
Laboratory 2 report

Cédric Hölzl Antoine Brunner

March 2020

1 VHDL system design

In the first part of the laboratory, we had to implement the statistic computations, the level
adjuster in VHDL.

For the statistics computation, we didn’t do anything incredible ;). In the component, there
are three registers: one for the maximum, one for the minimum, and one for the sum. Those
registers are updated with the value from pix data when the signal valid is 1. They are reset when
the signal pix sof is 1, so that the statistics for the new frame can be computed.

The level adjuster was just a matter of finding a formula that does what we want. The
component takes as input a 14-bit value that is in the range [raw min, raw max], and we would
like to remap those values to the full range [0, 214 − 1]. If we were able to use floating point
arithmetic, what we would do the following:

x 7→ x−min

max−min
· (214 − 1)

That is, we would first divide x−min by max−min to have a value between 0 and 1. Then,
we would multiply that by 214 − 1 to get the result. But since we are using integer arithmetic, we
cannot perform the first division in this way. The trick is to first multiply by 214−1, which results
in a 27-bit value, and then make an integer division by max−min.

Once we realized that little trick, the rest was a matter of translating it to VHDL, which was
fairly easy, since we had already been given the division component.

2 C application design

As for the first lab, the C wasn’t too extensive, we used IORD/IOWR to interact with the right
registers (or bits) for the different function: in one case writing a value, in another one checking a
bit and the last one looping while a bit is 1. We also completed the main loop of the application,
with it working as follows: While no error occurs capture and wait.

3 QSys system integration

The second part of the lab consisted of connecting all the hardware component together using
QSys. We didn’t encounter any major problems in that part. Some small issues that we had was
that we were setting wrong directions for some signals, but that wasn’t really hard to fix. Note

1



that we used the automatic memory mapping from QSys to let him decide where our components
were mapped in memory. The memory mapping was then exported to the software part through
the file system.h. Figure 1 shows how that mapping was chosen by QSys and exported to the file
system.h.

Figure 1: At the top, the QSys editor. At the bottom, the system.h file that was automatically
generated. It can be seen that the memory mapping was taken by QSys.

Another problem that we had was that we forgot to instantiate the components of the system
in the VHDL entity that QSys generated, because we initialy thought it was also done automaticly.

Results

In this section we just present a few images that we captured using the thermal camera, in Figure 2

Figure 2: The images that we captured using the thermal camera. From left to right: Face with
glasses, Glass Bottles, Inside a Computer with CPU and GPU (where we can see on the left a
column of chokes and capacitors and on the right a crystal both of them being a major source of
heat. We can also see on the bottom right an SSD).

2



4 Appendix: Code

In this appendix, we have put the code that implements what was described in the previous
sections, if you prefer to read from the PDF. In order not to make the report too long, we have
only included the changes that we made, not the full files.

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity lepton_stats is

port(

clk : in std_logic;

reset : in std_logic;

pix_data : in std_logic_vector(13 downto 0);

pix_valid : in std_logic;

pix_sof : in std_logic;

pix_eof : in std_logic;

stat_min : out std_logic_vector(13 downto 0);

stat_max : out std_logic_vector(13 downto 0);

stat_sum : out std_logic_vector(26 downto 0);

stat_valid : out std_logic);

end lepton_stats;

architecture rtl of lepton_stats is

-- The accumulated sum, min and max of the pixel values

signal curr_min : unsigned(13 downto 0);

signal curr_max : unsigned(13 downto 0);

signal curr_sum : unsigned(26 downto 0);

-- The next value of the registers

signal next_min : unsigned(13 downto 0);

signal next_max : unsigned(13 downto 0);

signal next_sum : unsigned(26 downto 0);

begin

-- This is the synchronous transition logic

transition_logic : process(clk, reset)

begin

if reset = '1' then

curr_sum <= (others => '0');

curr_min <= (others => '0');

curr_max <= (others => '0');

elsif rising_edge(clk) then

curr_min <= next_min;

3



curr_max <= next_max;

curr_sum <= next_sum;

end if;

end process;

-- This is the combinatorial transition logic

next_min <=

curr_min when pix_valid = '0' else

unsigned(pix_data) when pix_sof = '1' else

curr_min when unsigned(pix_data) >= curr_min else

unsigned(pix_data);

next_max <=

curr_max when pix_valid = '0' else

unsigned(pix_data) when pix_sof = '1' else

curr_max when unsigned(pix_data) <= curr_max else

unsigned(pix_data);

next_sum <=

curr_sum when pix_valid = '0' else

unsigned((26 downto 14 => '0') & pix_data) when pix_sof = '1' else

curr_sum + unsigned((26 downto 14 => '0') & pix_data);

-- This is the synchronous output logic

output_logic : process(clk, reset)

begin

if rising_edge(clk) then

stat_valid <= pix_eof;

end if;

end process;

-- This is the combinatorial output logic

stat_min <= std_logic_vector(curr_min);

stat_max <= std_logic_vector(curr_max);

stat_sum <= std_logic_vector(curr_sum);

end rtl;

Listing 1: The code written in lepton stats.vhd

library ieee;

use ieee.std_logic_1164.all;

use ieee.numeric_std.all;

entity level_adjuster is

port(

clk : in std_logic;

4



raw_pixel : in std_logic_vector(13 downto 0);

raw_max : in std_logic_vector(13 downto 0);

raw_min : in std_logic_vector(13 downto 0);

raw_sum : in std_logic_vector(26 downto 0);

adjusted_pixel : out std_logic_vector(13 downto 0));

end level_adjuster;

architecture rtl of level_adjuster is

component lpm_divider

port(

clock : in std_logic;

denom : in std_logic_vector(13 downto 0);

numer : in std_logic_vector(27 downto 0);

quotient : out std_logic_vector(27 downto 0);

remain : out std_logic_vector(13 downto 0));

end component;

-- Intermediate signals needed by the divider

signal numer : std_logic_vector(27 downto 0);

signal denom : std_logic_vector(13 downto 0);

signal quot : std_logic_vector(27 downto 0);

begin

-- Computation of the intermediate signals

numer <= std_logic_vector((13 downto 0 => '1') * (unsigned(raw_pixel) -

unsigned(raw_min)));↪→

denom <= std_logic_vector(unsigned(raw_max) - unsigned(raw_min));

-- We compute the remaineder of (x - min) / (max - min)

divider : lpm_divider port map(

clock => clk,

numer => numer,

denom => denom,

quotient => quot,

remain => open

);

-- And we only keep the LSB of the quotient (we know the MSB must be 0)

adjusted_pixel <=

(adjusted_pixel'range => '0') when denom = (denom'range => '0') else

quot(13 downto 0);

end rtl;

Listing 2: The code written in level adjuster.vhd

5



do{

lepton_start_capture(&lepton);

lepton_wait_until_eof(&lepton);

}while(lepton_error_check(&lepton));

Listing 3: The code written in app.c

void lepton_start_capture(lepton_dev *dev) {

IOWR_16DIRECT(dev->base, LEPTON_REGS_COMMAND_OFST, 0x1);

}

bool lepton_error_check(lepton_dev *dev) {

return (IORD_16DIRECT(dev->base, LEPTON_REGS_STATUS_OFST) & 0x2) != 0;

}

void lepton_wait_until_eof(lepton_dev *dev) {

while(IORD_16DIRECT(dev->base, LEPTON_REGS_STATUS_OFST) & 0x1);

}

Listing 4: The code written in lepton.c

6


	VHDL system design
	C application design
	QSys system integration
	Appendix: Code

