405 lines
11 KiB
C++
405 lines
11 KiB
C++
/*
|
|
cephes.h: A subset of cephes math routines used by hypothesis.h
|
|
|
|
Redistributed under the BSD license with permission of the author, see
|
|
https://github.com/deepmind/torch-cephes/blob/master/LICENSE.txt
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
* Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
* Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
* Neither the name of the <organization> nor the
|
|
names of its contributors may be used to endorse or promote products
|
|
derived from this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
|
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY
|
|
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <cmath>
|
|
#include <stdexcept>
|
|
|
|
namespace cephes {
|
|
static const double biginv = 2.22044604925031308085e-16;
|
|
static const double big = 4.503599627370496e15;
|
|
static const double MAXGAM = 171.624376956302725;
|
|
static const double MACHEP = 1.11022302462515654042E-16;
|
|
static const double MAXLOG = 7.09782712893383996843E2;
|
|
static const double MINLOG = -7.08396418532264106224E2;
|
|
|
|
/* Forward declarations */
|
|
static double pseries(double a, double b, double x);
|
|
static double incbd(double a, double b, double x);
|
|
static double incbcf(double a, double b, double x);
|
|
|
|
inline double incbet(double aa, double bb, double xx) {
|
|
double a, b, t, x, xc, w, y;
|
|
int flag;
|
|
|
|
if (aa <= 0.0 || bb <= 0.0)
|
|
goto domerr;
|
|
|
|
if ((xx <= 0.0) || (xx >= 1.0)) {
|
|
if (xx == 0.0)
|
|
return 0.0;
|
|
if (xx == 1.0)
|
|
return 1.0;
|
|
domerr:
|
|
throw std::runtime_error("incbet: domain error!");
|
|
}
|
|
|
|
flag = 0;
|
|
if ((bb * xx) <= 1.0 && xx <= 0.95) {
|
|
t = pseries(aa, bb, xx);
|
|
goto done;
|
|
}
|
|
|
|
w = 1.0 - xx;
|
|
|
|
/* Reverse a and b if x is greater than the mean. */
|
|
if (xx > (aa / (aa + bb))) {
|
|
flag = 1;
|
|
a = bb;
|
|
b = aa;
|
|
xc = xx;
|
|
x = w;
|
|
} else {
|
|
a = aa;
|
|
b = bb;
|
|
xc = w;
|
|
x = xx;
|
|
}
|
|
|
|
if (flag == 1 && (b * x) <= 1.0 && x <= 0.95) {
|
|
t = pseries(a, b, x);
|
|
goto done;
|
|
}
|
|
|
|
/* Choose expansion for better convergence. */
|
|
y = x * (a + b - 2.0) - (a - 1.0);
|
|
if (y < 0.0)
|
|
w = incbcf(a, b, x);
|
|
else
|
|
w = incbd(a, b, x) / xc;
|
|
|
|
/* Multiply w by the factor
|
|
a b _ _ _
|
|
x (1-x) | (a+b) / ( a | (a) | (b) ) . */
|
|
|
|
y = a * std::log(x);
|
|
t = b * std::log(xc);
|
|
if ((a + b) < MAXGAM && std::abs(y) < MAXLOG && std::abs(t) < MAXLOG) {
|
|
t = pow(xc, b);
|
|
t *= pow(x, a);
|
|
t /= a;
|
|
t *= w;
|
|
t *= std::tgamma(a + b) / (std::tgamma(a) * std::tgamma(b));
|
|
goto done;
|
|
}
|
|
/* Resort to logarithms. */
|
|
y += t + std::lgamma(a + b) - std::lgamma(a) - std::lgamma(b);
|
|
y += std::log(w / a);
|
|
if (y < MINLOG)
|
|
t = 0.0;
|
|
else
|
|
t = std::exp(y);
|
|
|
|
done:
|
|
|
|
if (flag == 1) {
|
|
if (t <= MACHEP)
|
|
t = 1.0 - MACHEP;
|
|
else
|
|
t = 1.0 - t;
|
|
}
|
|
return t;
|
|
}
|
|
|
|
/* Continued fraction expansion #1
|
|
* for incomplete beta integral
|
|
*/
|
|
inline static double incbcf(double a, double b, double x) {
|
|
double xk, pk, pkm1, pkm2, qk, qkm1, qkm2;
|
|
double k1, k2, k3, k4, k5, k6, k7, k8;
|
|
double r, t, ans, thresh;
|
|
int n;
|
|
|
|
k1 = a;
|
|
k2 = a + b;
|
|
k3 = a;
|
|
k4 = a + 1.0;
|
|
k5 = 1.0;
|
|
k6 = b - 1.0;
|
|
k7 = k4;
|
|
k8 = a + 2.0;
|
|
|
|
pkm2 = 0.0;
|
|
qkm2 = 1.0;
|
|
pkm1 = 1.0;
|
|
qkm1 = 1.0;
|
|
ans = 1.0;
|
|
r = 1.0;
|
|
n = 0;
|
|
thresh = 3.0 * MACHEP;
|
|
do {
|
|
|
|
xk = -(x * k1 * k2) / (k3 * k4);
|
|
pk = pkm1 + pkm2 * xk;
|
|
qk = qkm1 + qkm2 * xk;
|
|
pkm2 = pkm1;
|
|
pkm1 = pk;
|
|
qkm2 = qkm1;
|
|
qkm1 = qk;
|
|
|
|
xk = (x * k5 * k6) / (k7 * k8);
|
|
pk = pkm1 + pkm2 * xk;
|
|
qk = qkm1 + qkm2 * xk;
|
|
pkm2 = pkm1;
|
|
pkm1 = pk;
|
|
qkm2 = qkm1;
|
|
qkm1 = qk;
|
|
|
|
if (qk != 0)
|
|
r = pk / qk;
|
|
if (r != 0) {
|
|
t = std::abs((ans - r) / r);
|
|
ans = r;
|
|
} else
|
|
t = 1.0;
|
|
|
|
if (t < thresh)
|
|
goto cdone;
|
|
|
|
k1 += 1.0;
|
|
k2 += 1.0;
|
|
k3 += 2.0;
|
|
k4 += 2.0;
|
|
k5 += 1.0;
|
|
k6 -= 1.0;
|
|
k7 += 2.0;
|
|
k8 += 2.0;
|
|
|
|
if ((std::abs(qk) + std::abs(pk)) > big) {
|
|
pkm2 *= biginv;
|
|
pkm1 *= biginv;
|
|
qkm2 *= biginv;
|
|
qkm1 *= biginv;
|
|
}
|
|
if ((std::abs(qk) < biginv) || (std::abs(pk) < biginv)) {
|
|
pkm2 *= big;
|
|
pkm1 *= big;
|
|
qkm2 *= big;
|
|
qkm1 *= big;
|
|
}
|
|
} while (++n < 300);
|
|
|
|
cdone:
|
|
return (ans);
|
|
}
|
|
|
|
/* Continued fraction expansion #2
|
|
* for incomplete beta integral
|
|
*/
|
|
inline static double incbd(double a, double b, double x) {
|
|
double xk, pk, pkm1, pkm2, qk, qkm1, qkm2;
|
|
double k1, k2, k3, k4, k5, k6, k7, k8;
|
|
double r, t, ans, z, thresh;
|
|
int n;
|
|
|
|
k1 = a;
|
|
k2 = b - 1.0;
|
|
k3 = a;
|
|
k4 = a + 1.0;
|
|
k5 = 1.0;
|
|
k6 = a + b;
|
|
k7 = a + 1.0;
|
|
k8 = a + 2.0;
|
|
|
|
pkm2 = 0.0;
|
|
qkm2 = 1.0;
|
|
pkm1 = 1.0;
|
|
qkm1 = 1.0;
|
|
z = x / (1.0 - x);
|
|
ans = 1.0;
|
|
r = 1.0;
|
|
n = 0;
|
|
thresh = 3.0 * MACHEP;
|
|
do {
|
|
|
|
xk = -(z * k1 * k2) / (k3 * k4);
|
|
pk = pkm1 + pkm2 * xk;
|
|
qk = qkm1 + qkm2 * xk;
|
|
pkm2 = pkm1;
|
|
pkm1 = pk;
|
|
qkm2 = qkm1;
|
|
qkm1 = qk;
|
|
|
|
xk = (z * k5 * k6) / (k7 * k8);
|
|
pk = pkm1 + pkm2 * xk;
|
|
qk = qkm1 + qkm2 * xk;
|
|
pkm2 = pkm1;
|
|
pkm1 = pk;
|
|
qkm2 = qkm1;
|
|
qkm1 = qk;
|
|
|
|
if (qk != 0)
|
|
r = pk / qk;
|
|
if (r != 0) {
|
|
t = std::abs((ans - r) / r);
|
|
ans = r;
|
|
} else
|
|
t = 1.0;
|
|
|
|
if (t < thresh)
|
|
goto cdone;
|
|
|
|
k1 += 1.0;
|
|
k2 -= 1.0;
|
|
k3 += 2.0;
|
|
k4 += 2.0;
|
|
k5 += 1.0;
|
|
k6 += 1.0;
|
|
k7 += 2.0;
|
|
k8 += 2.0;
|
|
|
|
if ((std::abs(qk) + std::abs(pk)) > big) {
|
|
pkm2 *= biginv;
|
|
pkm1 *= biginv;
|
|
qkm2 *= biginv;
|
|
qkm1 *= biginv;
|
|
}
|
|
if ((std::abs(qk) < biginv) || (std::abs(pk) < biginv)) {
|
|
pkm2 *= big;
|
|
pkm1 *= big;
|
|
qkm2 *= big;
|
|
qkm1 *= big;
|
|
}
|
|
} while (++n < 300);
|
|
cdone:
|
|
return (ans);
|
|
}
|
|
|
|
/* Power series for incomplete beta integral.
|
|
Use when b*x is small and x not too close to 1. */
|
|
inline static double pseries(double a, double b, double x) {
|
|
double s, t, u, v, n, t1, z, ai;
|
|
|
|
ai = 1.0 / a;
|
|
u = (1.0 - b) * x;
|
|
v = u / (a + 1.0);
|
|
t1 = v;
|
|
t = u;
|
|
n = 2.0;
|
|
s = 0.0;
|
|
z = MACHEP * ai;
|
|
while (std::abs(v) > z) {
|
|
u = (n - b) * x / n;
|
|
t *= u;
|
|
v = t / (a + n);
|
|
s += v;
|
|
n += 1.0;
|
|
}
|
|
s += t1;
|
|
s += ai;
|
|
|
|
u = a * std::log(x);
|
|
if ((a + b) < MAXGAM && std::abs(u) < MAXLOG) {
|
|
t = std::tgamma(a + b) / (std::tgamma(a) * std::tgamma(b));
|
|
s = s * t * pow(x, a);
|
|
} else {
|
|
t = std::lgamma(a + b) - std::lgamma(a) - std::lgamma(b) + u + std::log(s);
|
|
if (t < MINLOG)
|
|
s = 0.0;
|
|
else
|
|
s = std::exp(t);
|
|
}
|
|
return s;
|
|
}
|
|
|
|
/// Regularized lower incomplete gamma function
|
|
inline double rlgamma(double a, double x) {
|
|
const double epsilon = 0.000000000000001;
|
|
|
|
if (a < 0 || x < 0)
|
|
throw std::runtime_error("LLGamma: invalid arguments range!");
|
|
|
|
if (x == 0)
|
|
return 0.0;
|
|
|
|
double ax = (a * std::log(x)) - x - std::lgamma(a);
|
|
if (ax < -709.78271289338399)
|
|
return a < x ? 1.0 : 0.0;
|
|
|
|
if (x <= 1 || x <= a) {
|
|
double r2 = a;
|
|
double c2 = 1;
|
|
double ans2 = 1;
|
|
|
|
do {
|
|
r2 = r2 + 1;
|
|
c2 = c2 * x / r2;
|
|
ans2 += c2;
|
|
} while ((c2 / ans2) > epsilon);
|
|
|
|
return std::exp(ax) * ans2 / a;
|
|
}
|
|
|
|
int c = 0;
|
|
double y = 1 - a;
|
|
double z = x + y + 1;
|
|
double p3 = 1;
|
|
double q3 = x;
|
|
double p2 = x + 1;
|
|
double q2 = z * x;
|
|
double ans = p2 / q2;
|
|
double error;
|
|
|
|
do {
|
|
c++;
|
|
y += 1;
|
|
z += 2;
|
|
double yc = y * c;
|
|
double p = (p2 * z) - (p3 * yc);
|
|
double q = (q2 * z) - (q3 * yc);
|
|
|
|
if (q != 0) {
|
|
double nextans = p / q;
|
|
error = std::abs((ans - nextans) / nextans);
|
|
ans = nextans;
|
|
} else {
|
|
// zero div, skip
|
|
error = 1;
|
|
}
|
|
|
|
// shift
|
|
p3 = p2;
|
|
p2 = p;
|
|
q3 = q2;
|
|
q2 = q;
|
|
|
|
// normalize fraction when the numerator becomes large
|
|
if (std::abs(p) > big) {
|
|
p3 *= biginv;
|
|
p2 *= biginv;
|
|
q3 *= biginv;
|
|
q2 *= biginv;
|
|
}
|
|
} while (error > epsilon);
|
|
|
|
return 1.0 - (std::exp(ax) * ans);
|
|
}
|
|
};
|