
A Snake Game in Assembly Language

Learning Goal: Write a complete program in assembly language and run it on a NIOS II processor.

Requirements: nios2sim Simulator (Java 10), Gecko4Education-EPFL, multicycle Nios II processor.

1 Introduction

During this lab, you will implement a simplified version of the well-known snake game in assembly
language. An example of the game can be found here: http://patorjk.com/games/snake/. At the end
of the lab, you should be able to play the game on the Gecko4EPFL.

1.1 About the game

In this simplified implementation, snake is a single-player game. It consists of a snake and food. Snake
grows as it eats food and dies when it hits a boundary or itself.

0 1 2 3 4

Right
Left Reset

Down
Up

Score

Figure 1: The Snake game inputs displayed on the Gecko4EPFL.

The game is to be displayed on the LEDs of the Gecko4EPFL. The initial length of the snake is one.
Each time the snake eats food, its length increases by one and the score increases by one. Food is
represented by a single, random LED (a single pixel on the LED screen). When the snake’s head hits the
food, the snake’s length increases by setting the position of the food as the new position of the snake’s
head, while keeping unchanged the position of the snake’s tail. (Snake’s tail is the last pixel of snake’s
body away from its head.) After the snake has eaten the food, new food appears at another random

Version 2.0 of 30th October 2018, EPFL ©2018 1 of 13

http://patorjk.com/games/snake/


A Snake Game in Assembly Language

location that does not overlap with the body of the snake. The player controls the movement of the
head of the snake by using the push buttons on the board.

The left four push buttons of the Gecko4EPFL control the motion of the snake (see Figure 1): left, up,
down, and right. The right most push button is used to initialize or restart the game, i.e. clear the score
and display the initial state of the game.

The game uses the upper 8 rows of LEDs; to have a convenient mapping from memory to LEDs, we
chose not to use the bottom row of LEDs, i.e. the single row that is just above the buttons. The addressing
of the upper 96 LEDs (8 rows × 12 columns), given in Figure 2, is consistent with the mapping of LEDs
in the nios2sim simulator. The top left pixel denotes the origin of the LED coordinate system; x-axis
grows rightwards while the y-axis grows downwards. Initially, all LEDs should be switched off.

The current state of the game is defined by the location of the snake (it’s entire body), the direction
of the snake’s movement, and the location of the food. This state of the game is stored in memory
and contains 96 32-bit words, corresponding to 96 LED pixels. The address mapping between the two-
dimensional LED display and the one-dimensional GSA array is discussed later (Figure 3). The details
of populating the GSA are also described later (Section 3 and Section 4).

Table 1 shows the precise memory arrangement you must use. In addition to the GSA, the state of
the game also includes the location of the snake’s head and tail, and the current score. Besides the
LED array, the addresses for interfacing with the 7-segment display and the buttons are also fixed.
This memory arrangement will be used to test (and grade) your assembly code.

0x1000 HEAD X: Snake head position on x-axis
0x1004 HEAD Y: Snake head position on y-axis
0x1008 TAIL X: Snake tail position on x-axis
0x100C TAIL Y: Snake tail position on y-axis
0x1010 SCORE
0x1014 GSA: Game State Array
0x1018 containing 96 32-bit words

... ...
0x1198 SEVEN SEGS[0]

SEVEN SEGS[1]
SEVEN SEGS[2]
SEVEN SEGS[3]

... ...
0x2000 LEDS[0]

LEDS[1]
LEDS[2]

... ...
0x2010 RANDOM NUM

... ...
0x2030 BUTTONS
0x2034

... ...

Table 1: A structure for storing the current state of the game.

To improve the readability of your code, you can associate symbols to values with the .equ state-
ment. The .equ statement takes a symbol and a value as arguments. For example, the address structure

2 of 13 Version 2.0 of 30th October 2018, EPFL ©2018



A Snake Game in Assembly Language

of internal game state and peripherals can be hard-coded macros as given below. The addresses rep-
resented by macros HEAD X, HEAD Y, TAIL X, TAIL Y, SCORE, GSA, LEDS, SEVEN SEGS, BUT-
TONS, and RANDOM NUM must match those in Table 1 for correct grading.

.equ HEAD_X, 0x1000 ; snake head's position on x-axis

.equ HEAD_Y, 0x1004 ; snake head's position on y-axis

.equ TAIL_X, 0x1008 ; snake tail's position on x-axis

.equ TAIL_Y, 0x100C ; snake tail's position on y-axis

.equ SCORE, 0x1010 ; score address

.equ GSA, 0x1014 ; game state array

.equ LEDS, 0x2000 ; LED addresses

.equ SEVEN_SEGS, 0x1198 ; 7-segment display addresses

.equ RANDOM_NUM, 0x2010 ; Random number generator address

.equ BUTTONS, 0x2030 ; Button addresses

These symbols can replace any numeric value of your code (like #define directive in programming
languages). Example:

ldw t1, SCORE (zero) ; load the score in t1

1.2 Formatting rules

In the rest of the assignment, you will be asked to write several procedures in assembly language. If
you implement them all correctly, you will be able to play the game using your Gecko4EPFL board. To
enable correct automatic grading of your code, you must follow all the instructions below:

• surround every procedure with BEGIN and END commented lines as follows:

; BEGIN:procedure_name
procedure_name:

; your implementation code
ret

; END:procedure_name

Of course, replace the procedure name with the correct name. The only allowed procedure
names are clear leds, set pixel, draw array, get input, move snake, create food,
hit test, display score and restart game. Please pay attention to spelling and spacing
of the opening and closing macros.

• If your procedure makes calls to another, auxiliary procedures, then those auxiliary procedures
must also be entirely enclosed. The auxiliary procedures may have whatever name you choose.

; BEGIN:procedure_name
procedure_name:

; your implementation code
call my_helper_procedure_name
; your implementation code
ret

my_helper_procedure_name:
; your implementation code
ret

; END:procedure_name

• Have all the procedures inside a single .asm file. Regardless of that, our grading system will
check each procedure individually and separately from the rest of your assembly code.

Version 2.0 of 30th October 2018, EPFL ©2018 3 of 13



A Snake Game in Assembly Language

2 Drawing Using LEDs

Your first exercise is to implement the following two procedures for controlling the LEDs:

1. clear_leds, which initializes the display by switching off all the LEDs, and

2. set_pixel, which turns on a specific LED.

The LED array has 96 pixels (LEDs). Figure 2 translates the pixel x- and y- coordinate into a 32-bit word
and a position of the bit inside that word (0 – 31). The words LEDS[0], LEDS[1], and LEDS[2] are stored
consecutively in memory as illustrated in Table 1. As you are accustomed to, the most significant bit of
a byte bears the highest index, e.g. 0-th bit is the rightmost and 7-th is the leftmost bit. Bytes are stored
in memory in little endian fashion.

0 8 16 24 0 8 16

1 9 17 25 1 9 17

2 10 18 26 2 10 18

5 13 21 29 5 13 21

11 19 27 3 11 19

4 12 20 28 4 12 20

6 14 22 30 6 14 22

7 15 23 31 7 15 23

24

25

26

27

28

29

30

31

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

x
0 1 2 3 4 5 6 7 8 9 10 11

y

0

1

2

3

4

5

6

7

3

LEDS[0] LEDS[1] LEDS[2]

Figure 2: Translating the LED x and y coordinates into the corresponding bit in the LED array. For
example, x = 5 and y = 3 correspond to the bit 11 in the word LEDS[1].

Next two sections describe these two procedures. Section 2.3 describes the steps to follow in this exercise.

2.1 Procedure clear leds

The clear_leds procedure initializes all LEDs to 0 (zero). You should call clear_leds before draw-
ing every new position of the snake and/or food.

2.1.1 Arguments

• None

2.1.2 Return Values

• None.

2.2 Procedure set pixel

The set_pixel procedure takes two coordinates as arguments and turns on the corresponding pixel
on the LED display. When this procedure turns on a pixel, it must keep the state of all the other pixels
unmodified.

4 of 13 Version 2.0 of 30th October 2018, EPFL ©2018



A Snake Game in Assembly Language

2.2.1 Arguments

• register a0: the pixel’s x-coordinate.

• register a1: the pixel’s y-coordinate.

2.2.2 Return Values

• None.

2.3 Exercise

• Create a new snake.asm file.

• Implement the clear_leds and set_pixel procedures.

• Implement a main procedure that first calls the clear_leds to initialize the display and then
calls the set_pixel several times with different parameters to turn on some pixels.

• Simulate your program in nios2sim.

• If you want to run this program on your Gecko4EPFL board, follow the instructions in Section 9.

3 Displaying and Controlling the Snake

In this section, you will implement three procedures: get_input, which captures the control inputs,
move_snake, which controls the snake, and draw_array, which displays the game. For the moment,
ignore any collisions. The current state of the snake is represented by its position and its direction vector:

• The position of the snake is specified in GSA (game state array), using the x- and y-coordinates of
every element of the snake body (every LED pixel occupied by the snake). Game state array will
contain the information regarding the food as well; that will be described in Section 4.

• Each member of the game state array (GSA) should have a value between zero and five (inclusive).
Zero indicates that the element is not occupied, 1-4 indicate the snake and 5 indicates the food. The
different values of the elements occupied by the snake inherently indicate the snake’s direction.

• Snake can move in four directions: up/down/left/right. For this simple version of the Snake, an
element occupied by a snake can only take one of the following four integer values: 1, 2, 3 or 4.
See Table 2.

value snake direction

1 leftwards
2 upwards
3 downwards
4 rightwards

Table 2: Snake movement.

Section 3.4 describes the steps to follow in this exercise.

Version 2.0 of 30th October 2018, EPFL ©2018 5 of 13



A Snake Game in Assembly Language

3.1 Procedure get input

The get_input procedure reads the state of the push buttons (Figure 1) and updates the direction of
the snake accordingly. The snake moves only along the x/y axis, i.e., up/down/left/right.

The push buttons are used to directly modify the direction vector of the head of the snake. To easily
move the snake, the position of the snake’s head and tail should be tracked separately. The x-coordinate
of the head is stored at the address HEAD X. The y-coordinate of the head is stored at the address HEAD Y.
Similarly, the x-coordinate of the tail is stored at the address TAIL X. The y-coordinate of the tail is stored
at the address TAIL Y. See Table 1.

The five push buttons of the Gecko4EPFL are read through the Buttons module. This module has
two 32-bit words, called status and edgecapture, described in Table 3. To implement get_input,
you will need to use edgecapture.

Table 3: The two words of the Buttons module.

Address Name 31 . . . 5 4 . . . 0

BUTTONS status Reserved State of the Buttons
BUTTONS+4 edgecapture Reserved Falling edge detection

The status contains the current state of the push buttons: if the bit at the position i is 1, the button
i is currently released, otherwise (when i = 0) the button i is currently pressed.

The edgecapture contains the information whether the button i (i = 0, 1, 2, 3, 4) was pressed. If the
button i changed its state from released to pressed, i.e. a falling edge was detected, edgecapture will
have the bit i set. The bit i stays at 1 until it is explicitly cleared by your program. Mind that when you
attempt to write something in edgecapture, regardless of the value the entire edgecapture will be
cleared; there is no possibility to clear its individual bits.

In the nios2sim simulator, you can observe the behavior of buttons module by opening the Button
window and clicking on the buttons. In the simulator, the buttons are numbered from 0 to 4.

Once a player presses a push button, your game should update the direction vector of the snake’s
head in the GSA. However, there is one exception to be considered. If the player requests changing the
snake’s head direction to the opposite of the current snake’s head direction, e.g. from left to right or
from down to up, then the player’s command should be ignored and the direction of the snake’s head
should not be updated.

3.1.1 Arguments

• None.

3.1.2 Return Values

• None.

3.2 Procedure move snake

Once you have the new direction vector of snake’s head, you can calculate the new position of the snake.
The new head element can be easily determined given the current position of the head and its direction
vector. The direction vector of the new head should be same as the direction vector of the old head.
Note, however, the direction of the new head is subject to change if a new button press is detected
afterwards. After creating the new head, the HEAD X and HEAD Y values must also be updated.

As snake’s body moves together as a whole, the only change other than snake’s head is its tail. If the
length of the snake stays the same, then you need to remove its tail element. Using the tail coordinates,
you can find the tail direction vector in the GSA, which can help determining the next tail element. Then,

6 of 13 Version 2.0 of 30th October 2018, EPFL ©2018



A Snake Game in Assembly Language

you clear the old tail element and update the tail coordinates TAIL X and TAIL Y to reflect the position
of the new tail element.

In the later part of the game development, move snake will also take input from collision detection.
If the snake’s head collides with the food item, the snake will eat the food; the snake’s length will
increase, but the tail will remain at the same position.

3.2.1 Arguments

• register a0 = 1 if the snake’s head collides with the food, else a0 = 0.

3.2.2 Return Values

• None.

3.3 Procedure draw array

The draw_array procedure draws the game (snake and the food) by reading the contents of the GSA.
The game should be redrawn on the screen at regular intervals to depict the movement of the snake.
This can be done with a wait procedure (for details on how a wait procedure could be implemented,
please see Section 9).

0 8 16 24 32 40 48

1 9 17 25 33 41 49

2 10 18 26 34 42 50

5 13 21 29 37 45 53

11 19 27 35 43 51

4 12 20 28 36 44 52

6 14 22 30 38 46 54

7 15 23 31 39 47 55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

x
0 1 2 3 4 5 6 7 8 9 10 11

y

0

1

2

3

4

5

6

7

3

Figure 3: Mapping of a two-dimensional LED display to the one-dimensional Game State Array (GSA).

In draw_array, every non-zero element of the GSA which depicts a snake (or food, as described
later in Section 4) results in an LED pixel being lit on the LED screen. For every element of the GSA
that corresponds to the snake (or the food), the set_pixel procedure can be called to activate the
corresponding LED and display the snake (or the food).

Since set_pixel is another procedure, you may need to consider saving some registers on the stack.
Prior to using stack, remember to initialize the Stack Pointer register (sp) at the beginning of your main
procedure. Note that the sp points to the last occupied memory word and that the stack grows towards
lower addresses. You may initialize sp to LEDS, for example.

3.3.1 Arguments

• None.

Version 2.0 of 30th October 2018, EPFL ©2018 7 of 13



A Snake Game in Assembly Language

3.3.2 Return Values

• None.

3.4 Exercise

• Implement the get_input, move_snake, and draw_array procedures in your snake.asm file.

• Modify the main procedure. First, it should initialize the snake position and its direction vec-
tor: snake should be of length 1, should appear at the upper left corner of the screen and move
rightwards. Then, it should perform the following steps in an infinite loop:

– Call clear_leds.
– Call get_input.
– Call move_snake.
– Call draw_array.

• Simulate your program to verify it.

4 Creating and Displaying the Food

In this section you will write procedure create_food, which creates a new food item at a random loc-
ation on the screen. The food size is always one (a single LED pixel), while its location must not overlap
with the snake. You can differentiate between a snake and the food easily: GSA element representing
the food has the value 5, while the GSA elements representing the snake have values 1-4. To display the
food, draw_array can be used.

4.1 Procedure create food

The create_food procedure creates a new food item. To get a random number when playing a game
on your FPGA board, you can read the location RANDOM NUM (Table 1) to which we have mapped a
random number generator module designed in VHDL.

The create_food first takes the lowest byte of the value at RANDOM NUM and then, if the sug-
gested new food location is within the limits of the two-dimensional LED display and does not overlap
with the snake, it creates food. The lowest byte of the value at RANDOM NUM corresponds to the
index of an element in GSA. For example, if the lowest byte value is 0x00 then the food should appear
at the location corresponding to the very first element of the GSA.

To simulate random number generation in nios2sim, you can write a value of your choice at the
location RANDOM NUM. Inside the nios2sim this memory location overlaps with the address space
reserved for UART (Figure 4); this poses no issues as your processor does not use UART. Therefore, to
access the location RANDOM NUM in nios2sim, open the UART tab and look for the field receive.

RANDOM_NUM

Figure 4: The location where you should write a random number for simulating the game in nios2sim.

4.1.1 Arguments

• None.

8 of 13 Version 2.0 of 30th October 2018, EPFL ©2018



A Snake Game in Assembly Language

4.1.2 Return Values

• None.

4.2 Exercise

• Implement the create_food procedure in your snake.asm file.

• Modify the main procedure as described below.

– Initialize the sp register.

– Call clear_leds.

– Call create_food.

* Get a random location for the food.

* Check if the location is valid.

* If it is not valid, get new random location.

– Call draw_array.

• Simulate your program to verify it.

5 Collision Testing

Now that you have implemented the snake’s movement and food generation, you need to detect any
collisions between the snake and the surroundings. The snake can collide in three ways: (1) with the
screen boundary, (2) with the food item, or (3) with its own body.

Collision with the boundary or the snake’s body should terminate the game. Once the game is
terminated, the contents of the GSA and SCORE must remain unchanged.

You should start by calculating the next position of the snake’s head based on the direction vector
of the snake’s head. However, do not update the snake’s head location in GSA as that is the task of
move_snake.

5.1 Procedure hit test

This procedure tests whether or not the new element being plotted for the snake’s head collides with the
screen boundary, the food, or the snake’s own body. If there is a collision with the food, the procedure
returns 1 indicating that the score needs to be incremented. If there is a collision with the screen bound-
ary or the snake’s body, the procedure returns 2 indicating the end of the game. If there is no collision,
the procedure returns 0.

5.1.1 Arguments

• None.

5.1.2 Return Values

• v0: 1 for score increment, 2 for the game end, and 0 when no collision.

Version 2.0 of 30th October 2018, EPFL ©2018 9 of 13



A Snake Game in Assembly Language

5.2 Exercise

• Write the hit_test as described.

• Modify the main procedure to make at least the following calls:

– Call clear_leds.

– Call get_input.

– Call hit_test.

– If hit_test returns 1, call create_food.

– If hit_test returns 2, terminate the game.

– If no collision, call move_snake and draw_array.

• Simulate your program to verify it.

6 Displaying the Game Score

In this section, you will implement a display_score procedure to show the game score on the 7-
segment displays.

0 1 2 3

SEVEN_SEGS

Figure 5: Seven segment displays.

You may use the following font_data table to define every digit you may need to display. Each
.word statement defines a value which, if stored in one 7-segment display, results in it showing the
decimal digit written in the comment.

font_data:
.word 0xFC ; 0
.word 0x60 ; 1
.word 0xDA ; 2
.word 0xF2 ; 3
.word 0x66 ; 4
.word 0xB6 ; 5
.word 0xBE ; 6
.word 0xE0 ; 7
.word 0xFE ; 8
.word 0xF6 ; 9

10 of 13 Version 2.0 of 30th October 2018, EPFL ©2018



A Snake Game in Assembly Language

6.1 Procedure display score

The display_score procedure draws the current score (in decimal representation) on the display. To
draw a digit on the 7-segment display, you can load the corresponding word from font data table and
store it into the corresponding 7-segment display module. There are four 7-segment displays on the
board, indexed from 0 to three as shown in Figure 5, and memory mapped starting from the address
SEVEN SEGS (Table 1). Since the score can never be higher than 99, the two leftmost 7-segment modules
should always show zero.

6.1.1 Arguments

• None.

6.1.2 Return Values

• None.

6.2 Exercise

• Copy the font_data section to the end of your code.

• Implement the display_score procedure.

• Modify the main procedure to implement the final behavior of the game. You are free to add any
other procedure to implement it, provided that you follow all the formatting instructions described
in Section 1.2. The main procedure should perform the following operations

– Get the inputs for snake movement.

– Check for collision.

– If snake’s head collided with food, update the score, create new food.

– Update the position of the snake.

7 Restart the Game

As a final touch to our game, let us include the feature of restarting the game upon pressing the reset
button (Figure 1). For that purpose, write the procedure restart_game.

7.1 restart game

This procedure checks for the input from the reset button (Figure 1) and, if the reset/restart is detected,
(re)initializes the game.

The initial state of the game is defined by the snake of length 1, appearing at the top left corner of
the LED screen and moving towards right, while the food is appearing at a random location, and
the score is all zeros.

7.1.1 Arguments

• None.

7.1.2 Return Values

• v0: 1 if the reset button was pressed and the game state (re)initialized, 0 otherwise.

Version 2.0 of 30th October 2018, EPFL ©2018 11 of 13



A Snake Game in Assembly Language

7.2 Exercise

The main procedure should perform the following operations in a loop. Although the user may attempt
to restart the game at any point, it is sufficient to test for reset only once per loop iteration.

• Check if reset/restart was requested; if so, initialize the game.

• If the game is finished, loop again.

• Get the inputs for snake movement.

• Check for collision.

• If snake’s head collided with food, update the score, create new food.

• Update the position of the snake.

Simulate your program to verify it. Before playing the game on Gecko4EPFL, read Section 8.

8 Playing the Game

Now that you have have implemented all the required core functionality, test if the game runs smoothly
end to end. Simulate your program to verify it. Follow the instructions of Section 9 to try the game on
your Gecko4EPFL.

When playing the game on Gecko4EPFL, make sure that you add a call to wait between the call to
get_input and the call to restart_game, and that restart_game is called near the end of every
loop iteration. Otherwise it may happen that a press on the reset button is ignored by your program.

While implementing the snake game, you might come across design choices that are not addressed
specifically or left unclear in this document. For those cases, you can safely assume that whichever
choice you deem fit will be considered as valid and will not result in loss of points in the final grading.

9 Running your Program on the Gecko4EPFL

This section describes the necessary steps to run the program on the Gecko4EPFL board.

• Please use the Nios II CPU provided in the Quartus project quartus/GECKO.qpf in the template.

• In your snake.asm, add a wait procedure to slow down the execution speed of the program.

– For example, the procedure wait could initialize a large counter and decrement it in a loop,
returning when the counter reaches 0.

– In your main procedure, call the wait procedure. For example, you can call it every time
after having displayed the new position of the snake and/or food.

– Remember to comment the call to the wait procedure when going back to the simulation in
nios2sim, as otherwise the simulation will run too slow.

• In the nios2sim simulator, assemble your program (Nios II → Assemble) and export the ROM
content (File → Export to Hex File → Choose ROM as the memory module) as [template
folder]/quartus/ROM.hex. Do not modify anything else in the Quartus project folder.

• Compile the Quartus project.

• Program the FPGA.

Every time you modify your program, remember to regenerate the Hex file and to compile the
Quartus project again before programming the FPGA.

12 of 13 Version 2.0 of 30th October 2018, EPFL ©2018



A Snake Game in Assembly Language

10 Submission

You are expected to submit your complete code as a single .asm file. The automatic grader will
look for and test the following procedures: clear leds, set pixel, get input, move snake,
draw array, create food, hit test, display score, and restart game.Make sure that
you follow the formatting instructions detailed in Section 1.2.

Each of the above listed procedures is tested independently of the rest of your code; everything
around the tested procedure the grader will replace with the default code. Therefore, you must en-
close between appropriate comments all the auxiliary procedures your code calls (see Section 1.2).
The only exception is when your procedure calls set pixel: in that case, you do not need
to enclose the body of set pixel, because the grader will call the internal implementation of
set pixel.

There are two submission links: snake-preliminary and snake-final:

• You can use the preliminary test as many times as you wish until the deadline. The prelimin-
ary tests only checks if the grader found and parsed correctly all the procedures and if your
assembly code compiles without errors. The preliminary feedback will refer to these checks
only.

• The final test will assess the correctness of the procedures enlisted above by analyzing their
effect on memory contents and registers. The final feedback will resemble the following:
Procedure procedure name passed/failed the test.

If your code passes all the tests in snake-final, you will obtain the maximum score of 80%.
For the remaining 20%, you will need to make a successful live demonstration of the game on
Gecko4EPFL to the teaching assistants.

You are allowed (and encouraged) to add other features to the game, e.g., increasing the snake’s
speed after eating food each time. However, you must not submit an enhanced game to the automated
grader, as it expects a basic game that conforms to the instructions detailed in this document. Teams that
demonstrate the most interesting and complete game will have a chance to win the ArchOrd Christmas
gift! So, be creative!

Version 2.0 of 30th October 2018, EPFL ©2018 13 of 13


	Introduction
	About the game
	Formatting rules

	Drawing Using LEDs
	Procedure clear_leds
	Arguments
	Return Values

	Procedure set_pixel
	Arguments
	Return Values

	Exercise

	Displaying and Controlling the Snake
	Procedure get_input
	Arguments
	Return Values

	Procedure move_snake
	Arguments
	Return Values

	Procedure draw_array
	Arguments
	Return Values

	Exercise

	Creating and Displaying the Food
	Procedure create_food
	Arguments
	Return Values

	Exercise

	Collision Testing
	Procedure hit_test
	Arguments
	Return Values

	Exercise

	Displaying the Game Score
	Procedure display_score
	Arguments
	Return Values

	Exercise

	Restart the Game
	restart_game
	Arguments
	Return Values

	Exercise

	Playing the Game
	Running your Program on the Gecko4EPFL
	Submission

