Laboratory 4 report

Cédric Holzl Antoine Brunner

May 2020

1 Introduction

In this laboratory, we had to create our own project using the DEO-nano-SoC. We chose to build
upon thermal camera from the second lab and create a server capable of streaming the image from
the thermal camera to a client through the Ethernet interface available on the board.

The server would run on the Linux OS on the hard-core ARM processor and would access the
thermal camera through the interface that was created on the FPGA part of the board. This
means that we had to find a way to access data captured by the thermal camera on the FPGA
part from the Linux.

2 Thermal camera interface

We have reused the lepton camera interface programmed in VHDL from lab 2. It already suited
our needs, so we didn’t need to change anything to it. However, it is still important to remember
how the interface worked. The interface allows us to control the camera through memory mapped
registers. For example, there are a COMMAND and a STATUS registers that allow to instruct the
camera to start capturing a frame and check its error status. There are also two memory regions
that allow to read the raw image, as it was captured, or the image adjusted between the minimum
and maximum temperature. This means that if we have access to that memory, we can control the
camera by just reading and writing to certain addresses. The challenge was to be able to access
that memory from the ARM processor, and it will be discussed in the next sections.

3 Linux OS

Since we needed to create a server, we needed to use the Ethernet interface. It would be possible
to develop a baremetal application that uses the Ethernet interface, but it would be harder to
implement. Instead, Linux provides us with drivers that allow to access it transparently through
existing libraries. As we are programmers, we are lazy and don’t want to reinvent the wheel, so
that’s why we chose to use Linux, instead of a baremetal application. In the previous lab, we have
been able to boot Linux on our DE(O-nano-SoC so we could reuse that configuration for this lab.
As was said above, the challenge was to access the lepton camera interface from the Linux part.



4 Accessing the thermal camera from Linux

The fact that there is a Linux system running on the ARM processor means that we cannot
access the memory directly anymore. OS’s virtualize the memory so that several processes can
run simultaneously. While this architecture provides a great abstraction over the hardware, it also
means that we cannot directly access the physical memory. But fortunately, there is a way to map
physical memory onto virtual memory, through the mmap function.

mmap allows to map a given file descriptor in a certain range of the virtual memory. On Linux
systems, there is a special file /dev/mem that represents the physical memory. Combining the two
functionalities, we can first open that special file, and map it into the virtual memory. This gives us
the ability to access arbitrary ranges of the physical memory from a Linux process. This approach
has one drawback: opening /dev/mem requires elevated privileges, so it means that our server
needs to be run with sudo. This is not such a big problem for us since we are the administrators
of the Linux system, but it could cause some problems if a normal user wants to run our server.

5 Server-client protocol

Now that we have a way to access the thermal camera images from a Linux process, we need to send
it to the client. To do so, we can use the Linux socket programming libraries to set up a working
server. We chose to send the image over UDP with one packet per line, along some metadata. The
motivation behind that choice is that UDP hass less overhead than TCP (no handshakes,...) and
that packet loss is not a major issue. Indeed if a packet containing a certain line is lost, we can
simply display the line from the previous frame, and it is not going to be noticeable (at most it
might have an effect similar to screen tearing).

We will now explain our very simple server-client protocol. Once the server has created and
bound a UDP socket, it then waits for a client to arrive. To start the communication to the server,
a client has to send an empty (zero-length) packet to the server. Once the server received that
packet, it starts sending the thermal image with one packet per line. Each packet first contains
the index of the line, encoded in four bytes (for alignment purposes), and then contains the pixels
of the line that take two bytes each. The client can send again a zero-length packet to the server
to indicate that he wants to stop the connection. In that case, the server stops sending packets to
that client and waits for the next client to connect. The server can also be stopped at any time
by pressing on 'q’.

6 Clients

Since both of us were familiar with different libraries for rendering images to the screen, we have
decided to create two clients to visualize the thermal image. Cedric wanted to experiment with a
library called CACA, while Antoine already had some experience with a library called SFML.

6.1 Refresh Logic

While trying to reduce the performance impact of our software, we had some choices to make.
Initialy, we refreshed the display for every line received. This however proved rather inefficient,
updating the display 60 times for every frame, at 9 frames per seconds. Ideally, we would want to
refresh the image every 60 lines, but with packet loss it might end up out of sync with the frames.



Altered Bernstein

— v
— glt)
08| — bO)

0.0

t

(a) The red, blue and green (b) The resulting color range
curves as the temperature varies

Figure 1: The Bernstein color mapping

We could add a frame counter to the packets but it will have the drawback that there is no way
to detect missing packets. We made the choice in the end to refresh every 60 lines, resetting the
counter when we receive the last line of any frame. This prevents the line counter from getting out
of sync and guarantees that even with out of order packets and packet loss we still get a relatively
good image.

6.2 Greyscale to RGB

The values that are read from the thermal camera are encoded on 14 bits and represent the
temperature between the minimum and the maximum (we sample the adjusted buffer). To visualize
them, we could simply map them to a grey scale color. While it would be easy to implement, the
result is not really intuitive, or at least not visually pleasant. To improve the image visualization
we have used a slightly more complex mapping using Bernstein polynomials. Those polynomials
are not related in any way to color mapping, but it turns out that they yield a perfect color
mapping for temperature visualization, so we chose to use them. Figure 1 shows the red green
and blue curves that the Bernstein polynomials give, as well as visualization of the resulting color
range.

6.3 CACA client

CACA stands for Color-ASCII-Art. It is a library that is aimed to transform media such as
images or video into colored ASCII frames in terminal environments. It uses NCurses, is relativly
lightweight, and has options for image processing and more, making it an interesting tool for this
project. We used standard C sockets to communicate with the server. We managed to optimize
performance making our program use at most 1.5% CPU while running.

6.4 SFML client

SFML stands for Simple and Fast Multimedia Library. It is a cross-platform library that allows
to build simple window applications and that also provides access to sockets. We have initially
chosen to use asynchronous socket receiving in order not to block the interface while waiting for
packets to arrive. While this was meant to make the application more responsive, it had the
opposite effect. We noticed that the client was using 6 threads and almost 200% of the CPU (two
cores). We believe that the threads come from how SFML was implemented, and in particular



from the asynchronous sockets. To try and optimize this, we switched back to synchronous socket
receiving (meaning that the process can sleep while waiting for packets).We also tried to refresh
the screen less often, which had a big effect on the performance. After those optimizations, the
usage dropped from 200% (2 cores) to around 2%.

7 Gallery

In this section, we show some images that we captured using the thermal camera and the two
clients. Note that the images captured using the CACA client are stretched, because ASCII
characters are not perfectly square in terminals, but are usually twice as high as they are wide.

(b) SFML

Figure 2: A hand holding a mouse



A(a) CACA (b) SFML

Figure 4: Cedric’s face, with his glasses and microphone



(a) CACA (b) SFML

Figure 5: Inside a water-cooled computer (top-left cpu, bottom right SSD)

(b) SFML

Figure 6: The Swiss Tech Convention Center



Xoece
s

(b) SFML

Figure 7: Hand with wet fingers

8 Conclusion

It was very interesting to work on a project were we have to write a system from the hardware
to the software. It is not often that we get to program hardware interfaces, sockets, and window
applications in the same project. Since a lot of the work had already been done in the previous
labs, we didn’t struggle too much with the hardware part, and we had a lot of time left to program
the server and the clients.

We also have multiple ideas of additions to extend our project. One would be to make use of
the servos to control the infrared camera’s pitch and yaw from the client. An other idea would be
to transmit the real min/max temperatures so that the client knows what temperature the colors
translate to. A final idea that we had would be to allow the server to send the stream to multiple
clients, either using multicast or by keeping a list of connected clients. Of course, if we had more
time, we would certainly tinker a bit more with that project, but unfortunately all things have an
end.



9 Appendix: archive structure

Since we have used a lot of files for this project, we have decided not to include them in the report,
so that it doesn’t get absurdly long. We have included the files in which we implemented the
server and the clients in the archive using the structure described just below. Note that we do
not include VHDL files in the archive because we have taken the files from the second laboratory
without modifying them. There are three main folders in the archive, where you can find the
server and the two clients respectively. Note that in the server, we have mainly modified the files
server.h, server.c and app.c, but we include the other files for completeness.
lab4.zip
CedricHoelzl AntoineBrunner_lab4 EmbeddedLinuxMiniProject.pdf
client-caca
ig,main.cpp
client-sfml
lg,main.cpp
server
lepton
lepton.h
lepton.c
lepton_regs.h
hps_soc_system.h
iorw.h
server.h
server.c

app.c



	Introduction
	Thermal camera interface
	Linux OS
	Accessing the thermal camera from Linux
	Server-client protocol
	Clients
	Refresh Logic
	Greyscale to RGB
	CACA client
	SFML client

	Gallery
	Conclusion
	Appendix: archive structure

