
1

Interpreting OpenEXR Deep Pixels

Florian Kainz, Industrial Light & Magic

Updated November 13, 2013

Overview
Starting with version 2.0, the OpenEXR image file format supports deep images. In a regular, or flat

image, every pixel stores at most one value per channel. In contrast, each pixel in a deep image can

store an arbitrary number of values or samples per channel. Each of those samples is associated with a

depth, or distance from the viewer. Together with the two-dimensional pixel raster, the samples at

different depths form a three-dimensional data set.

The open-source OpenEXR file I/O library defines the file format for deep images, and it provides

convenient methods for reading and writing deep image files. However, the library does not define how

deep images are meant to be interpreted. In order to encourage compatibility among application

programs and image processing libraries, this document describes a standard way to represent point

and volume samples in deep images, and it defines basic compositing operations such as merging two

deep images or converting a deep image into a flat image.

2

Contents
Overview ... 1

Definitions ... 3

Flat and Deep Images, Samples .. 3

Channel Names and Layers ... 3

Alpha, Color, Depth and Auxiliary Channels ... 4

Required Depth Channels ... 4

Sample Locations, Point and Volume Samples ... 4

Required Alpha Channels .. 5

Sorted, Non-Overlapping and Tidy Images ... 5

Alpha and Color as Functions of Depth... 6

One Sample ... 6

Whole Pixel ... 8

Some Basic Deep Image Operations ... 10

Splitting a Volume Sample .. 10

Merging Overlapping Samples .. 10

Making an Image Tidy ... 12

Merging two Images ... 13

Flattening an Image .. 13

Opaque Volume Samples .. 13

Appendix: C++ Code .. 15

Splitting a Volume Sample .. 15

Merging two Overlapping Samples ... 16

3

Definitions

Flat and Deep Images, Samples

For a single-part OpenEXR file an image is the set of all channels in the file. For a multi-part file an

image is the set of all channels in the same part of the file.

A flat image has at most one stored value or sample per pixel per channel. The most common case is an

RGB image, which contains three channels, and every pixel has exactly one , one and one sample.

Some channels in a flat image may be sub-sampled, as is the case with luminance-chroma images, where

the luminance channel has a sample at every pixel, but the chroma channels have samples only at every

second pixel of every second scan line.

A deep image can store an unlimited number of samples per pixel, and each of those samples is

associated with a depth, or distance from the viewer.

A pixel at pixel space location in a deep image has samples in each channel. The number

of samples varies from pixel to pixel, and any non-negative number of samples, including zero, is

allowed. However, all channels in a single pixel have the same number of samples.

The samples in each channel are numbered from to , and the expression refers

to sample number in channel of the pixel at location .

In the following we will for the most part discuss a single pixel. For readability we will omit the

coordinates of the pixel; expressions such as and are to be understood as and

respectively.

Channel Names and Layers

The channels in an image have names that serve two purposes: specifying the intended interpretation of

each channel, and grouping the channels into layers.

If a channel name contains one or more periods, then the part of the channel name that follows the last

period is the base name. If a channel name contains no periods, then the entire channel name is the

base name.

[Examples: the base name of channel is ; the base name of channel is .]

If a channel name contains one or more periods, then the part of the channel name before the last

period is the channel's layer name. If a channel name contains no periods, then the layer name is an

empty string.

[Examples: the layer name of channel is the empty string; the layer name of channel is

.]

The set of all channels in an image that share the same layer name is called a layer.

The set of all channels in an image whose layer name is the empty string is called the base layer.

4

If the name of one layer is a prefix of the name of another layer, then the first layer encloses the second

layer, and the second layer is nested in the first layer. Since the empty string is a prefix of any other

string, the base layer encloses all other layers.

A layer directly encloses a second layer if there is no third layer that is nested in the first layer and

encloses the second layer.

[Examples: layer encloses layers and . Layer L1 directly encloses layer , but

does not directly enclose .]

Alpha, Color, Depth and Auxiliary Channels

A channel whose base name is , , or is an alpha channel. All samples must be greater than

or equal to zero, and less than or equal to one.

A channel whose base name is , , , or is a color channel.

A channel whose full name is or , is a depth channel. All samples in a depth channel must be

greater than or equal to zero.

A channel that is not an alpha, color or depth channel is an auxiliary channel.

Required Depth Channels

The base layer of a deep image must include a depth channel that is called .

The base layer of a deep image may include a depth channel called . If the base layer does not

include one, then a channel can be generated by copying the channel.

Layers other than the base layer may include channels called or , but those channels are

auxiliary channels and do not determine the positions of any samples in the image.

Sample Locations, Point and Volume Samples

The depth samples and determine the positions of the front and the back of sample

number in all other channels in the same pixel.

If , then sample number in all other channels covers the single depth value

, where is the distance of the sample from the viewer. Sample number is called a point

sample.

If , then sample number in all other channels covers the half open interval

. Sample number is called a volume sample. is the sample’s front

and is the sample’s back.

Point samples are used to represent the intersections of surfaces with a pixel. A surface intersects a

pixel at a well-defined distance from the viewer, but the surface has zero thickness. Volume samples

are used to represent the intersections of volumes with a pixel.

5

Required Alpha Channels

Every color or auxiliary channel in a deep image must have an associated alpha channel.

The associated alpha channel for a given color or auxiliary channel, , is found by looking for a matching

alpha channel (see below), first in the layer that contains , then in the directly enclosing layer, then in

the layer that directly encloses that layer, and so on, until the base layer is reached. The first matching

alpha channel found this way becomes the alpha channel that is associated with .

Each color our auxiliary channel matches an alpha channel, as shown in the following table:

Color or auxiliary channel base name Matching alpha channel base name

 if it exists, otherwise
 if it exists, otherwise
 if it exists, otherwise

(any auxiliary channel)

[Example: The following table shows the list of channels in a deep image, and the associated alpha

channel for each color or auxiliary channel.

Channel name Associated alpha channel

]

Sorted, Non-Overlapping and Tidy Images

The samples in a pixel may or may not be sorted according to depth, and the sample depths or depth

ranges may or may not overlap each other.

A pixel in a deep image is sorted if for every and with < ,

A pixel in a deep image is non-overlapping if for every and with ,

6

A pixel in a deep image is tidy if it is sorted and non-overlapping.

A deep image is sorted if all of its pixels are sorted; it is non-overlapping if all of its pixels are non-

overlapping; and it is tidy if all of its pixels are tidy.

The images stored in an OpenEXR file are not required to be tidy. Some deep image processing

operations, for example, flattening a deep image, require tidy input images. However, making an image

tidy loses information, and some kinds of data cannot be represented with tidy images, for example,

object identifiers or motion vectors for volume objects that pass through each other.

Some application programs that read deep images can run more efficiently with tidy images. For

example, in a 3D renderer that uses deep images as shadow maps, shadow lookups are faster if the

samples in each pixel are sorted and non-overlapping.

Application programs that write deep OpenEXR files can add a deepImageState attribute to the header

to let file readers know if the pixels in the image are tidy or not. The attribute is of type

DeepImageState, and can have the following values:

Value Interpretation

MESSY Samples may not be sorted, and overlaps are possible.
SORTED Samples are sorted, but overlaps are possible.
NON_OVERLAPPING Samples do not overlap, but may not be sorted.
TIDY Samples are sorted and do not overlap.

If the header does not contain a deepImageState attribute, then file readers should assume that the

image is MESSY. The OpenEXR file I/O library does not verify that the samples in the pixels are

consistent with the deepImageState attribute. Application software that handles deep images may

assume that the attribute value is valid, as long as the software will not crash or lock up if any pixels are

inconsistent with the deepImageState.

Alpha and Color as Functions of Depth
Given a color channel, , and its associated alpha channel, , the samples , , and

 together represent the intersection of an object with a pixel. The color of the object is ,

its opacity is , and the distances of its front and back from the viewer are indicated by and

 respectively.

One Sample

We now define two functions, , and , that represent the opacity and color of the

part of the object whose distance from the viewer is no more than . In other words, we divide the

7

object into two parts by splitting it at distance ; and are the opacity and color of the part

that is closer to the viewer.

For a point sample, and are step functions:

For a volume sample, we define a helper function that consists of two constant segments and a

linear ramp:

8

With this helper function, and are defined as follows:

Note that the second case in the definition of is the limit of the first case as approaches zero.

The figure below shows an example of and for a volume sample. Alpha and color are zero

up to , increase gradually between and , and then remain constant.

Whole Pixel

If a pixel is tidy, then we can define two functions, , and , that represent the total

opacity and color of all objects whose distance from the viewer is no more than : if the distance is

inside a volume object, we split the object at . Then we use “over” operations to composite all objects

that are no further away than .

Given a foreground object with opacity and color , and a background object with opacity and

color , an “over” operation computes the total opacity and color, and , that result from placing the

foreground object in front of the background object:

9

We define two sets of helper functions:

With these helper functions, and look like this:

The figure below shows an example of and . Sample number is a volume sample; its

is greater than its . Alpha and color increase gradually between and and then remain

constant. Sample number , whose and are equal, is a point sample where alpha and color

discontinuously jump to a new value.

10

Basic Deep Image Operations
Given the definitions above, we can now construct a few basic deep image processing operations.

Splitting a Volume Sample

Our first operation is splitting volume sample number of a pixel at a given depth, , where

The operation replaces the original sample with two new samples. If the first of those new samples is

composited over the second one, then the total opacity and color are the same as in the original sample.

For the depth channels, the new samples are:

For a color channel, , and its associated alpha channel, , the new samples are:

If it is not done exactly right, splitting a sample can lead to large rounding errors for the colors of the

new samples when the opacity of the original sample is very small. For C++ code that splits a volume

sample in a numerically stable way, see page 15 of this document.

Merging Overlapping Samples

In order to make a deep image tidy, we need a procedure for merging two samples that perfectly

overlap each other. Given two samples, and , with

and

we want to replace those samples with a single new sample that has an appropriate opacity and color.

For two overlapping volume samples, the opacity and color of the new sample should be the same as

what one would get from splitting the original samples into a very large number of shorter sub-samples,

interleaving the sub-samples, and compositing them back together with a series of “over” operations.

11

For a color channel, , and its associated alpha channel, , we can compute the opacity and color of the

new sample as follows:

where

with or , and

Evaluating the expressions above directly can lead to large rounding errors when the opacity of one or

both of the input samples is very small. For C++ code that computes and in a

numerically robust way, see page 16 of this document.

For details on how the expressions for and , can be derived, see Peter Hillman’s

paper, “Deep Sample Merging.”

Note that the expressions for computing and do not refer to depth at all. This allows

us to reuse the same expressions for merging two perfectly overlapping (that is, coincident) point

samples.

A point sample cannot perfectly overlap a volume sample; therefore point samples are never merged

with volume samples.

12

Making an Image Tidy

An image is made tidy by making each of its pixels tidy. A pixel is made tidy in three steps:

1. Split partially overlapping samples: if there are indices and such sample is either a point or a

volume sample, sample is a volume sample, and , then split

sample at as shown on page 10 of this document. Otherwise, if there are indices and

such that samples and are volume samples, and , then split

sample at . Repeat this until there are no more partially overlapping samples.

2. Merge overlapping samples: if there are indices and such that samples and overlap

perfectly, then merge those two samples as shown in “Merging Overlapping Samples,” above.

Repeat this until there are no more perfectly overlapping samples.

3. Sort the samples according to and (see “Sorted, Non-Overlapping and Tidy Images” on

page 5).

Note that this procedure can be made more efficient by first sorting the samples, and then splitting and

merging overlapping samples in a single front-to-back sweep through the sample list.

After sorting:

After merging:

After splitting:

Example (horizontal lines are volume samples, vertical lines are point

samples, and the numbers next to the lines are sample indices):

e– horizontal lines are point samples:

13

Merging two Images

Merging two deep images forms a new deep image that represents all of the objects contained in both

of the original images. Conceptually, the deep image “merge” operation is similar to the “over”

operation for flat images, except that the “merge” operation does not distinguish between a foreground

and a background image.

Since deep images are not required to be tidy, the “merge” operation is trivial: for each output pixel,

concatenate the sample lists of the corresponding input pixels.

Flattening an Image

Flattening produces a flat image from a deep image by performing a front-to-back composite of the

deep image samples. The “flatten” operation has two steps:

1. Make the deep image tidy.

2. For each pixel, composite sample over sample . Composite the result over sample , and so

on, until sample is reached.

Note that this is equivalent to computing for each alpha

channel and for each color or auxiliary channel.

There is no single “correct” way to flatten the depth channels. The most useful way to handle and

 depends on how the flat image will be used. Possibilities include, among others:

 Flatten the channel as if it was a color channel, using as the associated alpha channel. For

volume samples, replace with the average of and k before flattening. Either discard

the channel, or use the back of the last sample, , as the

 value for the flat image.

 Treating as the alpha channel associated with , find the depth where becomes 1.0 and

store that depth in the channel of the flat image. If never reaches 1.0, then store either

infinity or the maximum possible finite value in the flat image.

 Treating as the alpha channel associated with , copy the front of the first sample with non-

zero alpha and the front of the first opaque sample into the and channels of the flat

image.

14

Opaque Volume Samples
Volume samples represent regions along the axis of a pixel that are filled with a medium that absorbs

light and also emits light towards the camera. The intensity of light traveling through the medium falls

off exponentially with the distance traveled. For example, if a one unit thick layer of fog absorbs half of

the light and transmits the rest, then a two unit thick layer of the same fog absorbs three quarters of the

light and transmits only one quarter. Volume samples representing these two layers would have alpha

0.5 and 0.75 respectively. As the thickness of a layer increases, the layer quickly becomes nearly

opaque. A fog layer that is twenty units thick transmits less than one millionth of the light entering it,

and its alpha is 0.99999905. If alpha is represented using 16-bit floating-point numbers, then the exact

value will be rounded to 1.0, making the corresponding volume sample completely opaque. With 32-bit

floating-point numbers, the alpha value for a 20 unit thick layer can still be distinguished from 1.0, but

for a 25 unit layer, alpha rounds to 1.0. At 55 units, alpha rounds to 1.0 even with 64-bit floating-point

numbers.

Once a sample effectively becomes opaque, the true density of the light-absorbing medium is lost. A

one-unit layer of a light fog might absorb half of the light while a one-unit layer of a dense fog might

absorb three quarters of the light, but the representation of a 60-unit layer as a volume sample is

exactly the same for the light fog, the dense fog and a gray brick. For a sample that extends from to

, the function evaluates to 1.0 for any . Any object within this layer would be

completely hidden, no matter how close it was to the front of the layer.

Application software that writes deep images should avoid generating very deep volume samples. If the

program is about to generate a sample with alpha close to 1.0, then it should split the sample into

multiple sub-samples with a lower opacity before storing the data in a deep image file. This assumes, of

course, that the software has an internal volume sample representation that can distinguish very nearly

opaque samples from completely opaque ones, so that splitting will produce sub-samples with alpha

significantly below 1.0.

computed for both samples

true of “dense fog” sample

true of “light fog” sample

15

Appendix: C++ Code

Splitting a Volume Sample

#include <algorithm>

#include <limits>

#include <cmath>

#include <cassert>

using namespace std;

void

splitVolumeSample

 (float a, float c, // Opacity and color of original sample

 float zf, float zb, // Front and back of original sample

 float z, // Position of split

 float& af, float& cf, // Opacity and color of part closer than z

 float& ab, float& cb) // Opacity and color of part further away than z

{

 //

 // Given a volume sample whose front and back are at depths zf and zb

 // respectively, split the sample at depth z. Return the opacities

 // and colors of the two parts that result from the split.

 //

 // The code below is written to avoid excessive rounding errors when

 // the opacity of the original sample is very small:

 //

 // The straightforward computation of the opacity of either part

 // requires evaluating an expression of the form

 //

 // 1 - pow (1-a, x).

 //

 // However, if a is very small, then 1-a evaluates to 1.0 exactly,

 // and the entire expression evaluates to 0.0.

 //

 // We can avoid this by rewriting the expression as

 //

 // 1 - exp (x * log (1-a)),

 //

 // and replacing the call to log() with a call to the function log1p(),

 // which computes the logarithm of 1+x without attempting to evaluate

 // the expression 1+x when x is very small.

 //

 // Now we have

 //

 // 1 - exp (x * log1p (-a)).

 //

 // However, if a is very small then the call to exp() returns 1.0, and

 // the overall expression still evaluates to 0.0. We can avoid that

 // by replacing the call to exp() with a call to expm1():

 //

 // -expm1 (x * log1p (-a))

 //

 // expm1(x) computes exp(x) - 1 in such a way that the result is accurate

 // even if x is very small.

 //

 assert (zb > zf && z >= zf && z <= zb);

 a = max (0.0f, min (a, 1.0f));

16

 if (a == 1)

 {

 af = ab = 1;

 cf = cb = c;

 }

 else

 {

 float xf = (z - zf) / (zb - zf);

 float xb = (zb - z) / (zb - zf);

 if (a > numeric_limits<float>::min())

 {

 af = -expm1 (xf * log1p (-a));

 cf = (af / a) * c;

 ab = -expm1 (xb * log1p (-a));

 cb = (ab / a) * c;

 }

 else

 {

 af = a * xf;

 cf = c * xf;

 ab = a * xb;

 cb = c * xb;

 }

 }

}

Merging two Overlapping Samples

#include <algorithm>

#include <limits>

#include <cmath>

#include <cassert>

using namespace std;

void

mergeOverlappingSamples

 (float a1, float c1, // Opacity and color of first sample

 float a2, float c2, // Opacity and color of second sample

 float& am, float& cm) // Opacity and color of merged sample

{

 //

 // This function merges two perfectly overlapping volume or point

 // samples. Given the color and opacity of two samples, it returns

 // the color and opacity of the merged sample.

 //

 // The code below is written to avoid very large rounding errors when

 // the opacity of one or both samples is very small:

 //

 // * The merged opacity must not be computed as 1 - (1-a1) * (1-a2).

 // If a1 and a2 are less than about half a floating-point epsilon,

 // the expressions (1-a1) and (1-a2) evaluate to 1.0 exactly, and the

 // merged opacity becomes 0.0. The error is amplified later in the

 // calculation of the merged color.

 //

 // Changing the calculation of the merged opacity to a1 + a2 - a1*a2

 // avoids the excessive rounding error.

 //

17

 // * For small x, the logarithm of 1+x is approximately equal to x,

 // but log(1+x) returns 0 because 1+x evaluates to 1.0 exactly.

 // This can lead to large errors in the calculation of the merged

 // color if a1 or a2 is very small.

 //

 // The math library function log1p(x) returns the logarithm of

 // 1+x, but without attempting to evaluate the expression 1+x

 // when x is very small.

 //

 a1 = max (0.0f, min (a1, 1.0f));

 a2 = max (0.0f, min (a2, 1.0f));

 am = a1 + a2 - a1 * a2;

 if (a1 == 1 && a2 == 1)

 {

 cm = (c1 + c2) / 2;

 }

 else if (a1 == 1)

 {

 cm = c1;

 }

 else if (a2 == 1)

 {

 cm = c2;

 }

 else

 {

 static const float MAX = numeric_limits<float>::max();

 float u1 = -log1p (-a1);

 float v1 = (u1 < a1 * MAX)? u1 / a1: 1;

 float u2 = -log1p (-a2);

 float v2 = (u2 < a2 * MAX)? u2 / a2: 1;

 float u = u1 + u2;

 float w = (u > 1 || am < u * MAX)? am / u: 1;

 cm = (c1 * v1 + c2 * v2) * w;

 }

}

