
Amy Language Server
Compiler Extension Final Report

Cédric Hölzl Matthieu De Beule

EPFL
matthieu.debeule@epfl.ch cedric.hoelzl@epfl.ch

1. Introduction
From labs 1 to 6, we implemented the various stages of
an Amy compiler to WebAssembly. A working com-
piler could certainly be described as a big part of the
ecosystem of a programming language, however the
tooling to help the programmer be efficient should also
be quite good to help make the adoption of the language
an option for programmers.

Programmers expect certain features from their ed-
itor these days, like auto complete, go to definition,
find references, inline compiler errors (with informa-
tive messages concerning type errors and such things).
Traditionally, to provide this one would make a plug-
in specifically for the editor and the language (Python
plugin for VSCode, a Python plugin for Sublime Text,
a Python plugin for Vim, a Python plugin for Source-
graph,... and this for every language). This presents a
lot of work, most of which is not necessarily language-
specific or editor-specific: a lot of it could be re-used.
This traditional approach has m-times-n complexity, m
editors and n languages.

A solution to this problem has become very pop-
ular lately, called the ”Language Server Protocol”.
It consists in a protocol specifying how the editor
(client) should communicate with a ”language smart-
ness provider” (server), where the server can be used
by any client that conforms to the specification.

This reduces the complexity from m× n to m+ n:
implement the protocol in each editor once, and make a
Language Server for each programming language once.

Our project consists of a Language Server for Amy.
We did not implement all the functionality of a Lan-
guage Server, but rather a proof of concept showing
how one could adapt the existing compiler pipeline to
provide ”language smartness” for Amy to most editors.

2. Examples
For example, if a function gcd is defined as such:

def gcd(a : Int, b : Int) : Int = {
...

}

the editor will then be able to complete g to

gcd(a,b)

where a and b are the names given to the variables in
the function declaration.

3. Implementation
We will quickly describe how we implemented the
LSP and how this integrates with the existing compiler
pipeline. We implemented function completion with
naive arguments, which will complete a function with
arguments. This uses the Lexer, Parser and NameAna-
lyzer stages of the pipeline.

3.1 Setup and testing of LSP infrastructure
We used the lsp4j library, as was suggested in the
project description. We first wanted to get a working
Language Server, that returned the same thing all the
time. This posed more problems than we expected,
since it was not easy to set up the editor. We had to
do substantial reading in the specification and the doc-
umentation of the LSP plugins for the various editors.
We finally managed to get SublimeText to show a hard-
coded completion response (we still don’t know how to
set it up for Vim for example).

3.2 Using the existing compiler pipeline to
complete functions

We run the pipeline until the NameAnalyzer, and then
iterate on the definitions:

1 2020/1/10

val pipeline = Lexer andThen Parser
andThen NameAnalyzer

pipeline.run(ctx)(files). 1.modules.foreach(.defs.foreach ...

We then add the function definitions to the list of Com-
pletionItems, and set the text to be inserted from the
name of the function and the list of arguments.

completionItemPrintModule.setInsertText(name.name + ”(”
+params.map(.name.name)

.reduceLeft((s,p) => s + ”, ”+ p) + ”)”)

4. Possible Extensions
We did not implement everything we wanted to imple-
ment at all, due to a lot of lost time setting up the editor
and getting a basic server response.

We hoped to have time to work on more interesting
completion (like completion dependent on scope), us-
ing types to suggest variables or functions, type errors,
etc, so these would be a good way to extend what we
have done.

2 2020/1/10

