Laboratory 3 report

Cédric Holzl Antoine Brunner

May 2020

1 Introduction

The goal of this laboratory was to build a complete Linux system on a DEO-nano-SoC - a hybrid
board consisting of a FPGA and an ARM dual-core HPS. Building a Linux system tailored to a
specific hardware architecture is not an easy task, and there were a lot of steps involved before
succeeding with that. First, we had to use the QSys platform designer to configure the hardware
properly. Then, we had to use Altera’s BSP editor to generate a boot loader tailored to the
hardware configuration. After that, we had to compile the Linux OS and flash it to an SD card,
along with the pre-loader and the boot loader. Finally, we could boot the system, and log onto it
using a minicom terminal and after configuring the wired interface via SSH from a remote device.

2 Configuring the hardware using QSys

In this part, we had to configure the hardware for the Linux system. While the Linux system
can run on an ARM processor, we still had to configure the FPGA part, because the goal was to
reuse some hardware interfaces from previous labs. That is, we want to configure the joysticks and
the thermal camera so that they can be used by the HPS. Figure (1| shows how we configured the
system with the joysticks, the thermal camera and the ARM processor.

1 system Contents &% | Address Map 2% | Interconnect Requirements &%

System: soc_system Path: hps_0

4 || Use | Connections Name Description Export Clock Base End
| B hps_0 Arria V/Cyclone V Hard Proce...
k= memaory Conduit hps_0_ddr
X k= hps_io Conduit hps_0_io
EA — h2f reset Reset Output
h2f_lw_axi_clock |Clock Input clk_0
—— T ¢ h2f_lw_axi_master [AXl Master [h2f_Iw_a...
B dk_0 Clock Source
= CH clk_in Clock Input clk exported
= clk_in_reset Reset Input reset
x —— clk Clock Output clk 0
— clk_reset Reset Output
B pwm_0 pwm
clock Clock Input clk_0
reset Reset Input [clock]
avalon_slave_0 Avalon Memory Mapped Slave [clock] 0x0004_9020 0x0004_oo2f
k= conduit_end Conduit pwm_0_conduit_end |[clock]
B pwm_1 pwm
clock Clock Input clk_0
reset Reset Input [clock]
avalon_slave_0 Avalon Memory Mapped Slave [clock] 0x0004_9010 0x0004_201f
= conduit_end Conduit pwm_1l_conduit_end |[clock]
B mcp3204 0 mcp3204
clock Clock Input clk_0
reset Reset Input [clock]
avalon_slave_0 Avalon Memory Mapped Slave [clock] 0x0004_9000 0x0004_soef
k= conduit_end Conduit mcp3204_0_condui... |[clock]
B lepton_0 lepton
clock Clock Input clk_0
reset Reset Input [clock]
avalon_slave_0 Avalon Memory Mapped Slave [clock] 0x0004_0000 Ox0004_7fff
k= spi Conduit lepton_0_spi [clock]

Figure 1: Overall view of the system

As a side note, since the HPS would run a Linux OS, accessing the memory mapped peripherals
cannot be done in the virtual address space of the processes. Several solutions exists, such as
creating a driver, or probably simpler, using mmap to map physical pages into the virtual address
space. That was not the concern of the lab, but it is worth mentioning it, because that’s a problem
we will face in the next laboratory.

An error that we made while using QSys was that we didn’t understand what the peripheral
multiplexer tab was doing. Due to that misunderstanding, we did not select the pins that system
needed, and couldn’t boot the system correctly. After an explanation by an assistant, we finally
understood how that pin multiplexer works, and we could fix the mistake that we had made.

Other than that, we also had to instantiate the system in the top-level VHD file, by making
the right pin assignments for all the components, and get the design to compile. We also had some
problems at this stage. Initialy we left some pins unassigned by mistake, causing the fitter to fail,
but that was easily fixed.

3 Compiling the system

To compile the system on the board, we still had a long way. We had to generate the pre-loader
using the BSP editor. After that, we downloaded Alteras’s U-boot, configured it for the ARM
processor and compiled it. The last piece of the puzzle was to download Ubuntu 14, compile it,
and configure it by creating scripts that would run at the first start.

Although we have not succeeded initialy in doing those steps by ourselves, we didn’t encounter
any major problems in those steps, thanks to the Soc-FPGA Design Guide.

The final step was to put all the generated files in the right partitions of the SD card, so that
the system could properly boot: the pre-loader to the A2 partition, the boot loader to the FAT32

partition and the Linux file system to the EXT3 partition.
We were already familiar with creating partitions and moving data to certain partitions using
the command line, so we managed to do this step without major difficulties.

4 Problems encountered

Of course, it would have been to easy if everything went correctly... We didn’t manage to boot our
system from the first time because of a very dumb mistake. At least, we have learnt something
from that mistake.

The mistake that we did is that we forgot to enable the GPIO pins in the QSys platform
designer, meaning that the multiple ports (SD, Ethernet, ...) would never be properly connected
to the processor. Figure [2| shows the interface on which we should have selected the right pins.
That was the reason why we could not see anything in the Minicom terminal when the system was
supposed to be booting. That mistake came from the fact that we didn’t understand the QSys
interface very well, nor the utility of the pin multiplexer. After an explanation from one of the
assistants we have now understood what this interface is useful for, and we managed to fix the
problem pretty easily.

[Peripherals Mux Table

RGMIIO_TX_CLK EMACOTX_CLK (5et0) GPIO0O LOANIO 00
RGMIIO_TXDO EMACO.TXDO {Set0)] GPlOOL LOANIO01
RGMII0_TXD1 EMAGOTXD1 (52t0 GPI00Z LOANIO02
RGMIIO_TXD2 EMACO.TXD2 (Set0) GPI003 LOANIO0Z2
RGMII0_TXD3 EMACOTXDS (5t0 GPIDO+ LOANIODS
RGMII0_RXDO EMACO.RXDO (Set0) GPI005 LOANIO0S
RGMII0_MDIO 12G2.5DA (Set0) EMAGO.MDIO (5et0) GPI00G LOANIOOS
RGMII0_MDC 12C2.5CL (Set0) EMACO.MDC (Set0) GPI007 LOANIOO7
RGMII0_RX_CTL EMAGO.RX_CTL (5eto) GPID0E LOANIO0E
RGMII0_TX_CTL EMACOTX_CTL (S=t0) GPIO09 LOANIOOS
RGMII0_RX_CLK EMAGO.RX_GLK (Seto) GPI010 LOANIO10
RGMIIO_RXD1 EMACO.RXDL (Setd) GPIO11 LOANIO11
RGMII0_RXDZ EMAGO.RXD2 (5et0) GPID12 LOANIO12
RGMIIO_RXD3 EMACO.RXD2 (Set0) GPIO12 LOANIO12
NAND_ALE |[G5rIBsa (Bee) (Set0) I [EMACT.TX_CLK (5et0) NAND.ALE (Set0) GPio1s LoANIO14
NAND_CE [DEETEEEEETN [EMAC L. TXDO (Set0 NAND.CE (Set0) GPIO15 LOANIO1S
NAND_CLE DSOS E MACT . TXD1 (S et0 NAND.CLE (Set0) GPio1s LoANIO16
NAND_RE [EEETEEEEN EMAC L. TXD2 (Set0 NAND.RE (52t0) GPIO1T LOANIOLT
NAND RE DEETDE e EMAC 1. TXD 3 (Set0 NAND.RE (52t0] Gri018 LoaNIO18
NAND_DQO JEMACL.RXDO (Set0 NAND.DQO (Set0] GPIO13 LOANIO1S
NAND DQL [EEaSDA S0 [EMACT. MDIO (Seto) NAND.DQ1 (Set0) GPI020 LoaNI020
NAND_DQ2 le€=seCisets) | |[EMACL.MDC (Set0) NAND.DQZ (Set0) GPIO21 LOANIOZ1
NAND DQ3 DEEE S EMAC T RX_CTL (Seto) NAND.DQ3 (S st0) P02z LoanI022
NAND_DQ4 EEETESEEN EMACL.TX_CTL (Set0) NAND.DQ4 (Set0) GPIO2Z LOANIOZZ
NAND_DQ5 ISERCEEE [EMACL.RX_CLK (Set0) NAND.DQS (Set0) GPI024 LOANIO24
NAND_DQ6& eSS EMACL.RXD1 (Set0) NAND.DQE (52t0) GPIO25 LOANIO2S
NAND_DQ7 [EMAC1.RXD2 (Set0) NAND.DQ7 (Set0) GPIO26 LOANIO26
NAND_WP [GSFISE2 (St S0l [EMACL.RXD3 (Set0) NAND.WF (Set0) GPIO27 LOANIO2T
NAND_WE OSPISSTISE0I] NAND WE (Set0] ri028 LoanIo28
QsPI_100 uselclk(sen QSPLIOO(Setl) (set0) | GFIO23 LOANIO2S
QsPII0L usBLSTP(Set) QsPuOL(Setli(set)) | GPIO30 LOANIOS0
QsFII02 USBLDR(Sety) OSPLIO2(Sett) (set)) | GFIOZL LOANIOZ1
QsPII03 usBLNMT(Ser) QsPuO3(Setli(set) | GPID3Z LOANIOS2
QsPI_ss0 ospissO(setl)(set0) | GPIO33 LOANIO33
[t (els [QSPICLK (Setli(set)) | GPIO34 LOAHNIOS4
5Pl ss1 oseissicen | GPIO35 CoANI03>
SDMMC_CMD USBODO(Set) [5DIO.CMD (Set0) GPI036 LOANIO36
SDMMC_PWREN UseoD1lsetd |SDIOFWReN (s=o) GPi037 LoANIOST
SDMMC_DO UsBoD2(Set)) [SDIO.DO (Set0) GPIO38 LOANIO3S
SDMMC_D1 UseoD3lsed) [5DI0.D1 (Set0) GrI039 LoANI033
SDMMC_D4 USBODA(Set) |SDIO.DA(Set0) GPI040 LOANIOS0
SDMMC_D5 UsBops(setdl spioDsl(seto) GPI04L LoANIO#1
SDMMC_D6 USBODG(Set;) SDIO.D6 (Set0) GPID42Z LOANIO42Z
SDMMC_D7 UsBop7(setd spion7(seto) GPI043 LoANIO#3
HPS_GPI044 USBOCLK(Set) GPID44 LOANIO44
SDMMC_CCLK_OUT Ussostiseto) [SDID.CIK (Bet0) GPI045 LoANIO43.
SDMMC_D2 USEODIR(Setd) [sDI0.D2 (Set0) GPIO46 LOANIO4E
SDMMC_D3 Usson(seto) [5DI0.D3 (Set0) GPI04T LoANIOAT
TRACE_CLK TRACE.CLK (Set0) GPlO48 LOANIO48
TRACE_DO UARTO.RX (Set0) SrisoCLk(S=st0) |TRACEDO(seto) GPI049 LoANIO43
TRACE_D1 UARTO.TX (Set0) SPISOMOSI(Sett) |TRACE.DL(Set0) GPIOS0 LOANIOSQ
TRACE D2 T5eto) SPisomso(sst0) | TRACE.D2(seto) GPIosL LoANIOSL
TRACE_D3 (Set0) SPIS0.550(Set0) |TRACE.D3(Set0) GPIOSZ LOANIOS2
TRACE D+ [GANTRXC(SE0) | SPISLCLK (Seto) TRACE D4 (5et0) PI053 LoaNIS3
TRACE_D5 [CANLITX(S=t0) [SPISLMOSI(SetD) TRACE.DS (Set0) GPIO54 LOANIOS4
TRACE_D6 [2C0.5DA (5et0) SPIS1.550 (Seto] TRACE.DE (St0) GPIOSS LOANIOSS
TRACE_D7 12C0.5CL (Set0) SPISLMISO (Setd) TRACE.D7 (Set0) GPIO56 LOANIOS6
SPIMO_CLIC |UARTO.CTS [Set2) (Setl) (s=t0) 12C1 5DA (Setl) SPIMO.CLK [Set0) GPIDST LOANIOST
SPIMO_MOSI | (5et2) (Setl) (Set0) 12CL5CL (Setl) SPIMO.MOSI (Set0) GPIO58 LOANIOSE
SPIM_MIS0 feamimxser . [sPwmomiso (set0l GPI053 Loanioss
SPIM0_550 | AN (S ST [P 10,550 (S et0) GFIDE0 LOANIOSD
st
UARTO_RX SPIMO.S51 (Set0) & UARTO.RX (Setl) GPIO61 LOANIOG1
UARTO_TX SPIM1.551 (Set0) A UARTO.TX (Setl) GPlO&2 LOANIO62
12C0_SDA [SPIM1.CLK {Set0) |UsRTIRX(S=t0) l2c0.SDA(S=t) GPIOS3 LOANIOG3
12C0_SCL 12C0.5CL (Setl) GPIO64 LOANIO64
CANO_RX CANO.RX (Setl) GPI06S LOANIOSS
CANO_TX SPIM1.550 (Set0) [cANOTX (Set1) GPI06E LOANIOGS

Figure 2: The peripherals multiplexer view

5 Conclusion

As a conclusion, we think that this lab was a lot about following the guide, which sometimes didn’t
help us understand what we were doing. This in part the reason why we have made that mistake.
Fortunately, it allowed us to question what we had done, and to learn what we were doing wrong.
We had to restart the instruction from the beginning (having had a corruption issue with the VM),
so the second time we started to remember a lot better what to do, allowing us to complete it
quickly without issues.

	Introduction
	Configuring the hardware using QSys
	Compiling the system
	Problems encountered
	Conclusion

