Concurrent Algorithms November 15, 2021

Solutions to Exercise 6

Problem 1. Fetch-and-increment has a consensus number of 2, while compare-and-swap (CAS) has an

infinite consensus number. Therefore we will use the universal construction to implement a fetch-and-

increment object from consensus objects. Then we can replace consensus objects with their implementation®

from CAS objects. The resulting algorithm is a wait-free implementation of fetch-and-increment from CAS.
Universal construction algorithm for fetch-and-increment: Shared objects:

e Array of n atomic registers R[1, ..., 1], where n is the number of processes.

¢ Infinite list C of consensus objects.
Local objects:

* register seq the value of which is the number of executed operations by process p|i|, initially seqg = 0.
g q p y P P y seq

¢ register k the value of which is the number of decided batches of requests, initially k = 0.

list Per f of performed requests.

list Inv of requests which need to be performed.

local copy f of fetch-and-increment.

Pseudocode for process p|i]:

fetch&inc()
seq ++
R[i] := (fetch&inc(), i, seq) // inform other processes about the request
repeat
Inv := Inv + R[1, .. , n]l.read // add new requests of other processes to the list
Inv := Inv - Perf // remove performed requests from the list

if Inv # @ then // if there are requests that were not performed

k++
Dec := C[k].propose(Inv) // decide on requests to be performed
Res := f.Dec // perform all requests from Dec on local copy f

// and record the responses to list Res
Perf := Perf + Dec // add the performed responses to list Perf
if (fetch&inc(), i, seq) € Dec then // if the request by p[i] is in
// the list of decided responses
return the result of (fetch&inc(), i, seq) from Res
// return the corresponding response

For the implementation of consensus from CAS see the lecture on the limitations of registers

p-1

