/* Copyright (c) 2005-2020 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ // Example program that computes number of prime numbers up to n, // where n is a command line argument. The algorithm here is a // fairly efficient version of the sieve of Eratosthenes. // The parallel version demonstrates how to use parallel_reduce, // and in particular how to exploit lazy splitting. #include "primes.h" #if __TBB_MIC_OFFLOAD #pragma offload_attribute (target(mic)) #endif // __TBB_MIC_OFFLOAD #include #include #include #include #include #include #include #include "tbb/parallel_reduce.h" using namespace std; //! If true, then print primes on stdout. static bool printPrimes = false; class Multiples { inline NumberType strike( NumberType start, NumberType limit, NumberType stride ) { // Hoist "my_is_composite" into register for sake of speed. bool* is_composite = my_is_composite; assert( stride>=2 ); for( ;start=1 ); my_is_composite = new bool[m/2]; my_striker = new NumberType[m/2]; for( size_t k=0; k=2; if( n>=3 ) { Multiples multiples(n); count += multiples.n_factor; if( printPrimes ) printf("---\n"); NumberType window_size = multiples.m; for( NumberType j=multiples.m; j<=n; j+=window_size ) { if( j+window_size>n+1 ) window_size = n+1-j; count += multiples.find_primes_in_window( j, window_size ); } } return count; } //! Range of a sieve window. class SieveRange { //! Width of full-size window into sieve. const NumberType my_stride; //! Always multiple of my_stride NumberType my_begin; //! One past last number in window. NumberType my_end; //! Width above which it is worth forking. const NumberType my_grainsize; bool assert_okay() const { assert( my_begin%my_stride==0 ); assert( my_begin<=my_end ); assert( my_stride<=my_grainsize ); return true; } public: //------------------------------------------------------------------------ // Begin signatures required by parallel_reduce //------------------------------------------------------------------------ bool is_divisible() const {return my_end-my_begin>my_grainsize;} bool empty() const {return my_end<=my_begin;} SieveRange( SieveRange& r, tbb::split ) : my_stride(r.my_stride), my_grainsize(r.my_grainsize), my_end(r.my_end) { assert( r.is_divisible() ); assert( r.assert_okay() ); NumberType middle = r.my_begin + (r.my_end-r.my_begin+r.my_stride-1)/2; middle = middle/my_stride*my_stride; my_begin = middle; r.my_end = middle; assert( assert_okay() ); assert( r.assert_okay() ); } //------------------------------------------------------------------------ // End of signatures required by parallel_reduce //------------------------------------------------------------------------ NumberType begin() const {return my_begin;} NumberType end() const {return my_end;} SieveRange( NumberType begin, NumberType end, NumberType stride, NumberType grainsize ) : my_begin(begin), my_end(end), my_stride(stride), my_grainsize(grainsizer.end() ) window_size = r.end()-j; count += multiples.find_primes_in_window( j, window_size ); } } void join( Sieve& other ) { count += other.count; // Final value of multiples needs to final value of other multiples, // so that *this can correctly process next window to right. multiples.move( other.multiples ); } Sieve( Sieve& other, tbb::split ) : multiples(other.multiples,tbb::split()), count(0) {} //------------------------------------------------------------------------ // End of signatures required by parallel_reduce //------------------------------------------------------------------------ }; //! Count number of primes between 0 and n /** This is the parallel version. */ NumberType ParallelCountPrimes( NumberType n , int number_of_threads, NumberType grain_size ) { tbb::global_control c(tbb::global_control::max_allowed_parallelism, number_of_threads); // Two is special case NumberType count = n>=2; if( n>=3 ) { Sieve s(n); count += s.multiples.n_factor; if( printPrimes ) printf("---\n"); using namespace tbb; // Explicit grain size and simple_partitioner() used here instead of automatic grainsize // determination because we want SieveRange to be decomposed down to grainSize or smaller. // Doing so improves odds that the working set fits in cache when evaluating Sieve::operator(). parallel_reduce( SieveRange( s.multiples.m, n, s.multiples.m, grain_size ), s, simple_partitioner() ); count += s.count; } return count; }