
Processor Architecture Laboratory EPFL
 1 MSP432

R.Beuchat

Créé le 20/09/18 Impression le 18/09/18

Modifié le 21/09/18 01:09 Version [1.2]

MSP432 I/O
LaunchPad
MSP432 Laboratory

Goal Understand the operation of the MSP432 peripherals

Resource MSP432P401R Microcontroller

Prerequisites MSP432 Base Course

Theory

Equipment MSP432P401R-LaunchPad board
 Code composer Studio cross development tools

Duration ~6h

1 Introduction

The objective of this laboratory is to understand how to operate some of the programmable interfaces
available on a microcontroller (specifically on the MSP432 family, available on the TI LaunchPad
board).

This laboratory is divided into 3 sessions, and the final experiment is to be able to convert an analog
signal to a digital one using the Analog to Digital (A/D) converter available on the LaunchPad.

The microcontroller should output a Pulse Width Modulated (PWM) signal with a width that is
proportional to the provided analog input. An oscilloscope and/or a logic analyzer will be used to display
the PWM output as well as other useful signals.

Figure 1. General system block schematic, internal ADC

uC (MSP432)

ADC

uP

+

Program

PWM

Processor Architecture Laboratory EPFL
 2 MSP432

R.Beuchat

1.1 Getting Started

TI’s processors and microcontrollers documentations are often composed of two datasheets:

 A Family reference manual1 that describes the μC/μP’s core and peripherals functionality in
details.

 A Device-specific Datasheet2 that ties the reference manual concepts to the device (it specifies
for example the device pinout, the peripherals base addresses, …)

Most of the time, you will need to use both datasheets to program the μC properly.
You may also need the Launchpad Development User guide 3to check the pinout of the board, external
crystals, etc…

The low level software development on microcontrollers and microprocessors relies on writing
the desired values in the right memory space to communicate with the hardware resources.

Most of the time, in addition with the µC/µP, the manufacturers provide the user with a Hardware
Abstraction Level library that allows fast development by abstracting the low-level hardware
considerations with high level functions.

However, as a deep understanding of low level development is required for the following labs, you are
asked NOT TO USE the HAL libraries

TI provides the programmer with a Device Library which defines constants and data structures,
allowing to write more readable code. You are strongly recommended to use this library, as such code
is way easier to debug!

This library mainly defines C structures for each peripheral and convenient names for each bit of a
register associated to a given peripheral:

Figure 2. Structure declaration in the library “msp432p401r.h”

For example, if you want to write the password to the Clock System peripheral, you could use:

1 http://www.ti.com/lit/ug/slau356h/slau356h.pdf
2 http://www.ti.com/lit/ds/symlink/msp432p401r.pdf
3 http://www.ti.com/lit/ug/slau597f/slau597f.pdf

http://www.ti.com/lit/ug/slau356h/slau356h.pdf
http://www.ti.com/lit/ds/symlink/msp432p401r.pdf
http://www.ti.com/lit/ug/slau597f/slau597f.pdf

Processor Architecture Laboratory EPFL
 3 MSP432

R.Beuchat

CS is a CS_Type object also defined in “msp432p401r.h”, and CS_KEY_VAL is the value of the
password.

1.2 Clock

The clock subsystem is responsible for providing the clocks for the device. In the case of the
MSP432P401R, it is referred to as the Clock System (CS) by the Reference manual and is shown in
Fig.2.

It features seven physical clock sources, and the most important ones for this Lab are:

1. HFXTCLK: A high-frequency external oscillator that uses external resources (a 48MHz crystal
on the Launchpad board)

2. DCOCLK: An internal DCO (https://en.wikipedia.org/wiki/Digitally_controlled_oscillator);
and

3. LFXTCLK: .A low-frequency oscillator used for LF external crystals (typically 32768 Hz)

Each of these physical clock sources can be used as the source of five clock signals (Although, note
that all binding are not possible according to the schematic!):

1. MCLK, stands for Main clock, the clock used by the CPU and the system;
2. SMCLK, stands for Sub-System Master Clock;
3. ACLK, stands for Auxiliary clock;

4. HSMCLK, stands for High-frequency Sub-System Master Clock;

5. BCLK, stands for Back-up domain Clock;

SMCLK, HSMCLK and the ACLK can be selected to be used in certain subsystems, e.g a timer.

To save energy, the clock signals are only sent to the peripherals when one of them needs it. This is
done by the Module Clock Request System: When a sub-unit is routed to a clock signal, it sends a
Conditional Clock request that is then used by the Clock System to send the signal.

Important:

The CS registers are protected by a password to prevent from faulty overwrites. The right bits (see the
device-specific datasheet) must be written in the KEY register BEFORE any change to the other CS
registers. It is also recommended to write any value in the KEY register when the Clock system is
properly configured to protect the system.

The clock selection logic is outlined in the schematic on the next page, and is detailed in the
MSP432P401R User guide. Make sure you feel comfortable with the control registers of the clock
system, i.e. the CTL0 and CTL1 registers.

The value of the key is 0x0000695A.

The control signals in the figure 2 can be modified by the user by writing to the right registers. For
exemple, the configuration of the DCO can be done using the CTL0 register:

Bit 31-19 18-16 15-10 0-9

Signal … DCORSEL Reserved DCOTUNE

The full description of the Clock system registers can be found in the reference manual.

https://en.wikipedia.org/wiki/Digitally_controlled_oscillator

Processor Architecture Laboratory EPFL
 4 MSP432

R.Beuchat

Figure 2. Clock System Block Diagram of the MSP432Px family

Processor Architecture Laboratory EPFL
 5 MSP432

R.Beuchat

1.3 GPIO

The LaunchPad board has 6 I/O ports. Each of these I/O ports can be used as a standard GPIO port,
or can be configured as functional ports for various peripherals.

The peripheral functions available with the MSP432P401R are stated in the following table. The
precise description of the functionality of each pin can be found in the device-specific datasheet.

Port Primary Function Peripheral Functions

Port 1 I/O (P1.0 to P1.7) Serial port

Port 2 I/O (P2.0 to P2.7) Timer, Serial port

Port 3 I/O (P3.0 to P3.7) Serial port

Port 4 I/O (P4.0 to P4.7) ADC, external clocks

Port 5 I/O (P5.0 to P5.7) ADC, ADC Ref, Timer

Port 6 I/O (P6.0 to P6.7) ADC, Serial port

Port secondary functions for MSP432P401R

Figure 3 below illustrates how a typical I/O port is organized inside the microcontroller, along with the
registers that need to be configured to obtain the intended operation for each pin:

Figure 3. Internal architecture of the Port 2 (MSP432P401R)

Depending on the I/O port, several registers should be configured in order to achieve the desired
function. The table below summarizes the main registers and their configuration.

Register Description Configuration

PyDIR.x
Direction Register –

Input/Output
0 Input, 1 Output

PyIN.x Read Value Register 0 Low, 1 High

PyOUT.x Write Value Register 0 Low, 1 High

PySELz.x Function Selection Register 0 I/O, 1 Peripheral

* In the table above, (y) represents a specific register (for Port 1, P1), and (x) the bit number
of the port

Processor Architecture Laboratory EPFL
 6 MSP432

R.Beuchat

Manipulation 1 GPIO

 Using the LaunchPad board schematics and the TI MSP432 documentation, write a C program
that generates a pulse width modulated (PWM) signal on one of board's available I/O ports.

 Test your solution with a logic analyzer or an oscilloscope.

 Test your solution by performing software measurements directly in your C code (try to count clock
cycles used to generate the PWM signal to find out its width).

 Compare the results you obtain through your software measurements with those you see on an
oscilloscope/logic analyzer.

Manipulation 2 GPIO - Chenillard

 Write a program to generate a rotating strobe effect ("chenillard" effect) on the LaunchPad. This
effect should be done by rotating a '1' on Port P4.0 to P4.7, or with the LEDs on Port P2.0 to P2.2

1.4 Watchdog Timer

A watchdog timer is initialized during the power-up procedure. The watchdog timer will reset the CPU
after ~10 ms unless it is serviced. In order to service the watchdog timer, a specific access must be
performed before a programmable expiration time.

It is highly recommended to deactivate the watchdog timer for debugging purposes.

The WDTCTL register is a "password-protected" register used to configure the watchdog timer. Any
read/write operation to/from the WDTCTL register must be done using word instructions.
Additionally, write accesses must include the right password 0x5A (WDTPW) in the upper byte.
Check the MSP432 documentation for a description of the microcontroller's registers and each of
their uses

; Stop the watchdog timer

WDT_A->CTL = WDT_A_CTL_PW | WDT_A_CTL_HOLD;

Some other useful selections:
; Periodically clear an active watchdog and specify the delay for next period

WDT_A->CTL = WDT_A_CTL_PW | WDT_A_CTL_IS_0 | WDT_A_CTL_CNTCL;

; Change watchdog clock source

WDT_A->CTL = WDT_A_CTL_PW | WDT_A_CTL_CNTCL | WDT_A_CTL_SSEL_SMCLK;

1.5 Timer

The MSP432P401R has four 16-bit timers (4 x TimerA with 6 CCR each):

 TimerA0's signals can be routed as follows:

 P2.4 to P2.7 (respectively TA0.1 to TA0.4)

 TimerA2's signals can be routed as follows:

 P4.2 (TA2CLK)

 P5.6 (TA2.1)

 P6.6 and P6.7 (respectively TA2.3 and TA2.4)

Processor Architecture Laboratory EPFL
 7 MSP432

R.Beuchat

To use the Timer in output mode, the corresponding bit in the GPIO SELx register must be
programmed for the specific peripheral mode wanted (and not in GPIO mode). Refer to the device-
specific datasheet for the pin-function equivalence.

Figure 4. Pinning of MSP432 P401R, 100 pins

1.5.1 TimerA used as a counter

The main block of the Timer Module is a 16-bit free running counter that can be configured to count
up or down (TAxR). The TAxCCRy register is used to compare a desired value with the free running
counter (0xFFFF is the maximum upper value).

The TAxCCRy CCIFG flag is used to indicate when the counter has reached the desired value, and
could generate an interruption if properly configured. Figure 5 below shows the general architecture of
the TimerA unit:

Processor Architecture Laboratory EPFL
 8 MSP432

R.Beuchat

Figure 5. TimerA block schematic (from TI)

You can easily program the timer with a delay by using the Compare function. The clock dividers can
be used in order to achieve the desired counting range.

As an exercise, write a function that causes the microcontroller to wait for a certain delay in specified
in ms.

Manipulation 3 TimerA0, delay

 Write a function that takes a delay [ms] as an input argument, and which causes the microcontroller
to wait for the programmed time. You must use TimerA0’s Compare functionality. Don’t forget to
correctly program the TAxCCR register and to actively poll the CCIFG flag!

Processor Architecture Laboratory EPFL
 9 MSP432

R.Beuchat

1.5.2 PWM generation

Use TimerA0 to generate a periodic pulse through pulse width modulation (PWM mode).

Write a function that generates a pulse with a period of ~20 [ms]. The pulse’s duty cycle should be
programmed as the function’s parameter. Study the different modes available on TimerA to generate
the PWM pulse.

You can find a block diagram of TimerA in Figure 5 above.

Manipulation 4 PWM with TimerA

 Use TimerA0 to generate a PWM pulse by configuring the CCR comparator to operate in the
proper manner. The PWM pulse must have a period of ~20[ms]. Use an oscilloscope to view and
validate the results.

1.6 Interrupt Management in the Cortex M4 Architecture

The Cortex M4F ARM core embeds hardware resources to handle nested interrupts, which means
that it is able handle efficiently the case where a more important interrupt is triggered when another
one is being serviced.

Every interruption is associated to a priority determined by the programmer, using a dedicated
hardware unit called Nested Vectored Interrupt Controller (NVIC). This unit chooses which interrupt
can be triggered on request, and whether an interrupt routine can be stopped by another or not.

When an exception is triggered, the processor must push the current register values on the stack and
jump to the right interruption service routine. The NVIC manages the transition from an interruption to
another in a more efficient way, as this is a costly and critical operation for real-time systems.

1.6.1 Interrupt vector table

The interrupt service routines are listed in memory in a fixed format according to their source. (See
figure 6) When an interrupt is triggered and the priorities are checked by the NVIC, the processor
jumps to the routine specified at the address offset corresponding to interrupt source.

Address offset IRQ Source

0x00000000 Reset

0x00000004 NMI

0x00000008 Hard Fault

…

0x00000060 Timer0 CCR0

0x00000064 Timer0 CCRN

0x00000068 Timer1 CCR0

In Code Composer Studio, the file “startup_msp432p401r_ccs.c” defines the vector table and

ensures that the table is located at address 0x00000000. (See figure 7)

To set up an Interrupt Service Routine, it is possible either to replace the corresponding ISR in the

interruptVectors[] array in this file with the name of your custom ISR, or to define an ISR with the

same name as the pre-defined ISR.

For example, to handle the interrupt corresponding to the watchdog timer, you should declare the

ISR as:

Processor Architecture Laboratory EPFL
 10 MSP432

R.Beuchat

Figure 7. Interrupt Vector Table declared in “startup_msp432p401r_ccs.c”

1.6.2 NVIC configuration

The NVIC must be configured to enable an interruption and to set its priority.

By default, all the interruptions are set to the priority 0 (highest priority).

The bits of the registers ISER0 and ISER1 allow to enable the interruptions 0 to 31 and 31 to 63
respectively, and the registers IPR0 to IPR15 may be used to define the priority of each interruption.

Alternatively, you can use the functions:

NVIC_EnableIRQ(TA3_0_IRQn);

NVIC_SetPriority(TA3_0_IRQn,4);

Where TA3_0_IRQn is the IRQ ID defined in “msp432p401r.h”

Processor Architecture Laboratory EPFL
 11 MSP432

R.Beuchat

1.7 TimerA0 interrupt-generation

It is possible to use TimerA0 in Output compare mode to generate a periodic interrupt. A vector table
contains the address of every interrupt routine that needs to be called for a specific Interrupt Request.

Manipulation 5 Interruption on TimerA0

 Use TimerA0 to generate periodic interrupts every ~50ms. Toggle a GPIO pin on each interrupt.

Use logic analyzer to view and validate the results.

1.8 ADC

The MSP432P401R supports 14-bit analog-to-digital conversion. The programmable module
responsible for this is referred to as the ADC14 peripheral. Its block diagram is depicted below.

Figure 8. ADC14 bloc diagram (fromTI)

It basically works as follows:

 Pins can be configured as analog inputs to the ADC14. Using the PxSEL0 register, as
specified by the datasheet, one can for example map P4.0 to A13.

 The inputs can be selected using the INCHx bits for a given MEM register with ADC14MEMx
register (again, make sure to check the ADC14 Registers section of the user manual).

 At the rising edge of the SHI signal, a sampling stage will be initiated. Then, depending on
how the Sample Timer is configured by the programmer (i.e. you), the SAMPCON signal is
held high during a certain period (in function of the period of SHI). The SAMPCON signal
determines how long the analog signal must be sampled.

Processor Architecture Laboratory EPFL
 12 MSP432

R.Beuchat

 As soon as SAMPCON goes low, the conversion stage is initiated and will last 16 ADC14CLK
cycles.

 Finally, the sampled value will be available in the ADC14MEM register.

Now it is your turn to configure all these registers, and don’t forget to read the documentation ;) !

Manipulation 6 ADC, Analog to Digital Converter

 Write a function that uses the ADC14 module to acquire an analog signal obtained from an external
potentiometer. To plug in the potentiometer, refer to figure and the explanations provided in the
next section.

1.8.1 ADC to control a servo-motor using PWM

The goal of this section is to use the sampled value obtained from the ADC14 to control the duty cycle
of your PWM. The A/D converter should be read every ~50ms. Use interrupts to meet this timing
requirement.

The figure below shows an example configuration of the system for the 7th manipulation:

Figure 9. Kit connection with potentiometer and servomotor

A Joystick is plugged such that its VCC pin matches one of the +3.3V power pin of the LaunchPad
board, its output is tied to P4.0 (which can be configured to be the analog input of the ADC14), as
shown in figure 10.

Processor Architecture Laboratory EPFL
 13 MSP432

R.Beuchat

Figure 10. Connection of the Joystick to the board
Figure 11.

Even if the supply voltage written on the PCB of the joystick is +5V, this pin must be tied to
+3.3V as the supply voltage of the microprocessor is 3.3V

The servomotor is connected to the GND and +5V pins of the Launchpad at the bottom right of the
board. The servomotor is controlled via PWM and should be configured as shown in the figure below.

WARNING: THE BLACK WIRE OF THE SERVOMOTOR MUST BE CONNECTED TO GND AND
THE RED ONE TO VCC! THE SERVOMOTOR CAN BE DAMAGED IF NOT PLUGGED IN
CORRECTLY.

The orange wire is the input of the servomotor and should be tied to a pin that outputs the PWM
generated by your timer (for example P2.4). The width of the pulse controls the angle of the motor:

1ms corresponds to 0° and 2ms correspond to 𝛼𝑚𝑎𝑥 (maximum angle of the motor)

Figure 10.– PWM Pulse Width Modulation timing

Manipulation 7 Timer, ADC, PWM, GPIO and interrupts

 Use a timer interrupt to periodically enable the ADC converter in software and to start a conversion
of the potentiometer value.

 Use another interrupt from the (ADC14 module this time) to catch the sampled value and use it to
adjust the duty cycle of the pulses your pulse-width modulator generates.

 Make a demo to an assistant where you can visualize the result with an oscilloscope/logic analyzer
and the servomotor.

 Extra: try to avoid the use of a software routine to enable the ADC conversion process, but instead
connect the timer directly to the ADC14 (find out where to perform the connection from the ADC14
bloc diagram above).

Processor Architecture Laboratory EPFL
 14 MSP432

R.Beuchat

1.8.2 Optional: Control the servo-arm using the joysticks

Using the same procedure as the previous section, try to write a program that controls the servo-arm.

This servo-arm has two servo-motors that are the same as the previous experiment, one of them
controls the “pan” of the arm and the other controls the “tilt”.

This time, two joysticks can be used to control the two servo-motors.

You can use for example the analog input A13, A11, A9, and A8, on pins P4.0, P4.2, P4.4, P4.5
respectively, and the pins P2.4 and P4.5 to drive the servo-motors.

Configure the ADC14 unit properly to sample the 4 analog signals. You may choose to trigger an
interrupt when the 4 signals are sampled.

You can ask the assistants to get one of such arms in class, have fun

