
Concurrent Algorithms October 11, 2021

Solutions to Exercise 1

Problem 1.
Part 1.a. Regular, not atomic.

Part 1.b. None of the above.

Part 1.c.
Atomic.

p1

p2

p3

write(1) write(2) write(1)

read → 1

read → 2

write(1) read → 1 write(2) read → 2 write(1)

Figure 1: Serialization points and an equivalent sequential execution.

Problem 2. Consider the transformation from (binary) SRSW safe to (binary) MRSW safe registers given
in class.

Part 2.a. Prove that the transformation works for multi-valued registers and regular registers.

When a process pi reads the base regular register Reg[i], pi gets (a) the value of a concurrent write on
Reg[i] (if any) or (b) the last value written to Reg[i] before such concurrent write operations. In case (a), the
value v obtained is from a R.write(v) that is concurrent with the read of pi. In case (b), the value v obtained
can either be (b.1) from a R.write(v) that is concurrent with the read of pi, or (b.2) from the last value written
by a R.write() before the read of pi . Thus, the constructed register is regular.

Part 2.b. Also, prove that the transformation does not work for atomic registers (by providing a coun-
terexample that breaks atomicity).

See execution in Figure 2.

Problem 3. Consider the transformation from binary MRSW safe registers to binary MRSW regular reg-
isters, given in class.

p-1



pw

p1

p2

write(1)

read → 1

read → 0

Reg[1] = 1 Reg[2] = 1

Reg[1] = 1? 3 Reg[2] = 0? 3

Figure 2: Execution that violates atomicity.

Part 3.a. Prove that the transformation does not generate multi-valued MRSW regular registers (by pro-
viding a counterexample that breaks regularity).
If the registers are multi-valued, then two consecutive reads on the safe register Reg may return arbitrary
values, breaking regularity of the register implementation. Since the safe register is binary in the correct
implementation (and thus limited to two values), this does not occur in the transformation given in class.

Part 3.b. Also, prove that the resulting registers are not binary atomic (by providing a counterexample
that breaks atomicity).
The counterexample can be easily built by scheduling two distinct reads during a write(1) operation on the
register. Since the underlying register is safe, we can ensure that the first operation returns 1, while the
second (non-overlapping) operation returns 0, contradicting atomicity.

p-2


