Rgba> &pixels1 = iptr1->pixels();
|
|
Array2D<Rgba> &pixels2 = iptr2->pixels();
|
|
|
|
for (int f2 = CUBEFACE_POS_X; f2 <= CUBEFACE_NEG_Z; ++f2)
|
|
{
|
|
if (verbose)
|
|
cout << " face " << f2 << endl;
|
|
|
|
CubeMapFace face2 = CubeMapFace (f2);
|
|
|
|
for (int y2 = 0; y2 < sof2; ++y2)
|
|
{
|
|
for (int x2 = 0; x2 < sof2; ++x2)
|
|
{
|
|
V2f posInFace2 (x2, y2);
|
|
|
|
V3f dir2 = CubeMap::direction
|
|
(face2, dw2, posInFace2);
|
|
|
|
V2f pos2 = CubeMap::pixelPosition
|
|
(face2, dw2, posInFace2);
|
|
|
|
double weightTotal = 0;
|
|
double rTotal = 0;
|
|
double gTotal = 0;
|
|
double bTotal = 0;
|
|
double aTotal = 0;
|
|
|
|
Rgba &pixel2 =
|
|
pixels2[toInt (pos2.y)][toInt (pos2.x)];
|
|
|
|
for (int f1 = CUBEFACE_POS_X; f1 <= CUBEFACE_NEG_Z; ++f1)
|
|
{
|
|
CubeMapFace face1 = CubeMapFace (f1);
|
|
|
|
for (int y1 = 0; y1 < sof1; ++y1)
|
|
{
|
|
for (int x1 = 0; x1 < sof1; ++x1)
|
|
{
|
|
V2f posInFace1 (x1, y1);
|
|
|
|
V3f dir1 = CubeMap::direction
|
|
(face1, dw1, posInFace1);
|
|
|
|
V2f pos1 = CubeMap::pixelPosition
|
|
(face1, dw1, posInFace1);
|
|
|
|
double weight = dir1 ^ dir2;
|
|
|
|
if (weight <= 0)
|
|
continue;
|
|
|
|
Rgba &pixel1 =
|
|
pixels1[toInt (pos1.y)][toInt (pos1.x)];
|
|
|
|
weightTotal += weight;
|
|
rTotal += pixel1.r * weight;
|
|
gTotal += pixel1.g * weight;
|
|
bTotal += pixel1.b * weight;
|
|
aTotal += pixel1.a * weight;
|
|
}
|
|
}
|
|
}
|
|
|
|
pixel2.r = rTotal / weightTotal;
|
|
pixel2.g = gTotal / weightTotal;
|
|
pixel2.b = bTotal / weightTotal;
|
|
pixel2.a = aTotal / weightTotal;
|
|
}
|
|
}
|
|
}
|
|
|
|
swap (iptr1, iptr2);
|
|
}
|
|
|
|
//
|
|
// Depending on how many times we've re-sampled the image,
|
|
// the result is now either in image1 or in image2.
|
|
// If necessary, copy the result into image1.
|
|
//
|
|
|
|
if (iptr1 != &image1)
|
|
{
|
|
if (verbose)
|
|
cout << " copying" << endl;
|
|
|
|
Box2i dw = iptr1->dataWindow();
|
|
image1.resize (ENVMAP_CUBE, dw);
|
|
|
|
int w = dw.max.x - dw.min.x + 1;
|
|
int h = dw.max.y - dw.min.y + 1;
|
|
size_t size = w * h * sizeof (Rgba);
|
|
|
|
memcpy (&image1.pixels()[0][0], &iptr1->pixels()[0][0], size);
|
|
}
|
|
}
|