Disabled external gits
This commit is contained in:
219
cs440-acg/ext/openexr/IlmBase/Imath/ImathRoots.h
Normal file
219
cs440-acg/ext/openexr/IlmBase/Imath/ImathRoots.h
Normal file
@@ -0,0 +1,219 @@
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// Copyright (c) 2002-2012, Industrial Light & Magic, a division of Lucas
|
||||
// Digital Ltd. LLC
|
||||
//
|
||||
// All rights reserved.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without
|
||||
// modification, are permitted provided that the following conditions are
|
||||
// met:
|
||||
// * Redistributions of source code must retain the above copyright
|
||||
// notice, this list of conditions and the following disclaimer.
|
||||
// * Redistributions in binary form must reproduce the above
|
||||
// copyright notice, this list of conditions and the following disclaimer
|
||||
// in the documentation and/or other materials provided with the
|
||||
// distribution.
|
||||
// * Neither the name of Industrial Light & Magic nor the names of
|
||||
// its contributors may be used to endorse or promote products derived
|
||||
// from this software without specific prior written permission.
|
||||
//
|
||||
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
//
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
|
||||
#ifndef INCLUDED_IMATHROOTS_H
|
||||
#define INCLUDED_IMATHROOTS_H
|
||||
|
||||
//---------------------------------------------------------------------
|
||||
//
|
||||
// Functions to solve linear, quadratic or cubic equations
|
||||
//
|
||||
//---------------------------------------------------------------------
|
||||
|
||||
#include "ImathMath.h"
|
||||
#include "ImathNamespace.h"
|
||||
#include <complex>
|
||||
|
||||
IMATH_INTERNAL_NAMESPACE_HEADER_ENTER
|
||||
|
||||
//--------------------------------------------------------------------------
|
||||
// Find the real solutions of a linear, quadratic or cubic equation:
|
||||
//
|
||||
// function equation solved
|
||||
//
|
||||
// solveLinear (a, b, x) a * x + b == 0
|
||||
// solveQuadratic (a, b, c, x) a * x*x + b * x + c == 0
|
||||
// solveNormalizedCubic (r, s, t, x) x*x*x + r * x*x + s * x + t == 0
|
||||
// solveCubic (a, b, c, d, x) a * x*x*x + b * x*x + c * x + d == 0
|
||||
//
|
||||
// Return value:
|
||||
//
|
||||
// 3 three real solutions, stored in x[0], x[1] and x[2]
|
||||
// 2 two real solutions, stored in x[0] and x[1]
|
||||
// 1 one real solution, stored in x[1]
|
||||
// 0 no real solutions
|
||||
// -1 all real numbers are solutions
|
||||
//
|
||||
// Notes:
|
||||
//
|
||||
// * It is possible that an equation has real solutions, but that the
|
||||
// solutions (or some intermediate result) are not representable.
|
||||
// In this case, either some of the solutions returned are invalid
|
||||
// (nan or infinity), or, if floating-point exceptions have been
|
||||
// enabled with Iex::mathExcOn(), an Iex::MathExc exception is
|
||||
// thrown.
|
||||
//
|
||||
// * Cubic equations are solved using Cardano's Formula; even though
|
||||
// only real solutions are produced, some intermediate results are
|
||||
// complex (std::complex<T>).
|
||||
//
|
||||
//--------------------------------------------------------------------------
|
||||
|
||||
template <class T> int solveLinear (T a, T b, T &x);
|
||||
template <class T> int solveQuadratic (T a, T b, T c, T x[2]);
|
||||
template <class T> int solveNormalizedCubic (T r, T s, T t, T x[3]);
|
||||
template <class T> int solveCubic (T a, T b, T c, T d, T x[3]);
|
||||
|
||||
|
||||
//---------------
|
||||
// Implementation
|
||||
//---------------
|
||||
|
||||
template <class T>
|
||||
int
|
||||
solveLinear (T a, T b, T &x)
|
||||
{
|
||||
if (a != 0)
|
||||
{
|
||||
x = -b / a;
|
||||
return 1;
|
||||
}
|
||||
else if (b != 0)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <class T>
|
||||
int
|
||||
solveQuadratic (T a, T b, T c, T x[2])
|
||||
{
|
||||
if (a == 0)
|
||||
{
|
||||
return solveLinear (b, c, x[0]);
|
||||
}
|
||||
else
|
||||
{
|
||||
T D = b * b - 4 * a * c;
|
||||
|
||||
if (D > 0)
|
||||
{
|
||||
T s = Math<T>::sqrt (D);
|
||||
T q = -(b + (b > 0 ? 1 : -1) * s) / T(2);
|
||||
|
||||
x[0] = q / a;
|
||||
x[1] = c / q;
|
||||
return 2;
|
||||
}
|
||||
if (D == 0)
|
||||
{
|
||||
x[0] = -b / (2 * a);
|
||||
return 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <class T>
|
||||
int
|
||||
solveNormalizedCubic (T r, T s, T t, T x[3])
|
||||
{
|
||||
T p = (3 * s - r * r) / 3;
|
||||
T q = 2 * r * r * r / 27 - r * s / 3 + t;
|
||||
T p3 = p / 3;
|
||||
T q2 = q / 2;
|
||||
T D = p3 * p3 * p3 + q2 * q2;
|
||||
|
||||
if (D == 0 && p3 == 0)
|
||||
{
|
||||
x[0] = -r / 3;
|
||||
x[1] = -r / 3;
|
||||
x[2] = -r / 3;
|
||||
return 1;
|
||||
}
|
||||
|
||||
std::complex<T> u = std::pow (-q / 2 + std::sqrt (std::complex<T> (D)),
|
||||
T (1) / T (3));
|
||||
|
||||
std::complex<T> v = -p / (T (3) * u);
|
||||
|
||||
const T sqrt3 = T (1.73205080756887729352744634150587); // enough digits
|
||||
// for long double
|
||||
std::complex<T> y0 (u + v);
|
||||
|
||||
std::complex<T> y1 (-(u + v) / T (2) +
|
||||
(u - v) / T (2) * std::complex<T> (0, sqrt3));
|
||||
|
||||
std::complex<T> y2 (-(u + v) / T (2) -
|
||||
(u - v) / T (2) * std::complex<T> (0, sqrt3));
|
||||
|
||||
if (D > 0)
|
||||
{
|
||||
x[0] = y0.real() - r / 3;
|
||||
return 1;
|
||||
}
|
||||
else if (D == 0)
|
||||
{
|
||||
x[0] = y0.real() - r / 3;
|
||||
x[1] = y1.real() - r / 3;
|
||||
return 2;
|
||||
}
|
||||
else
|
||||
{
|
||||
x[0] = y0.real() - r / 3;
|
||||
x[1] = y1.real() - r / 3;
|
||||
x[2] = y2.real() - r / 3;
|
||||
return 3;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <class T>
|
||||
int
|
||||
solveCubic (T a, T b, T c, T d, T x[3])
|
||||
{
|
||||
if (a == 0)
|
||||
{
|
||||
return solveQuadratic (b, c, d, x);
|
||||
}
|
||||
else
|
||||
{
|
||||
return solveNormalizedCubic (b / a, c / a, d / a, x);
|
||||
}
|
||||
}
|
||||
|
||||
IMATH_INTERNAL_NAMESPACE_HEADER_EXIT
|
||||
|
||||
#endif // INCLUDED_IMATHROOTS_H
|
Reference in New Issue
Block a user