Disabled external gits
This commit is contained in:
138
cs440-acg/ext/eigen/unsupported/Eigen/Polynomials
Normal file
138
cs440-acg/ext/eigen/unsupported/Eigen/Polynomials
Normal file
@@ -0,0 +1,138 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_POLYNOMIALS_MODULE_H
|
||||
#define EIGEN_POLYNOMIALS_MODULE_H
|
||||
|
||||
#include <Eigen/Core>
|
||||
|
||||
#include <Eigen/Eigenvalues>
|
||||
|
||||
#include <Eigen/src/Core/util/DisableStupidWarnings.h>
|
||||
|
||||
// Note that EIGEN_HIDE_HEAVY_CODE has to be defined per module
|
||||
#if (defined EIGEN_EXTERN_INSTANTIATIONS) && (EIGEN_EXTERN_INSTANTIATIONS>=2)
|
||||
#ifndef EIGEN_HIDE_HEAVY_CODE
|
||||
#define EIGEN_HIDE_HEAVY_CODE
|
||||
#endif
|
||||
#elif defined EIGEN_HIDE_HEAVY_CODE
|
||||
#undef EIGEN_HIDE_HEAVY_CODE
|
||||
#endif
|
||||
|
||||
/**
|
||||
* \defgroup Polynomials_Module Polynomials module
|
||||
* \brief This module provides a QR based polynomial solver.
|
||||
*
|
||||
* To use this module, add
|
||||
* \code
|
||||
* #include <unsupported/Eigen/Polynomials>
|
||||
* \endcode
|
||||
* at the start of your source file.
|
||||
*/
|
||||
|
||||
#include "src/Polynomials/PolynomialUtils.h"
|
||||
#include "src/Polynomials/Companion.h"
|
||||
#include "src/Polynomials/PolynomialSolver.h"
|
||||
|
||||
/**
|
||||
\page polynomials Polynomials defines functions for dealing with polynomials
|
||||
and a QR based polynomial solver.
|
||||
\ingroup Polynomials_Module
|
||||
|
||||
The remainder of the page documents first the functions for evaluating, computing
|
||||
polynomials, computing estimates about polynomials and next the QR based polynomial
|
||||
solver.
|
||||
|
||||
\section polynomialUtils convenient functions to deal with polynomials
|
||||
\subsection roots_to_monicPolynomial
|
||||
The function
|
||||
\code
|
||||
void roots_to_monicPolynomial( const RootVector& rv, Polynomial& poly )
|
||||
\endcode
|
||||
computes the coefficients \f$ a_i \f$ of
|
||||
|
||||
\f$ p(x) = a_0 + a_{1}x + ... + a_{n-1}x^{n-1} + x^n \f$
|
||||
|
||||
where \f$ p \f$ is known through its roots i.e. \f$ p(x) = (x-r_1)(x-r_2)...(x-r_n) \f$.
|
||||
|
||||
\subsection poly_eval
|
||||
The function
|
||||
\code
|
||||
T poly_eval( const Polynomials& poly, const T& x )
|
||||
\endcode
|
||||
evaluates a polynomial at a given point using stabilized Hörner method.
|
||||
|
||||
The following code: first computes the coefficients in the monomial basis of the monic polynomial that has the provided roots;
|
||||
then, it evaluates the computed polynomial, using a stabilized Hörner method.
|
||||
|
||||
\include PolynomialUtils1.cpp
|
||||
Output: \verbinclude PolynomialUtils1.out
|
||||
|
||||
\subsection Cauchy bounds
|
||||
The function
|
||||
\code
|
||||
Real cauchy_max_bound( const Polynomial& poly )
|
||||
\endcode
|
||||
provides a maximum bound (the Cauchy one: \f$C(p)\f$) for the absolute value of a root of the given polynomial i.e.
|
||||
\f$ \forall r_i \f$ root of \f$ p(x) = \sum_{k=0}^d a_k x^k \f$,
|
||||
\f$ |r_i| \le C(p) = \sum_{k=0}^{d} \left | \frac{a_k}{a_d} \right | \f$
|
||||
The leading coefficient \f$ p \f$: should be non zero \f$a_d \neq 0\f$.
|
||||
|
||||
|
||||
The function
|
||||
\code
|
||||
Real cauchy_min_bound( const Polynomial& poly )
|
||||
\endcode
|
||||
provides a minimum bound (the Cauchy one: \f$c(p)\f$) for the absolute value of a non zero root of the given polynomial i.e.
|
||||
\f$ \forall r_i \neq 0 \f$ root of \f$ p(x) = \sum_{k=0}^d a_k x^k \f$,
|
||||
\f$ |r_i| \ge c(p) = \left( \sum_{k=0}^{d} \left | \frac{a_k}{a_0} \right | \right)^{-1} \f$
|
||||
|
||||
|
||||
|
||||
|
||||
\section QR polynomial solver class
|
||||
Computes the complex roots of a polynomial by computing the eigenvalues of the associated companion matrix with the QR algorithm.
|
||||
|
||||
The roots of \f$ p(x) = a_0 + a_1 x + a_2 x^2 + a_{3} x^3 + x^4 \f$ are the eigenvalues of
|
||||
\f$
|
||||
\left [
|
||||
\begin{array}{cccc}
|
||||
0 & 0 & 0 & a_0 \\
|
||||
1 & 0 & 0 & a_1 \\
|
||||
0 & 1 & 0 & a_2 \\
|
||||
0 & 0 & 1 & a_3
|
||||
\end{array} \right ]
|
||||
\f$
|
||||
|
||||
However, the QR algorithm is not guaranteed to converge when there are several eigenvalues with same modulus.
|
||||
|
||||
Therefore the current polynomial solver is guaranteed to provide a correct result only when the complex roots \f$r_1,r_2,...,r_d\f$ have distinct moduli i.e.
|
||||
|
||||
\f$ \forall i,j \in [1;d],~ \| r_i \| \neq \| r_j \| \f$.
|
||||
|
||||
With 32bit (float) floating types this problem shows up frequently.
|
||||
However, almost always, correct accuracy is reached even in these cases for 64bit
|
||||
(double) floating types and small polynomial degree (<20).
|
||||
|
||||
\include PolynomialSolver1.cpp
|
||||
|
||||
In the above example:
|
||||
|
||||
-# a simple use of the polynomial solver is shown;
|
||||
-# the accuracy problem with the QR algorithm is presented: a polynomial with almost conjugate roots is provided to the solver.
|
||||
Those roots have almost same module therefore the QR algorithm failed to converge: the accuracy
|
||||
of the last root is bad;
|
||||
-# a simple way to circumvent the problem is shown: use doubles instead of floats.
|
||||
|
||||
Output: \verbinclude PolynomialSolver1.out
|
||||
*/
|
||||
|
||||
#include <Eigen/src/Core/util/ReenableStupidWarnings.h>
|
||||
|
||||
#endif // EIGEN_POLYNOMIALS_MODULE_H
|
||||
/* vim: set filetype=cpp et sw=2 ts=2 ai: */
|
Reference in New Issue
Block a user