/* Copyright (c) 2005-2020 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ /* Example program that computes Fibonacci numbers in different ways. Arguments are: [ Number [Threads [Repeats]]] The defaults are Number=500 Threads=1:4 Repeats=1. The point of this program is to check that the library is working properly. Most of the computations are deliberately silly and not expected to show any speedup on multiprocessors. */ // enable assertions #ifdef NDEBUG #undef NDEBUG #endif #include #include #include #include #include #include #include #include "tbb/task.h" #include "tbb/tick_count.h" #include "tbb/blocked_range.h" #include "tbb/concurrent_vector.h" #include "tbb/concurrent_queue.h" #include "tbb/concurrent_hash_map.h" #include "tbb/parallel_while.h" #include "tbb/parallel_for.h" #include "tbb/parallel_reduce.h" #include "tbb/parallel_scan.h" #include "tbb/pipeline.h" #include "tbb/spin_mutex.h" #include "tbb/queuing_mutex.h" #include "tbb/global_control.h" using namespace std; using namespace tbb; //! type used for Fibonacci number computations typedef long long value; //! Matrix 2x2 class struct Matrix2x2 { //! Array of values value v[2][2]; Matrix2x2() {} Matrix2x2(value v00, value v01, value v10, value v11) { v[0][0] = v00; v[0][1] = v01; v[1][0] = v10; v[1][1] = v11; } Matrix2x2 operator * (const Matrix2x2 &to) const; //< Multiply two Matrices }; //! Identity matrix static const Matrix2x2 MatrixIdentity(1, 0, 0, 1); //! Default matrix to multiply static const Matrix2x2 Matrix1110(1, 1, 1, 0); //! Raw arrays matrices multiply void Matrix2x2Multiply(const value a[2][2], const value b[2][2], value c[2][2]); /////////////////////// Serial methods //////////////////////// //! Plain serial sum value SerialFib(int n) { if(n < 2) return n; value a = 0, b = 1, sum; int i; for( i = 2; i <= n; i++ ) { // n is really index of Fibonacci number sum = a + b; a = b; b = sum; } return sum; } //! Serial n-1 matrices multiplication value SerialMatrixFib(int n) { value c[2][2], a[2][2] = {{1, 1}, {1, 0}}, b[2][2] = {{1, 1}, {1, 0}}; int i; for(i = 2; i < n; i++) { // Using condition to prevent copying of values if(i & 1) Matrix2x2Multiply(a, c, b); else Matrix2x2Multiply(a, b, c); } return (i & 1) ? c[0][0] : b[0][0]; // get result from upper left cell } //! Recursive summing. Just for complete list of serial algorithms, not used value SerialRecursiveFib(int n) { value result; if(n < 2) result = n; else result = SerialRecursiveFib(n - 1) + SerialRecursiveFib(n - 2); return result; } //! Introducing of queue method in serial value SerialQueueFib(int n) { concurrent_queue Q; for(int i = 1; i < n; i++) Q.push(Matrix1110); Matrix2x2 A, B; while(true) { while( !Q.try_pop(A) ) std::this_thread::yield(); if(Q.empty()) break; while( !Q.try_pop(B) ) std::this_thread::yield(); Q.push(A * B); } return A.v[0][0]; } //! Trying to use concurrent_vector value SerialVectorFib(int n) { concurrent_vector A; A.grow_by(2); A[0] = 0; A[1] = 1; for( int i = 2; i <= n; i++) { A.grow_to_at_least(i+1); A[i] = A[i-1] + A[i-2]; } return A[n]; } ///////////////////// Parallel methods //////////////////////// // *** Serial shared by mutexes *** // //! Shared glabals value SharedA = 0, SharedB = 1; int SharedI = 1, SharedN; //! Template task class which computes Fibonacci numbers with shared globals template class SharedSerialFibBody { M &mutex; public: SharedSerialFibBody( M &m ) : mutex( m ) {} //! main loop void operator()( const blocked_range& range ) const { for(;;) { typename M::scoped_lock lock( mutex ); if(SharedI >= SharedN) break; value sum = SharedA + SharedB; SharedA = SharedB; SharedB = sum; ++SharedI; } } }; #if __TBB_CPP11_PRESENT template<> void SharedSerialFibBody::operator()( const blocked_range& range ) const { for(;;) { std::lock_guard lock(mutex); if(SharedI >= SharedN) break; value sum = SharedA + SharedB; SharedA = SharedB; SharedB = sum; ++SharedI; } } #endif //! Root function template value SharedSerialFib(int n) { SharedA = 0; SharedB = 1; SharedI = 1; SharedN = n; M mutex; parallel_for( blocked_range(0,4,1), SharedSerialFibBody( mutex ) ); return SharedB; } // *** Serial shared by concurrent hash map *** // //! Hash comparer struct IntHashCompare { bool equal( const int j, const int k ) const { return j == k; } unsigned long hash( const int k ) const { return (unsigned long)k; } }; //! NumbersTable type based on concurrent_hash_map typedef concurrent_hash_map NumbersTable; //! task for serial method using shared concurrent_hash_map class ConcurrentHashSerialFibTask: public task { NumbersTable &Fib; int my_n; public: //! constructor ConcurrentHashSerialFibTask( NumbersTable &cht, int n ) : Fib(cht), my_n(n) { } //! executing task task* execute() /*override*/ { for( int i = 2; i <= my_n; ++i ) { // there is no difference in to recycle or to make loop NumbersTable::const_accessor f1, f2; // same as iterators if( !Fib.find(f1, i-1) || !Fib.find(f2, i-2) ) { // Something is seriously wrong, because i-1 and i-2 must have been inserted // earlier by this thread or another thread. assert(0); } value sum = f1->second + f2->second; NumbersTable::const_accessor fsum; Fib.insert(fsum, make_pair(i, sum)); // inserting assert( fsum->second == sum ); // check value } return 0; } }; //! Root function value ConcurrentHashSerialFib(int n) { NumbersTable Fib; bool okay; okay = Fib.insert( make_pair(0, 0) ); assert(okay); // assign initial values okay = Fib.insert( make_pair(1, 1) ); assert(okay); task_list list; // allocate tasks list.push_back(*new(task::allocate_root()) ConcurrentHashSerialFibTask(Fib, n)); list.push_back(*new(task::allocate_root()) ConcurrentHashSerialFibTask(Fib, n)); task::spawn_root_and_wait(list); NumbersTable::const_accessor fresult; okay = Fib.find( fresult, n ); assert(okay); return fresult->second; } // *** Queue with parallel_for and parallel_while *** // //! Stream of matrices struct QueueStream { volatile bool producer_is_done; concurrent_queue Queue; //! Get pair of matricies if present bool pop_if_present( pair &mm ) { // get first matrix if present if(!Queue.try_pop(mm.first)) return false; // get second matrix if present if(!Queue.try_pop(mm.second)) { // if not, then push back first matrix Queue.push(mm.first); return false; } return true; } }; //! Functor for parallel_for which fills the queue struct parallel_forFibBody { QueueStream &my_stream; //! fill functor arguments parallel_forFibBody(QueueStream &s) : my_stream(s) { } //! iterate thorough range void operator()( const blocked_range &range ) const { int i_end = range.end(); for( int i = range.begin(); i != i_end; ++i ) { my_stream.Queue.push( Matrix1110 ); // push initial matrix } } }; //! Functor for parallel_while which process the queue class parallel_whileFibBody { QueueStream &my_stream; parallel_while &my_while; public: typedef pair argument_type; //! fill functor arguments parallel_whileFibBody(parallel_while &w, QueueStream &s) : my_while(w), my_stream(s) { } //! process pair of matrices void operator() (argument_type mm) const { mm.first = mm.first * mm.second; // note: it can run concurrently with QueueStream::pop_if_present() if(my_stream.Queue.try_pop(mm.second)) my_while.add( mm ); // now, two matrices available. Add next iteration. else my_stream.Queue.push( mm.first ); // or push back calculated value if queue is empty } }; //! Parallel queue's filling task struct QueueInsertTask: public task { QueueStream &my_stream; int my_n; //! fill task arguments QueueInsertTask( int n, QueueStream &s ) : my_n(n), my_stream(s) { } //! executing task task* execute() /*override*/ { // Execute of parallel pushing of n-1 initial matrices parallel_for( blocked_range( 1, my_n, 10 ), parallel_forFibBody(my_stream) ); my_stream.producer_is_done = true; return 0; } }; //! Parallel queue's processing task struct QueueProcessTask: public task { QueueStream &my_stream; //! fill task argument QueueProcessTask( QueueStream &s ) : my_stream(s) { } //! executing task task* execute() /*override*/ { while( !my_stream.producer_is_done || my_stream.Queue.unsafe_size()>1 ) { parallel_while w; // run while loop in parallel w.run( my_stream, parallel_whileFibBody( w, my_stream ) ); } return 0; } }; //! Root function value ParallelQueueFib(int n) { QueueStream stream; stream.producer_is_done = false; task_list list; list.push_back(*new(task::allocate_root()) QueueInsertTask( n, stream )); list.push_back(*new(task::allocate_root()) QueueProcessTask( stream )); // If there is only a single thread, the first task in the list runs to completion // before the second task in the list starts. task::spawn_root_and_wait(list); assert(stream.Queue.unsafe_size() == 1); // it is easy to lose some work Matrix2x2 M; bool result = stream.Queue.try_pop( M ); // get last matrix assert( result ); return M.v[0][0]; // and result number } // *** Queue with parallel_pipeline *** // typedef concurrent_queue queue_t; namespace parallel_pipeline_ns { std::atomic N; //< index of Fibonacci number minus 1 queue_t Queue; } //! functor to fills queue struct InputFunc { InputFunc( ) { } queue_t* operator()(tbb::flow_control& fc) const { using namespace parallel_pipeline_ns; int n = --N; if(n <= 0) { fc.stop(); return NULL; } Queue.push( Matrix1110 ); return &Queue; } }; //! functor to process queue struct MultiplyFunc { MultiplyFunc( ) { } void operator()(queue_t* queue) const { //concurrent_queue &Queue = *static_cast *>(p); Matrix2x2 m1, m2; // get two elements while( !queue->try_pop( m1 ) ) std::this_thread::yield(); while( !queue->try_pop( m2 ) ) std::this_thread::yield(); m1 = m1 * m2; // process them queue->push( m1 ); // and push back } }; //! Root function value ParallelPipeFib(int n) { using namespace parallel_pipeline_ns; N = n-1; Queue.push( Matrix1110 ); tbb::parallel_pipeline( n, tbb::make_filter( tbb::filter::parallel, InputFunc() ) & tbb::make_filter( tbb::filter::parallel, MultiplyFunc() ) ); assert( Queue.unsafe_size()==1 ); Matrix2x2 M; bool result = Queue.try_pop( M ); // get last element assert( result ); value res = M.v[0][0]; // get value Queue.clear(); return res; } // *** parallel_reduce *** // //! Functor for parallel_reduce struct parallel_reduceFibBody { Matrix2x2 sum; int split_flag; //< flag to make one less operation for split bodies //! Constructor fills sum with initial matrix parallel_reduceFibBody() : sum( Matrix1110 ), split_flag(0) { } //! Splitting constructor parallel_reduceFibBody( parallel_reduceFibBody& other, split ) : sum( Matrix1110 ), split_flag(1/*note that it is split*/) {} //! Join point void join( parallel_reduceFibBody &s ) { sum = sum * s.sum; } //! Process multiplications void operator()( const blocked_range &r ) { for( int k = r.begin() + split_flag; k < r.end(); ++k ) sum = sum * Matrix1110; split_flag = 0; // reset flag, because this method can be reused for next range } }; //! Root function value parallel_reduceFib(int n) { parallel_reduceFibBody b; parallel_reduce(blocked_range(2, n, 3), b); // do parallel reduce on range [2, n) for b return b.sum.v[0][0]; } // *** parallel_scan *** // //! Functor for parallel_scan struct parallel_scanFibBody { /** Though parallel_scan is usually used to accumulate running sums, it can be used to accumulate running products too. */ Matrix2x2 product; /** Pointer to output sequence */ value* const output; //! Constructor sets product to identity matrix parallel_scanFibBody(value* output_) : product( MatrixIdentity ), output(output_) {} //! Splitting constructor parallel_scanFibBody( parallel_scanFibBody &b, split) : product( MatrixIdentity ), output(b.output) {} //! Method for merging summary information from a, which was split off from *this, into *this. void reverse_join( parallel_scanFibBody &a ) { // When using non-commutative reduction operation, reverse_join // should put argument "a" on the left side of the operation. // The reversal from the argument order is why the method is // called "reverse_join" instead of "join". product = a.product * product; } //! Method for assigning final result back to original body. void assign( parallel_scanFibBody &b ) { product = b.product; } //! Compute matrix running product. /** Tag indicates whether is is the final scan over the range, or just a helper "prescan" that is computing a partial reduction. */ template void operator()( const blocked_range &r, Tag tag) { for( int k = r.begin(); k < r.end(); ++k ) { // Code performs an "exclusive" scan, which outputs a value *before* updating the product. // For an "inclusive" scan, output the value after the update. if( tag.is_final_scan() ) output[k] = product.v[0][1]; product = product * Matrix1110; } } }; //! Root function value parallel_scanFib(int n) { value* output = new value[n]; parallel_scanFibBody b(output); parallel_scan(blocked_range(0, n, 3), b); // output[0..n-1] now contains the Fibonacci sequence (modulo integer wrap-around). // Check the last two values for correctness. assert( n<2 || output[n-2]+output[n-1]==b.product.v[0][1] ); delete[] output; return b.product.v[0][1]; } // *** Raw tasks *** // //! task class which computes Fibonacci numbers by Lucas formula struct FibTask: public task { const int n; value& sum; value x, y; bool second_phase; //< flag of continuation // task arguments FibTask( int n_, value& sum_ ) : n(n_), sum(sum_), second_phase(false) {} //! Execute task task* execute() /*override*/ { // Using Lucas' formula here if( second_phase ) { // children finished sum = n&1 ? x*x + y*y : x*x - y*y; return NULL; } if( n <= 2 ) { sum = n!=0; return NULL; } else { recycle_as_continuation(); // repeat this task when children finish second_phase = true; // mark second phase FibTask& a = *new( allocate_child() ) FibTask( n/2 + 1, x ); FibTask& b = *new( allocate_child() ) FibTask( n/2 - 1 + (n&1), y ); set_ref_count(2); spawn( a ); return &b; } } }; //! Root function value ParallelTaskFib(int n) { value sum; FibTask& a = *new(task::allocate_root()) FibTask(n, sum); task::spawn_root_and_wait(a); return sum; } /////////////////////////// Main //////////////////////////////////////////////////// //! A closed range of int. struct IntRange { int low; int high; void set_from_string( const char* s ); IntRange( int low_, int high_ ) : low(low_), high(high_) {} }; void IntRange::set_from_string( const char* s ) { char* end; high = low = strtol(s,&end,0); switch( *end ) { case ':': high = strtol(end+1,0,0); break; case '\0': break; default: printf("unexpected character = %c\n",*end); } } //! Tick count for start static tick_count t0; //! Verbose output flag static bool Verbose = false; typedef value (*MeasureFunc)(int); //! Measure ticks count in loop [2..n] value Measure(const char *name, MeasureFunc func, int n) { value result; if(Verbose) printf("%s",name); t0 = tick_count::now(); for(int number = 2; number <= n; number++) result = func(number); if(Verbose) printf("\t- in %f msec\n", (tick_count::now() - t0).seconds()*1000); return result; } //! program entry int main(int argc, char* argv[]) { if(argc>1) Verbose = true; int NumbersCount = argc>1 ? strtol(argv[1],0,0) : 500; IntRange NThread(1,4);// Number of threads to use. if(argc>2) NThread.set_from_string(argv[2]); unsigned long ntrial = argc>3? (unsigned long)strtoul(argv[3],0,0) : 1; value result, sum; if(Verbose) printf("Fibonacci numbers example. Generating %d numbers..\n", NumbersCount); result = Measure("Serial loop", SerialFib, NumbersCount); sum = Measure("Serial matrix", SerialMatrixFib, NumbersCount); assert(result == sum); sum = Measure("Serial vector", SerialVectorFib, NumbersCount); assert(result == sum); sum = Measure("Serial queue", SerialQueueFib, NumbersCount); assert(result == sum); // now in parallel for( unsigned long i=0; i, NumbersCount); assert(result == sum); sum = Measure("Shared serial (spin_mutex)", SharedSerialFib, NumbersCount); assert(result == sum); sum = Measure("Shared serial (queuing_mutex)", SharedSerialFib, NumbersCount); assert(result == sum); sum = Measure("Shared serial (Conc.HashTable)", ConcurrentHashSerialFib, NumbersCount); assert(result == sum); sum = Measure("Parallel while+for/queue", ParallelQueueFib, NumbersCount); assert(result == sum); sum = Measure("Parallel pipe/queue\t", ParallelPipeFib, NumbersCount); assert(result == sum); sum = Measure("Parallel reduce\t\t", parallel_reduceFib, NumbersCount); assert(result == sum); sum = Measure("Parallel scan\t\t", parallel_scanFib, NumbersCount); assert(result == sum); sum = Measure("Parallel tasks\t\t", ParallelTaskFib, NumbersCount); assert(result == sum); } #ifdef __GNUC__ if(Verbose) printf("Fibonacci number #%d modulo 2^64 is %lld\n\n", NumbersCount, result); #else if(Verbose) printf("Fibonacci number #%d modulo 2^64 is %I64d\n\n", NumbersCount, result); #endif } if(!Verbose) printf("TEST PASSED\n"); return 0; } // Utils void Matrix2x2Multiply(const value a[2][2], const value b[2][2], value c[2][2]) { for( int i = 0; i <= 1; i++) for( int j = 0; j <= 1; j++) c[i][j] = a[i][0]*b[0][j] + a[i][1]*b[1][j]; } Matrix2x2 Matrix2x2::operator *(const Matrix2x2 &to) const { Matrix2x2 result; Matrix2x2Multiply(v, to.v, result.v); return result; }