Disabled external gits

This commit is contained in:
2022-04-07 18:46:57 +02:00
parent 88cb3426ad
commit 15e7120d6d
5316 changed files with 4563444 additions and 6 deletions

View File

@@ -0,0 +1,13 @@
project(EigenDemos)
add_custom_target(demos)
if(NOT EIGEN_TEST_NOQT)
find_package(Qt4)
if(QT4_FOUND)
add_subdirectory(mandelbrot)
add_subdirectory(opengl)
else(QT4_FOUND)
message(STATUS "Qt4 not found, so disabling the mandelbrot and opengl demos")
endif(QT4_FOUND)
endif()

View File

@@ -0,0 +1,21 @@
find_package(Qt4 REQUIRED)
set(CMAKE_INCLUDE_CURRENT_DIR ON)
if (CMAKE_COMPILER_IS_GNUCXX)
set ( CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O2")
add_definitions ( "-DNDEBUG" )
endif (CMAKE_COMPILER_IS_GNUCXX)
include_directories( ${QT_INCLUDE_DIR} )
set(mandelbrot_SRCS
mandelbrot.cpp
)
qt4_automoc(${mandelbrot_SRCS})
add_executable(mandelbrot ${mandelbrot_SRCS})
add_dependencies(demos mandelbrot)
target_link_libraries(mandelbrot ${QT_QTCORE_LIBRARY} ${QT_QTGUI_LIBRARY})

View File

@@ -0,0 +1,10 @@
*** Mandelbrot demo ***
Controls:
* Left mouse button to center view at a point.
* Drag vertically with left mouse button to zoom in and out.
Be sure to enable SSE2 or AltiVec to improve performance.
The number of iterations, and the choice between single and double precision, are
determined at runtime depending on the zoom level.

View File

@@ -0,0 +1,213 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "mandelbrot.h"
#include <iostream>
#include<QtGui/QPainter>
#include<QtGui/QImage>
#include<QtGui/QMouseEvent>
#include<QtCore/QTime>
void MandelbrotWidget::resizeEvent(QResizeEvent *)
{
if(size < width() * height())
{
std::cout << "reallocate buffer" << std::endl;
size = width() * height();
if(buffer) delete[]buffer;
buffer = new unsigned char[4*size];
}
}
template<typename T> struct iters_before_test { enum { ret = 8 }; };
template<> struct iters_before_test<double> { enum { ret = 16 }; };
template<typename Real> void MandelbrotThread::render(int img_width, int img_height)
{
enum { packetSize = Eigen::internal::packet_traits<Real>::size }; // number of reals in a Packet
typedef Eigen::Array<Real, packetSize, 1> Packet; // wrap a Packet as a vector
enum { iters_before_test = iters_before_test<Real>::ret };
max_iter = (max_iter / iters_before_test) * iters_before_test;
const int alignedWidth = (img_width/packetSize)*packetSize;
unsigned char *const buffer = widget->buffer;
const double xradius = widget->xradius;
const double yradius = xradius * img_height / img_width;
const int threadcount = widget->threadcount;
typedef Eigen::Array<Real, 2, 1> Vector2;
Vector2 start(widget->center.x() - widget->xradius, widget->center.y() - yradius);
Vector2 step(2*widget->xradius/img_width, 2*yradius/img_height);
total_iter = 0;
for(int y = id; y < img_height; y += threadcount)
{
int pix = y * img_width;
// for each pixel, we're going to do the iteration z := z^2 + c where z and c are complex numbers,
// starting with z = c = complex coord of the pixel. pzi and pzr denote the real and imaginary parts of z.
// pci and pcr denote the real and imaginary parts of c.
Packet pzi_start, pci_start;
for(int i = 0; i < packetSize; i++) pzi_start[i] = pci_start[i] = start.y() + y * step.y();
for(int x = 0; x < alignedWidth; x += packetSize, pix += packetSize)
{
Packet pcr, pci = pci_start, pzr, pzi = pzi_start, pzr_buf;
for(int i = 0; i < packetSize; i++) pzr[i] = pcr[i] = start.x() + (x+i) * step.x();
// do the iterations. Every iters_before_test iterations we check for divergence,
// in which case we can stop iterating.
int j = 0;
typedef Eigen::Matrix<int, packetSize, 1> Packeti;
Packeti pix_iter = Packeti::Zero(), // number of iteration per pixel in the packet
pix_dont_diverge; // whether or not each pixel has already diverged
do
{
for(int i = 0; i < iters_before_test/4; i++) // peel the inner loop by 4
{
# define ITERATE \
pzr_buf = pzr; \
pzr = pzr.square(); \
pzr -= pzi.square(); \
pzr += pcr; \
pzi = (2*pzr_buf)*pzi; \
pzi += pci;
ITERATE ITERATE ITERATE ITERATE
}
pix_dont_diverge = ((pzr.square() + pzi.square())
.eval() // temporary fix as what follows is not yet vectorized by Eigen
<= Packet::Constant(4))
// the 4 here is not a magic value, it's a math fact that if
// the square modulus is >4 then divergence is inevitable.
.template cast<int>();
pix_iter += iters_before_test * pix_dont_diverge;
j++;
total_iter += iters_before_test * packetSize;
}
while(j < max_iter/iters_before_test && pix_dont_diverge.any()); // any() is not yet vectorized by Eigen
// compute pixel colors
for(int i = 0; i < packetSize; i++)
{
buffer[4*(pix+i)] = 255*pix_iter[i]/max_iter;
buffer[4*(pix+i)+1] = 0;
buffer[4*(pix+i)+2] = 0;
}
}
// if the width is not a multiple of packetSize, fill the remainder in black
for(int x = alignedWidth; x < img_width; x++, pix++)
buffer[4*pix] = buffer[4*pix+1] = buffer[4*pix+2] = 0;
}
return;
}
void MandelbrotThread::run()
{
setTerminationEnabled(true);
double resolution = widget->xradius*2/widget->width();
max_iter = 128;
if(resolution < 1e-4f) max_iter += 128 * ( - 4 - std::log10(resolution));
int img_width = widget->width()/widget->draft;
int img_height = widget->height()/widget->draft;
single_precision = resolution > 1e-7f;
if(single_precision)
render<float>(img_width, img_height);
else
render<double>(img_width, img_height);
}
void MandelbrotWidget::paintEvent(QPaintEvent *)
{
static float max_speed = 0;
long long total_iter = 0;
QTime time;
time.start();
for(int th = 0; th < threadcount; th++)
threads[th]->start(QThread::LowPriority);
for(int th = 0; th < threadcount; th++)
{
threads[th]->wait();
total_iter += threads[th]->total_iter;
}
int elapsed = time.elapsed();
if(draft == 1)
{
float speed = elapsed ? float(total_iter)*1000/elapsed : 0;
max_speed = std::max(max_speed, speed);
std::cout << threadcount << " threads, "
<< elapsed << " ms, "
<< speed << " iters/s (max " << max_speed << ")" << std::endl;
int packetSize = threads[0]->single_precision
? int(Eigen::internal::packet_traits<float>::size)
: int(Eigen::internal::packet_traits<double>::size);
setWindowTitle(QString("resolution ")+QString::number(xradius*2/width(), 'e', 2)
+QString(", %1 iterations per pixel, ").arg(threads[0]->max_iter)
+(threads[0]->single_precision ? QString("single ") : QString("double "))
+QString("precision, ")
+(packetSize==1 ? QString("no vectorization")
: QString("vectorized (%1 per packet)").arg(packetSize)));
}
QImage image(buffer, width()/draft, height()/draft, QImage::Format_RGB32);
QPainter painter(this);
painter.drawImage(QPoint(0, 0), image.scaled(width(), height()));
if(draft>1)
{
draft /= 2;
setWindowTitle(QString("recomputing at 1/%1 resolution...").arg(draft));
update();
}
}
void MandelbrotWidget::mousePressEvent(QMouseEvent *event)
{
if( event->buttons() & Qt::LeftButton )
{
lastpos = event->pos();
double yradius = xradius * height() / width();
center = Eigen::Vector2d(center.x() + (event->pos().x() - width()/2) * xradius * 2 / width(),
center.y() + (event->pos().y() - height()/2) * yradius * 2 / height());
draft = 16;
for(int th = 0; th < threadcount; th++)
threads[th]->terminate();
update();
}
}
void MandelbrotWidget::mouseMoveEvent(QMouseEvent *event)
{
QPoint delta = event->pos() - lastpos;
lastpos = event->pos();
if( event->buttons() & Qt::LeftButton )
{
double t = 1 + 5 * double(delta.y()) / height();
if(t < 0.5) t = 0.5;
if(t > 2) t = 2;
xradius *= t;
draft = 16;
for(int th = 0; th < threadcount; th++)
threads[th]->terminate();
update();
}
}
int main(int argc, char *argv[])
{
QApplication app(argc, argv);
MandelbrotWidget w;
w.show();
return app.exec();
}
#include "mandelbrot.moc"

View File

@@ -0,0 +1,71 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef MANDELBROT_H
#define MANDELBROT_H
#include <Eigen/Core>
#include <QtGui/QApplication>
#include <QtGui/QWidget>
#include <QtCore/QThread>
class MandelbrotWidget;
class MandelbrotThread : public QThread
{
friend class MandelbrotWidget;
MandelbrotWidget *widget;
long long total_iter;
int id, max_iter;
bool single_precision;
public:
MandelbrotThread(MandelbrotWidget *w, int i) : widget(w), id(i) {}
void run();
template<typename Real> void render(int img_width, int img_height);
};
class MandelbrotWidget : public QWidget
{
Q_OBJECT
friend class MandelbrotThread;
Eigen::Vector2d center;
double xradius;
int size;
unsigned char *buffer;
QPoint lastpos;
int draft;
MandelbrotThread **threads;
int threadcount;
protected:
void resizeEvent(QResizeEvent *);
void paintEvent(QPaintEvent *);
void mousePressEvent(QMouseEvent *event);
void mouseMoveEvent(QMouseEvent *event);
public:
MandelbrotWidget() : QWidget(), center(0,0), xradius(2),
size(0), buffer(0), draft(16)
{
setAutoFillBackground(false);
threadcount = QThread::idealThreadCount();
threads = new MandelbrotThread*[threadcount];
for(int th = 0; th < threadcount; th++) threads[th] = new MandelbrotThread(this, th);
}
~MandelbrotWidget()
{
if(buffer) delete[]buffer;
for(int th = 0; th < threadcount; th++) delete threads[th];
delete[] threads;
}
};
#endif // MANDELBROT_H

View File

@@ -0,0 +1,9 @@
This is an example of how one can wrap some of Eigen into a C library.
To try this with GCC, do:
g++ -c binary_library.cpp -O2 -msse2 -I ../..
gcc example.c binary_library.o -o example -lstdc++
./example
TODO: add CMakeLists, add more explanations here

View File

@@ -0,0 +1,185 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// This C++ file compiles to binary code that can be linked to by your C program,
// thanks to the extern "C" syntax used in the declarations in binary_library.h.
#include "binary_library.h"
#include <Eigen/Core>
using namespace Eigen;
/************************* pointer conversion methods **********************************************/
////// class MatrixXd //////
inline MatrixXd& c_to_eigen(C_MatrixXd* ptr)
{
return *reinterpret_cast<MatrixXd*>(ptr);
}
inline const MatrixXd& c_to_eigen(const C_MatrixXd* ptr)
{
return *reinterpret_cast<const MatrixXd*>(ptr);
}
inline C_MatrixXd* eigen_to_c(MatrixXd& ref)
{
return reinterpret_cast<C_MatrixXd*>(&ref);
}
inline const C_MatrixXd* eigen_to_c(const MatrixXd& ref)
{
return reinterpret_cast<const C_MatrixXd*>(&ref);
}
////// class Map<MatrixXd> //////
inline Map<MatrixXd>& c_to_eigen(C_Map_MatrixXd* ptr)
{
return *reinterpret_cast<Map<MatrixXd>*>(ptr);
}
inline const Map<MatrixXd>& c_to_eigen(const C_Map_MatrixXd* ptr)
{
return *reinterpret_cast<const Map<MatrixXd>*>(ptr);
}
inline C_Map_MatrixXd* eigen_to_c(Map<MatrixXd>& ref)
{
return reinterpret_cast<C_Map_MatrixXd*>(&ref);
}
inline const C_Map_MatrixXd* eigen_to_c(const Map<MatrixXd>& ref)
{
return reinterpret_cast<const C_Map_MatrixXd*>(&ref);
}
/************************* implementation of classes **********************************************/
////// class MatrixXd //////
C_MatrixXd* MatrixXd_new(int rows, int cols)
{
return eigen_to_c(*new MatrixXd(rows,cols));
}
void MatrixXd_delete(C_MatrixXd *m)
{
delete &c_to_eigen(m);
}
double* MatrixXd_data(C_MatrixXd *m)
{
return c_to_eigen(m).data();
}
void MatrixXd_set_zero(C_MatrixXd *m)
{
c_to_eigen(m).setZero();
}
void MatrixXd_resize(C_MatrixXd *m, int rows, int cols)
{
c_to_eigen(m).resize(rows,cols);
}
void MatrixXd_copy(C_MatrixXd *dst, const C_MatrixXd *src)
{
c_to_eigen(dst) = c_to_eigen(src);
}
void MatrixXd_copy_map(C_MatrixXd *dst, const C_Map_MatrixXd *src)
{
c_to_eigen(dst) = c_to_eigen(src);
}
void MatrixXd_set_coeff(C_MatrixXd *m, int i, int j, double coeff)
{
c_to_eigen(m)(i,j) = coeff;
}
double MatrixXd_get_coeff(const C_MatrixXd *m, int i, int j)
{
return c_to_eigen(m)(i,j);
}
void MatrixXd_print(const C_MatrixXd *m)
{
std::cout << c_to_eigen(m) << std::endl;
}
void MatrixXd_multiply(const C_MatrixXd *m1, const C_MatrixXd *m2, C_MatrixXd *result)
{
c_to_eigen(result) = c_to_eigen(m1) * c_to_eigen(m2);
}
void MatrixXd_add(const C_MatrixXd *m1, const C_MatrixXd *m2, C_MatrixXd *result)
{
c_to_eigen(result) = c_to_eigen(m1) + c_to_eigen(m2);
}
////// class Map_MatrixXd //////
C_Map_MatrixXd* Map_MatrixXd_new(double *array, int rows, int cols)
{
return eigen_to_c(*new Map<MatrixXd>(array,rows,cols));
}
void Map_MatrixXd_delete(C_Map_MatrixXd *m)
{
delete &c_to_eigen(m);
}
void Map_MatrixXd_set_zero(C_Map_MatrixXd *m)
{
c_to_eigen(m).setZero();
}
void Map_MatrixXd_copy(C_Map_MatrixXd *dst, const C_Map_MatrixXd *src)
{
c_to_eigen(dst) = c_to_eigen(src);
}
void Map_MatrixXd_copy_matrix(C_Map_MatrixXd *dst, const C_MatrixXd *src)
{
c_to_eigen(dst) = c_to_eigen(src);
}
void Map_MatrixXd_set_coeff(C_Map_MatrixXd *m, int i, int j, double coeff)
{
c_to_eigen(m)(i,j) = coeff;
}
double Map_MatrixXd_get_coeff(const C_Map_MatrixXd *m, int i, int j)
{
return c_to_eigen(m)(i,j);
}
void Map_MatrixXd_print(const C_Map_MatrixXd *m)
{
std::cout << c_to_eigen(m) << std::endl;
}
void Map_MatrixXd_multiply(const C_Map_MatrixXd *m1, const C_Map_MatrixXd *m2, C_Map_MatrixXd *result)
{
c_to_eigen(result) = c_to_eigen(m1) * c_to_eigen(m2);
}
void Map_MatrixXd_add(const C_Map_MatrixXd *m1, const C_Map_MatrixXd *m2, C_Map_MatrixXd *result)
{
c_to_eigen(result) = c_to_eigen(m1) + c_to_eigen(m2);
}

View File

@@ -0,0 +1,71 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
// This is a pure C header, no C++ here.
// The functions declared here will be implemented in C++ but
// we don't have to know, because thanks to the extern "C" syntax,
// they will be compiled to C object code.
#ifdef __cplusplus
extern "C"
{
#endif
// just dummy empty structs to give different pointer types,
// instead of using void* which would be type unsafe
struct C_MatrixXd {};
struct C_Map_MatrixXd {};
// the C_MatrixXd class, wraps some of the functionality
// of Eigen::MatrixXd.
struct C_MatrixXd* MatrixXd_new(int rows, int cols);
void MatrixXd_delete (struct C_MatrixXd *m);
double* MatrixXd_data (struct C_MatrixXd *m);
void MatrixXd_set_zero (struct C_MatrixXd *m);
void MatrixXd_resize (struct C_MatrixXd *m, int rows, int cols);
void MatrixXd_copy (struct C_MatrixXd *dst,
const struct C_MatrixXd *src);
void MatrixXd_copy_map (struct C_MatrixXd *dst,
const struct C_Map_MatrixXd *src);
void MatrixXd_set_coeff (struct C_MatrixXd *m,
int i, int j, double coeff);
double MatrixXd_get_coeff (const struct C_MatrixXd *m,
int i, int j);
void MatrixXd_print (const struct C_MatrixXd *m);
void MatrixXd_add (const struct C_MatrixXd *m1,
const struct C_MatrixXd *m2,
struct C_MatrixXd *result);
void MatrixXd_multiply (const struct C_MatrixXd *m1,
const struct C_MatrixXd *m2,
struct C_MatrixXd *result);
// the C_Map_MatrixXd class, wraps some of the functionality
// of Eigen::Map<MatrixXd>
struct C_Map_MatrixXd* Map_MatrixXd_new(double *array, int rows, int cols);
void Map_MatrixXd_delete (struct C_Map_MatrixXd *m);
void Map_MatrixXd_set_zero (struct C_Map_MatrixXd *m);
void Map_MatrixXd_copy (struct C_Map_MatrixXd *dst,
const struct C_Map_MatrixXd *src);
void Map_MatrixXd_copy_matrix(struct C_Map_MatrixXd *dst,
const struct C_MatrixXd *src);
void Map_MatrixXd_set_coeff (struct C_Map_MatrixXd *m,
int i, int j, double coeff);
double Map_MatrixXd_get_coeff (const struct C_Map_MatrixXd *m,
int i, int j);
void Map_MatrixXd_print (const struct C_Map_MatrixXd *m);
void Map_MatrixXd_add (const struct C_Map_MatrixXd *m1,
const struct C_Map_MatrixXd *m2,
struct C_Map_MatrixXd *result);
void Map_MatrixXd_multiply (const struct C_Map_MatrixXd *m1,
const struct C_Map_MatrixXd *m2,
struct C_Map_MatrixXd *result);
#ifdef __cplusplus
} // end extern "C"
#endif

View File

@@ -0,0 +1,65 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "binary_library.h"
#include "stdio.h"
void demo_MatrixXd()
{
struct C_MatrixXd *matrix1, *matrix2, *result;
printf("*** demo_MatrixXd ***\n");
matrix1 = MatrixXd_new(3, 3);
MatrixXd_set_zero(matrix1);
MatrixXd_set_coeff(matrix1, 0, 1, 2.5);
MatrixXd_set_coeff(matrix1, 1, 0, 1.4);
printf("Here is matrix1:\n");
MatrixXd_print(matrix1);
matrix2 = MatrixXd_new(3, 3);
MatrixXd_multiply(matrix1, matrix1, matrix2);
printf("Here is matrix1*matrix1:\n");
MatrixXd_print(matrix2);
MatrixXd_delete(matrix1);
MatrixXd_delete(matrix2);
}
// this helper function takes a plain C array and prints it in one line
void print_array(double *array, int n)
{
struct C_Map_MatrixXd *m = Map_MatrixXd_new(array, 1, n);
Map_MatrixXd_print(m);
Map_MatrixXd_delete(m);
}
void demo_Map_MatrixXd()
{
struct C_Map_MatrixXd *map;
double array[5];
int i;
printf("*** demo_Map_MatrixXd ***\n");
for(i = 0; i < 5; ++i) array[i] = i;
printf("Initially, the array is:\n");
print_array(array, 5);
map = Map_MatrixXd_new(array, 5, 1);
Map_MatrixXd_add(map, map, map);
Map_MatrixXd_delete(map);
printf("Now the array is:\n");
print_array(array, 5);
}
int main()
{
demo_MatrixXd();
demo_Map_MatrixXd();
}

View File

@@ -0,0 +1,28 @@
find_package(Qt4)
find_package(OpenGL)
if(QT4_FOUND AND OPENGL_FOUND)
set(QT_USE_QTOPENGL TRUE)
include(${QT_USE_FILE})
set(CMAKE_INCLUDE_CURRENT_DIR ON)
include_directories( ${QT_INCLUDE_DIR} )
set(quaternion_demo_SRCS gpuhelper.cpp icosphere.cpp camera.cpp trackball.cpp quaternion_demo.cpp)
qt4_automoc(${quaternion_demo_SRCS})
add_executable(quaternion_demo ${quaternion_demo_SRCS})
add_dependencies(demos quaternion_demo)
target_link_libraries(quaternion_demo
${QT_QTCORE_LIBRARY} ${QT_QTGUI_LIBRARY}
${QT_QTOPENGL_LIBRARY} ${OPENGL_LIBRARIES} )
else()
message(STATUS "OpenGL demo disabled because Qt4 and/or OpenGL have not been found.")
endif()

View File

@@ -0,0 +1,13 @@
Navigation:
left button: rotate around the target
middle button: zoom
left button + ctrl quake rotate (rotate around camera position)
middle button + ctrl walk (progress along camera's z direction)
left button: pan (translate in the XY camera's plane)
R : move the camera to initial position
A : start/stop animation
C : clear the animation
G : add a key frame

View File

@@ -0,0 +1,264 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "camera.h"
#include "gpuhelper.h"
#include <GL/glu.h>
#include "Eigen/LU"
using namespace Eigen;
Camera::Camera()
: mViewIsUptodate(false), mProjIsUptodate(false)
{
mViewMatrix.setIdentity();
mFovY = M_PI/3.;
mNearDist = 1.;
mFarDist = 50000.;
mVpX = 0;
mVpY = 0;
setPosition(Vector3f::Constant(100.));
setTarget(Vector3f::Zero());
}
Camera& Camera::operator=(const Camera& other)
{
mViewIsUptodate = false;
mProjIsUptodate = false;
mVpX = other.mVpX;
mVpY = other.mVpY;
mVpWidth = other.mVpWidth;
mVpHeight = other.mVpHeight;
mTarget = other.mTarget;
mFovY = other.mFovY;
mNearDist = other.mNearDist;
mFarDist = other.mFarDist;
mViewMatrix = other.mViewMatrix;
mProjectionMatrix = other.mProjectionMatrix;
return *this;
}
Camera::Camera(const Camera& other)
{
*this = other;
}
Camera::~Camera()
{
}
void Camera::setViewport(uint offsetx, uint offsety, uint width, uint height)
{
mVpX = offsetx;
mVpY = offsety;
mVpWidth = width;
mVpHeight = height;
mProjIsUptodate = false;
}
void Camera::setViewport(uint width, uint height)
{
mVpWidth = width;
mVpHeight = height;
mProjIsUptodate = false;
}
void Camera::setFovY(float value)
{
mFovY = value;
mProjIsUptodate = false;
}
Vector3f Camera::direction(void) const
{
return - (orientation() * Vector3f::UnitZ());
}
Vector3f Camera::up(void) const
{
return orientation() * Vector3f::UnitY();
}
Vector3f Camera::right(void) const
{
return orientation() * Vector3f::UnitX();
}
void Camera::setDirection(const Vector3f& newDirection)
{
// TODO implement it computing the rotation between newDirection and current dir ?
Vector3f up = this->up();
Matrix3f camAxes;
camAxes.col(2) = (-newDirection).normalized();
camAxes.col(0) = up.cross( camAxes.col(2) ).normalized();
camAxes.col(1) = camAxes.col(2).cross( camAxes.col(0) ).normalized();
setOrientation(Quaternionf(camAxes));
mViewIsUptodate = false;
}
void Camera::setTarget(const Vector3f& target)
{
mTarget = target;
if (!mTarget.isApprox(position()))
{
Vector3f newDirection = mTarget - position();
setDirection(newDirection.normalized());
}
}
void Camera::setPosition(const Vector3f& p)
{
mFrame.position = p;
mViewIsUptodate = false;
}
void Camera::setOrientation(const Quaternionf& q)
{
mFrame.orientation = q;
mViewIsUptodate = false;
}
void Camera::setFrame(const Frame& f)
{
mFrame = f;
mViewIsUptodate = false;
}
void Camera::rotateAroundTarget(const Quaternionf& q)
{
Matrix4f mrot, mt, mtm;
// update the transform matrix
updateViewMatrix();
Vector3f t = mViewMatrix * mTarget;
mViewMatrix = Translation3f(t)
* q
* Translation3f(-t)
* mViewMatrix;
Quaternionf qa(mViewMatrix.linear());
qa = qa.conjugate();
setOrientation(qa);
setPosition(- (qa * mViewMatrix.translation()) );
mViewIsUptodate = true;
}
void Camera::localRotate(const Quaternionf& q)
{
float dist = (position() - mTarget).norm();
setOrientation(orientation() * q);
mTarget = position() + dist * direction();
mViewIsUptodate = false;
}
void Camera::zoom(float d)
{
float dist = (position() - mTarget).norm();
if(dist > d)
{
setPosition(position() + direction() * d);
mViewIsUptodate = false;
}
}
void Camera::localTranslate(const Vector3f& t)
{
Vector3f trans = orientation() * t;
setPosition( position() + trans );
setTarget( mTarget + trans );
mViewIsUptodate = false;
}
void Camera::updateViewMatrix(void) const
{
if(!mViewIsUptodate)
{
Quaternionf q = orientation().conjugate();
mViewMatrix.linear() = q.toRotationMatrix();
mViewMatrix.translation() = - (mViewMatrix.linear() * position());
mViewIsUptodate = true;
}
}
const Affine3f& Camera::viewMatrix(void) const
{
updateViewMatrix();
return mViewMatrix;
}
void Camera::updateProjectionMatrix(void) const
{
if(!mProjIsUptodate)
{
mProjectionMatrix.setIdentity();
float aspect = float(mVpWidth)/float(mVpHeight);
float theta = mFovY*0.5;
float range = mFarDist - mNearDist;
float invtan = 1./tan(theta);
mProjectionMatrix(0,0) = invtan / aspect;
mProjectionMatrix(1,1) = invtan;
mProjectionMatrix(2,2) = -(mNearDist + mFarDist) / range;
mProjectionMatrix(3,2) = -1;
mProjectionMatrix(2,3) = -2 * mNearDist * mFarDist / range;
mProjectionMatrix(3,3) = 0;
mProjIsUptodate = true;
}
}
const Matrix4f& Camera::projectionMatrix(void) const
{
updateProjectionMatrix();
return mProjectionMatrix;
}
void Camera::activateGL(void)
{
glViewport(vpX(), vpY(), vpWidth(), vpHeight());
gpu.loadMatrix(projectionMatrix(),GL_PROJECTION);
gpu.loadMatrix(viewMatrix().matrix(),GL_MODELVIEW);
}
Vector3f Camera::unProject(const Vector2f& uv, float depth) const
{
Matrix4f inv = mViewMatrix.inverse().matrix();
return unProject(uv, depth, inv);
}
Vector3f Camera::unProject(const Vector2f& uv, float depth, const Matrix4f& invModelview) const
{
updateViewMatrix();
updateProjectionMatrix();
Vector3f a(2.*uv.x()/float(mVpWidth)-1., 2.*uv.y()/float(mVpHeight)-1., 1.);
a.x() *= depth/mProjectionMatrix(0,0);
a.y() *= depth/mProjectionMatrix(1,1);
a.z() = -depth;
// FIXME /\/|
Vector4f b = invModelview * Vector4f(a.x(), a.y(), a.z(), 1.);
return Vector3f(b.x(), b.y(), b.z());
}

View File

@@ -0,0 +1,118 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_CAMERA_H
#define EIGEN_CAMERA_H
#include <Eigen/Geometry>
#include <QObject>
// #include <frame.h>
class Frame
{
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
inline Frame(const Eigen::Vector3f& pos = Eigen::Vector3f::Zero(),
const Eigen::Quaternionf& o = Eigen::Quaternionf())
: orientation(o), position(pos)
{}
Frame lerp(float alpha, const Frame& other) const
{
return Frame((1.f-alpha)*position + alpha * other.position,
orientation.slerp(alpha,other.orientation));
}
Eigen::Quaternionf orientation;
Eigen::Vector3f position;
};
class Camera
{
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
Camera(void);
Camera(const Camera& other);
virtual ~Camera();
Camera& operator=(const Camera& other);
void setViewport(uint offsetx, uint offsety, uint width, uint height);
void setViewport(uint width, uint height);
inline uint vpX(void) const { return mVpX; }
inline uint vpY(void) const { return mVpY; }
inline uint vpWidth(void) const { return mVpWidth; }
inline uint vpHeight(void) const { return mVpHeight; }
inline float fovY(void) const { return mFovY; }
void setFovY(float value);
void setPosition(const Eigen::Vector3f& pos);
inline const Eigen::Vector3f& position(void) const { return mFrame.position; }
void setOrientation(const Eigen::Quaternionf& q);
inline const Eigen::Quaternionf& orientation(void) const { return mFrame.orientation; }
void setFrame(const Frame& f);
const Frame& frame(void) const { return mFrame; }
void setDirection(const Eigen::Vector3f& newDirection);
Eigen::Vector3f direction(void) const;
void setUp(const Eigen::Vector3f& vectorUp);
Eigen::Vector3f up(void) const;
Eigen::Vector3f right(void) const;
void setTarget(const Eigen::Vector3f& target);
inline const Eigen::Vector3f& target(void) { return mTarget; }
const Eigen::Affine3f& viewMatrix(void) const;
const Eigen::Matrix4f& projectionMatrix(void) const;
void rotateAroundTarget(const Eigen::Quaternionf& q);
void localRotate(const Eigen::Quaternionf& q);
void zoom(float d);
void localTranslate(const Eigen::Vector3f& t);
/** Setup OpenGL matrices and viewport */
void activateGL(void);
Eigen::Vector3f unProject(const Eigen::Vector2f& uv, float depth, const Eigen::Matrix4f& invModelview) const;
Eigen::Vector3f unProject(const Eigen::Vector2f& uv, float depth) const;
protected:
void updateViewMatrix(void) const;
void updateProjectionMatrix(void) const;
protected:
uint mVpX, mVpY;
uint mVpWidth, mVpHeight;
Frame mFrame;
mutable Eigen::Affine3f mViewMatrix;
mutable Eigen::Matrix4f mProjectionMatrix;
mutable bool mViewIsUptodate;
mutable bool mProjIsUptodate;
// used by rotateAroundTarget
Eigen::Vector3f mTarget;
float mFovY;
float mNearDist;
float mFarDist;
};
#endif // EIGEN_CAMERA_H

View File

@@ -0,0 +1,126 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "gpuhelper.h"
#include "icosphere.h"
#include <GL/glu.h>
// PLEASE don't look at this old code... ;)
#include <fstream>
#include <algorithm>
GpuHelper gpu;
GpuHelper::GpuHelper()
{
mVpWidth = mVpHeight = 0;
mCurrentMatrixTarget = 0;
mInitialized = false;
}
GpuHelper::~GpuHelper()
{
}
void GpuHelper::pushProjectionMode2D(ProjectionMode2D pm)
{
// switch to 2D projection
pushMatrix(Matrix4f::Identity(),GL_PROJECTION);
if(pm==PM_Normalized)
{
//glOrtho(-1., 1., -1., 1., 0., 1.);
}
else if(pm==PM_Viewport)
{
GLint vp[4];
glGetIntegerv(GL_VIEWPORT, vp);
glOrtho(0., vp[2], 0., vp[3], -1., 1.);
}
pushMatrix(Matrix4f::Identity(),GL_MODELVIEW);
}
void GpuHelper::popProjectionMode2D(void)
{
popMatrix(GL_PROJECTION);
popMatrix(GL_MODELVIEW);
}
void GpuHelper::drawVector(const Vector3f& position, const Vector3f& vec, const Color& color, float aspect /* = 50.*/)
{
static GLUquadricObj *cylindre = gluNewQuadric();
glColor4fv(color.data());
float length = vec.norm();
pushMatrix(GL_MODELVIEW);
glTranslatef(position.x(), position.y(), position.z());
Vector3f ax = Matrix3f::Identity().col(2).cross(vec);
ax.normalize();
Vector3f tmp = vec;
tmp.normalize();
float angle = 180.f/M_PI * acos(tmp.z());
if (angle>1e-3)
glRotatef(angle, ax.x(), ax.y(), ax.z());
gluCylinder(cylindre, length/aspect, length/aspect, 0.8*length, 10, 10);
glTranslatef(0.0,0.0,0.8*length);
gluCylinder(cylindre, 2.0*length/aspect, 0.0, 0.2*length, 10, 10);
popMatrix(GL_MODELVIEW);
}
void GpuHelper::drawVectorBox(const Vector3f& position, const Vector3f& vec, const Color& color, float aspect)
{
static GLUquadricObj *cylindre = gluNewQuadric();
glColor4fv(color.data());
float length = vec.norm();
pushMatrix(GL_MODELVIEW);
glTranslatef(position.x(), position.y(), position.z());
Vector3f ax = Matrix3f::Identity().col(2).cross(vec);
ax.normalize();
Vector3f tmp = vec;
tmp.normalize();
float angle = 180.f/M_PI * acos(tmp.z());
if (angle>1e-3)
glRotatef(angle, ax.x(), ax.y(), ax.z());
gluCylinder(cylindre, length/aspect, length/aspect, 0.8*length, 10, 10);
glTranslatef(0.0,0.0,0.8*length);
glScalef(4.0*length/aspect,4.0*length/aspect,4.0*length/aspect);
drawUnitCube();
popMatrix(GL_MODELVIEW);
}
void GpuHelper::drawUnitCube(void)
{
static float vertices[][3] = {
{-0.5,-0.5,-0.5},
{ 0.5,-0.5,-0.5},
{-0.5, 0.5,-0.5},
{ 0.5, 0.5,-0.5},
{-0.5,-0.5, 0.5},
{ 0.5,-0.5, 0.5},
{-0.5, 0.5, 0.5},
{ 0.5, 0.5, 0.5}};
glBegin(GL_QUADS);
glNormal3f(0,0,-1); glVertex3fv(vertices[0]); glVertex3fv(vertices[2]); glVertex3fv(vertices[3]); glVertex3fv(vertices[1]);
glNormal3f(0,0, 1); glVertex3fv(vertices[4]); glVertex3fv(vertices[5]); glVertex3fv(vertices[7]); glVertex3fv(vertices[6]);
glNormal3f(0,-1,0); glVertex3fv(vertices[0]); glVertex3fv(vertices[1]); glVertex3fv(vertices[5]); glVertex3fv(vertices[4]);
glNormal3f(0, 1,0); glVertex3fv(vertices[2]); glVertex3fv(vertices[6]); glVertex3fv(vertices[7]); glVertex3fv(vertices[3]);
glNormal3f(-1,0,0); glVertex3fv(vertices[0]); glVertex3fv(vertices[4]); glVertex3fv(vertices[6]); glVertex3fv(vertices[2]);
glNormal3f( 1,0,0); glVertex3fv(vertices[1]); glVertex3fv(vertices[3]); glVertex3fv(vertices[7]); glVertex3fv(vertices[5]);
glEnd();
}
void GpuHelper::drawUnitSphere(int level)
{
static IcoSphere sphere;
sphere.draw(level);
}

View File

@@ -0,0 +1,207 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_GPUHELPER_H
#define EIGEN_GPUHELPER_H
#include <Eigen/Geometry>
#include <GL/gl.h>
#include <vector>
using namespace Eigen;
typedef Vector4f Color;
class GpuHelper
{
public:
GpuHelper();
~GpuHelper();
enum ProjectionMode2D { PM_Normalized = 1, PM_Viewport = 2 };
void pushProjectionMode2D(ProjectionMode2D pm);
void popProjectionMode2D();
/** Multiply the OpenGL matrix \a matrixTarget by the matrix \a mat.
Essentially, this helper function automatically calls glMatrixMode(matrixTarget) if required
and does a proper call to the right glMultMatrix*() function according to the scalar type
and storage order.
\warning glMatrixMode() must never be called directly. If your're unsure, use forceMatrixMode().
\sa Matrix, loadMatrix(), forceMatrixMode()
*/
template<typename Scalar, int _Flags>
void multMatrix(const Matrix<Scalar,4,4, _Flags, 4,4>& mat, GLenum matrixTarget);
/** Load the matrix \a mat to the OpenGL matrix \a matrixTarget.
Essentially, this helper function automatically calls glMatrixMode(matrixTarget) if required
and does a proper call to the right glLoadMatrix*() or glLoadIdentity() function according to the scalar type
and storage order.
\warning glMatrixMode() must never be called directly. If your're unsure, use forceMatrixMode().
\sa Matrix, multMatrix(), forceMatrixMode()
*/
template<typename Scalar, int _Flags>
void loadMatrix(const Eigen::Matrix<Scalar,4,4, _Flags, 4,4>& mat, GLenum matrixTarget);
template<typename Scalar, typename Derived>
void loadMatrix(
const Eigen::CwiseNullaryOp<Eigen::internal::scalar_identity_op<Scalar>,Derived>&,
GLenum matrixTarget);
/** Make the matrix \a matrixTarget the current OpenGL matrix target.
Call this function before loadMatrix() or multMatrix() if you cannot guarantee that glMatrixMode()
has never been called after the last loadMatrix() or multMatrix() calls.
\todo provides a debug mode checking the sanity of the cached matrix mode.
*/
inline void forceMatrixTarget(GLenum matrixTarget) {glMatrixMode(mCurrentMatrixTarget=matrixTarget);}
inline void setMatrixTarget(GLenum matrixTarget);
/** Push the OpenGL matrix \a matrixTarget and load \a mat.
*/
template<typename Scalar, int _Flags>
inline void pushMatrix(const Matrix<Scalar,4,4, _Flags, 4,4>& mat, GLenum matrixTarget);
template<typename Scalar, typename Derived>
void pushMatrix(
const Eigen::CwiseNullaryOp<Eigen::internal::scalar_identity_op<Scalar>,Derived>&,
GLenum matrixTarget);
/** Push and clone the OpenGL matrix \a matrixTarget
*/
inline void pushMatrix(GLenum matrixTarget);
/** Pop the OpenGL matrix \a matrixTarget
*/
inline void popMatrix(GLenum matrixTarget);
void drawVector(const Vector3f& position, const Vector3f& vec, const Color& color, float aspect = 50.);
void drawVectorBox(const Vector3f& position, const Vector3f& vec, const Color& color, float aspect = 50.);
void drawUnitCube(void);
void drawUnitSphere(int level=0);
/// draw the \a nofElement first elements
inline void draw(GLenum mode, uint nofElement);
/// draw a range of elements
inline void draw(GLenum mode, uint start, uint end);
/// draw an indexed subset
inline void draw(GLenum mode, const std::vector<uint>* pIndexes);
protected:
void update(void);
GLuint mColorBufferId;
int mVpWidth, mVpHeight;
GLenum mCurrentMatrixTarget;
bool mInitialized;
};
/** Singleton shortcut
*/
extern GpuHelper gpu;
/** \internal
*/
template<bool RowMajor, int _Flags> struct GlMatrixHelper;
template<int _Flags> struct GlMatrixHelper<false,_Flags>
{
static void loadMatrix(const Matrix<float, 4,4, _Flags, 4,4>& mat) { glLoadMatrixf(mat.data()); }
static void loadMatrix(const Matrix<double,4,4, _Flags, 4,4>& mat) { glLoadMatrixd(mat.data()); }
static void multMatrix(const Matrix<float, 4,4, _Flags, 4,4>& mat) { glMultMatrixf(mat.data()); }
static void multMatrix(const Matrix<double,4,4, _Flags, 4,4>& mat) { glMultMatrixd(mat.data()); }
};
template<int _Flags> struct GlMatrixHelper<true,_Flags>
{
static void loadMatrix(const Matrix<float, 4,4, _Flags, 4,4>& mat) { glLoadMatrixf(mat.transpose().eval().data()); }
static void loadMatrix(const Matrix<double,4,4, _Flags, 4,4>& mat) { glLoadMatrixd(mat.transpose().eval().data()); }
static void multMatrix(const Matrix<float, 4,4, _Flags, 4,4>& mat) { glMultMatrixf(mat.transpose().eval().data()); }
static void multMatrix(const Matrix<double,4,4, _Flags, 4,4>& mat) { glMultMatrixd(mat.transpose().eval().data()); }
};
inline void GpuHelper::setMatrixTarget(GLenum matrixTarget)
{
if (matrixTarget != mCurrentMatrixTarget)
glMatrixMode(mCurrentMatrixTarget=matrixTarget);
}
template<typename Scalar, int _Flags>
void GpuHelper::multMatrix(const Matrix<Scalar,4,4, _Flags, 4,4>& mat, GLenum matrixTarget)
{
setMatrixTarget(matrixTarget);
GlMatrixHelper<_Flags&Eigen::RowMajorBit, _Flags>::multMatrix(mat);
}
template<typename Scalar, typename Derived>
void GpuHelper::loadMatrix(
const Eigen::CwiseNullaryOp<Eigen::internal::scalar_identity_op<Scalar>,Derived>&,
GLenum matrixTarget)
{
setMatrixTarget(matrixTarget);
glLoadIdentity();
}
template<typename Scalar, int _Flags>
void GpuHelper::loadMatrix(const Eigen::Matrix<Scalar,4,4, _Flags, 4,4>& mat, GLenum matrixTarget)
{
setMatrixTarget(matrixTarget);
GlMatrixHelper<(_Flags&Eigen::RowMajorBit)!=0, _Flags>::loadMatrix(mat);
}
inline void GpuHelper::pushMatrix(GLenum matrixTarget)
{
setMatrixTarget(matrixTarget);
glPushMatrix();
}
template<typename Scalar, int _Flags>
inline void GpuHelper::pushMatrix(const Matrix<Scalar,4,4, _Flags, 4,4>& mat, GLenum matrixTarget)
{
pushMatrix(matrixTarget);
GlMatrixHelper<_Flags&Eigen::RowMajorBit,_Flags>::loadMatrix(mat);
}
template<typename Scalar, typename Derived>
void GpuHelper::pushMatrix(
const Eigen::CwiseNullaryOp<Eigen::internal::scalar_identity_op<Scalar>,Derived>&,
GLenum matrixTarget)
{
pushMatrix(matrixTarget);
glLoadIdentity();
}
inline void GpuHelper::popMatrix(GLenum matrixTarget)
{
setMatrixTarget(matrixTarget);
glPopMatrix();
}
inline void GpuHelper::draw(GLenum mode, uint nofElement)
{
glDrawArrays(mode, 0, nofElement);
}
inline void GpuHelper::draw(GLenum mode, const std::vector<uint>* pIndexes)
{
glDrawElements(mode, pIndexes->size(), GL_UNSIGNED_INT, &(pIndexes->front()));
}
inline void GpuHelper::draw(GLenum mode, uint start, uint end)
{
glDrawArrays(mode, start, end-start);
}
#endif // EIGEN_GPUHELPER_H

View File

@@ -0,0 +1,120 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "icosphere.h"
#include <GL/gl.h>
#include <map>
using namespace Eigen;
//--------------------------------------------------------------------------------
// icosahedron data
//--------------------------------------------------------------------------------
#define X .525731112119133606
#define Z .850650808352039932
static GLfloat vdata[12][3] = {
{-X, 0.0, Z}, {X, 0.0, Z}, {-X, 0.0, -Z}, {X, 0.0, -Z},
{0.0, Z, X}, {0.0, Z, -X}, {0.0, -Z, X}, {0.0, -Z, -X},
{Z, X, 0.0}, {-Z, X, 0.0}, {Z, -X, 0.0}, {-Z, -X, 0.0}
};
static GLint tindices[20][3] = {
{0,4,1}, {0,9,4}, {9,5,4}, {4,5,8}, {4,8,1},
{8,10,1}, {8,3,10}, {5,3,8}, {5,2,3}, {2,7,3},
{7,10,3}, {7,6,10}, {7,11,6}, {11,0,6}, {0,1,6},
{6,1,10}, {9,0,11}, {9,11,2}, {9,2,5}, {7,2,11} };
//--------------------------------------------------------------------------------
IcoSphere::IcoSphere(unsigned int levels)
{
// init with an icosahedron
for (int i = 0; i < 12; i++)
mVertices.push_back(Map<Vector3f>(vdata[i]));
mIndices.push_back(new std::vector<int>);
std::vector<int>& indices = *mIndices.back();
for (int i = 0; i < 20; i++)
{
for (int k = 0; k < 3; k++)
indices.push_back(tindices[i][k]);
}
mListIds.push_back(0);
while(mIndices.size()<levels)
_subdivide();
}
const std::vector<int>& IcoSphere::indices(int level) const
{
while (level>=int(mIndices.size()))
const_cast<IcoSphere*>(this)->_subdivide();
return *mIndices[level];
}
void IcoSphere::_subdivide(void)
{
typedef unsigned long long Key;
std::map<Key,int> edgeMap;
const std::vector<int>& indices = *mIndices.back();
mIndices.push_back(new std::vector<int>);
std::vector<int>& refinedIndices = *mIndices.back();
int end = indices.size();
for (int i=0; i<end; i+=3)
{
int ids0[3], // indices of outer vertices
ids1[3]; // indices of edge vertices
for (int k=0; k<3; ++k)
{
int k1 = (k+1)%3;
int e0 = indices[i+k];
int e1 = indices[i+k1];
ids0[k] = e0;
if (e1>e0)
std::swap(e0,e1);
Key edgeKey = Key(e0) | (Key(e1)<<32);
std::map<Key,int>::iterator it = edgeMap.find(edgeKey);
if (it==edgeMap.end())
{
ids1[k] = mVertices.size();
edgeMap[edgeKey] = ids1[k];
mVertices.push_back( (mVertices[e0]+mVertices[e1]).normalized() );
}
else
ids1[k] = it->second;
}
refinedIndices.push_back(ids0[0]); refinedIndices.push_back(ids1[0]); refinedIndices.push_back(ids1[2]);
refinedIndices.push_back(ids0[1]); refinedIndices.push_back(ids1[1]); refinedIndices.push_back(ids1[0]);
refinedIndices.push_back(ids0[2]); refinedIndices.push_back(ids1[2]); refinedIndices.push_back(ids1[1]);
refinedIndices.push_back(ids1[0]); refinedIndices.push_back(ids1[1]); refinedIndices.push_back(ids1[2]);
}
mListIds.push_back(0);
}
void IcoSphere::draw(int level)
{
while (level>=int(mIndices.size()))
const_cast<IcoSphere*>(this)->_subdivide();
if (mListIds[level]==0)
{
mListIds[level] = glGenLists(1);
glNewList(mListIds[level], GL_COMPILE);
glVertexPointer(3, GL_FLOAT, 0, mVertices[0].data());
glNormalPointer(GL_FLOAT, 0, mVertices[0].data());
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_NORMAL_ARRAY);
glDrawElements(GL_TRIANGLES, mIndices[level]->size(), GL_UNSIGNED_INT, &(mIndices[level]->at(0)));
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_NORMAL_ARRAY);
glEndList();
}
glCallList(mListIds[level]);
}

View File

@@ -0,0 +1,30 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ICOSPHERE_H
#define EIGEN_ICOSPHERE_H
#include <Eigen/Core>
#include <vector>
class IcoSphere
{
public:
IcoSphere(unsigned int levels=1);
const std::vector<Eigen::Vector3f>& vertices() const { return mVertices; }
const std::vector<int>& indices(int level) const;
void draw(int level);
protected:
void _subdivide();
std::vector<Eigen::Vector3f> mVertices;
std::vector<std::vector<int>*> mIndices;
std::vector<int> mListIds;
};
#endif // EIGEN_ICOSPHERE_H

View File

@@ -0,0 +1,656 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "quaternion_demo.h"
#include "icosphere.h"
#include <Eigen/Geometry>
#include <Eigen/QR>
#include <Eigen/LU>
#include <iostream>
#include <QEvent>
#include <QMouseEvent>
#include <QInputDialog>
#include <QGridLayout>
#include <QButtonGroup>
#include <QRadioButton>
#include <QDockWidget>
#include <QPushButton>
#include <QGroupBox>
using namespace Eigen;
class FancySpheres
{
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
FancySpheres()
{
const int levels = 4;
const float scale = 0.33;
float radius = 100;
std::vector<int> parents;
// leval 0
mCenters.push_back(Vector3f::Zero());
parents.push_back(-1);
mRadii.push_back(radius);
// generate level 1 using icosphere vertices
radius *= 0.45;
{
float dist = mRadii[0]*0.9;
for (int i=0; i<12; ++i)
{
mCenters.push_back(mIcoSphere.vertices()[i] * dist);
mRadii.push_back(radius);
parents.push_back(0);
}
}
static const float angles [10] = {
0, 0,
M_PI, 0.*M_PI,
M_PI, 0.5*M_PI,
M_PI, 1.*M_PI,
M_PI, 1.5*M_PI
};
// generate other levels
int start = 1;
for (int l=1; l<levels; l++)
{
radius *= scale;
int end = mCenters.size();
for (int i=start; i<end; ++i)
{
Vector3f c = mCenters[i];
Vector3f ax0 = (c - mCenters[parents[i]]).normalized();
Vector3f ax1 = ax0.unitOrthogonal();
Quaternionf q;
q.setFromTwoVectors(Vector3f::UnitZ(), ax0);
Affine3f t = Translation3f(c) * q * Scaling(mRadii[i]+radius);
for (int j=0; j<5; ++j)
{
Vector3f newC = c + ( (AngleAxisf(angles[j*2+1], ax0)
* AngleAxisf(angles[j*2+0] * (l==1 ? 0.35 : 0.5), ax1)) * ax0)
* (mRadii[i] + radius*0.8);
mCenters.push_back(newC);
mRadii.push_back(radius);
parents.push_back(i);
}
}
start = end;
}
}
void draw()
{
int end = mCenters.size();
glEnable(GL_NORMALIZE);
for (int i=0; i<end; ++i)
{
Affine3f t = Translation3f(mCenters[i]) * Scaling(mRadii[i]);
gpu.pushMatrix(GL_MODELVIEW);
gpu.multMatrix(t.matrix(),GL_MODELVIEW);
mIcoSphere.draw(2);
gpu.popMatrix(GL_MODELVIEW);
}
glDisable(GL_NORMALIZE);
}
protected:
std::vector<Vector3f> mCenters;
std::vector<float> mRadii;
IcoSphere mIcoSphere;
};
// generic linear interpolation method
template<typename T> T lerp(float t, const T& a, const T& b)
{
return a*(1-t) + b*t;
}
// quaternion slerp
template<> Quaternionf lerp(float t, const Quaternionf& a, const Quaternionf& b)
{ return a.slerp(t,b); }
// linear interpolation of a frame using the type OrientationType
// to perform the interpolation of the orientations
template<typename OrientationType>
inline static Frame lerpFrame(float alpha, const Frame& a, const Frame& b)
{
return Frame(lerp(alpha,a.position,b.position),
Quaternionf(lerp(alpha,OrientationType(a.orientation),OrientationType(b.orientation))));
}
template<typename _Scalar> class EulerAngles
{
public:
enum { Dim = 3 };
typedef _Scalar Scalar;
typedef Matrix<Scalar,3,3> Matrix3;
typedef Matrix<Scalar,3,1> Vector3;
typedef Quaternion<Scalar> QuaternionType;
protected:
Vector3 m_angles;
public:
EulerAngles() {}
inline EulerAngles(Scalar a0, Scalar a1, Scalar a2) : m_angles(a0, a1, a2) {}
inline EulerAngles(const QuaternionType& q) { *this = q; }
const Vector3& coeffs() const { return m_angles; }
Vector3& coeffs() { return m_angles; }
EulerAngles& operator=(const QuaternionType& q)
{
Matrix3 m = q.toRotationMatrix();
return *this = m;
}
EulerAngles& operator=(const Matrix3& m)
{
// mat = cy*cz -cy*sz sy
// cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
// -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
m_angles.coeffRef(1) = std::asin(m.coeff(0,2));
m_angles.coeffRef(0) = std::atan2(-m.coeff(1,2),m.coeff(2,2));
m_angles.coeffRef(2) = std::atan2(-m.coeff(0,1),m.coeff(0,0));
return *this;
}
Matrix3 toRotationMatrix(void) const
{
Vector3 c = m_angles.array().cos();
Vector3 s = m_angles.array().sin();
Matrix3 res;
res << c.y()*c.z(), -c.y()*s.z(), s.y(),
c.z()*s.x()*s.y()+c.x()*s.z(), c.x()*c.z()-s.x()*s.y()*s.z(), -c.y()*s.x(),
-c.x()*c.z()*s.y()+s.x()*s.z(), c.z()*s.x()+c.x()*s.y()*s.z(), c.x()*c.y();
return res;
}
operator QuaternionType() { return QuaternionType(toRotationMatrix()); }
};
// Euler angles slerp
template<> EulerAngles<float> lerp(float t, const EulerAngles<float>& a, const EulerAngles<float>& b)
{
EulerAngles<float> res;
res.coeffs() = lerp(t, a.coeffs(), b.coeffs());
return res;
}
RenderingWidget::RenderingWidget()
{
mAnimate = false;
mCurrentTrackingMode = TM_NO_TRACK;
mNavMode = NavTurnAround;
mLerpMode = LerpQuaternion;
mRotationMode = RotationStable;
mTrackball.setCamera(&mCamera);
// required to capture key press events
setFocusPolicy(Qt::ClickFocus);
}
void RenderingWidget::grabFrame(void)
{
// ask user for a time
bool ok = false;
double t = 0;
if (!m_timeline.empty())
t = (--m_timeline.end())->first + 1.;
t = QInputDialog::getDouble(this, "Eigen's RenderingWidget", "time value: ",
t, 0, 1e3, 1, &ok);
if (ok)
{
Frame aux;
aux.orientation = mCamera.viewMatrix().linear();
aux.position = mCamera.viewMatrix().translation();
m_timeline[t] = aux;
}
}
void RenderingWidget::drawScene()
{
static FancySpheres sFancySpheres;
float length = 50;
gpu.drawVector(Vector3f::Zero(), length*Vector3f::UnitX(), Color(1,0,0,1));
gpu.drawVector(Vector3f::Zero(), length*Vector3f::UnitY(), Color(0,1,0,1));
gpu.drawVector(Vector3f::Zero(), length*Vector3f::UnitZ(), Color(0,0,1,1));
// draw the fractal object
float sqrt3 = std::sqrt(3.);
glLightfv(GL_LIGHT0, GL_AMBIENT, Vector4f(0.5,0.5,0.5,1).data());
glLightfv(GL_LIGHT0, GL_DIFFUSE, Vector4f(0.5,1,0.5,1).data());
glLightfv(GL_LIGHT0, GL_SPECULAR, Vector4f(1,1,1,1).data());
glLightfv(GL_LIGHT0, GL_POSITION, Vector4f(-sqrt3,-sqrt3,sqrt3,0).data());
glLightfv(GL_LIGHT1, GL_AMBIENT, Vector4f(0,0,0,1).data());
glLightfv(GL_LIGHT1, GL_DIFFUSE, Vector4f(1,0.5,0.5,1).data());
glLightfv(GL_LIGHT1, GL_SPECULAR, Vector4f(1,1,1,1).data());
glLightfv(GL_LIGHT1, GL_POSITION, Vector4f(-sqrt3,sqrt3,-sqrt3,0).data());
glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, Vector4f(0.7, 0.7, 0.7, 1).data());
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, Vector4f(0.8, 0.75, 0.6, 1).data());
glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, Vector4f(1, 1, 1, 1).data());
glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, 64);
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glEnable(GL_LIGHT1);
sFancySpheres.draw();
glVertexPointer(3, GL_FLOAT, 0, mVertices[0].data());
glNormalPointer(GL_FLOAT, 0, mNormals[0].data());
glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_NORMAL_ARRAY);
glDrawArrays(GL_TRIANGLES, 0, mVertices.size());
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_NORMAL_ARRAY);
glDisable(GL_LIGHTING);
}
void RenderingWidget::animate()
{
m_alpha += double(m_timer.interval()) * 1e-3;
TimeLine::const_iterator hi = m_timeline.upper_bound(m_alpha);
TimeLine::const_iterator lo = hi;
--lo;
Frame currentFrame;
if(hi==m_timeline.end())
{
// end
currentFrame = lo->second;
stopAnimation();
}
else if(hi==m_timeline.begin())
{
// start
currentFrame = hi->second;
}
else
{
float s = (m_alpha - lo->first)/(hi->first - lo->first);
if (mLerpMode==LerpEulerAngles)
currentFrame = ::lerpFrame<EulerAngles<float> >(s, lo->second, hi->second);
else if (mLerpMode==LerpQuaternion)
currentFrame = ::lerpFrame<Eigen::Quaternionf>(s, lo->second, hi->second);
else
{
std::cerr << "Invalid rotation interpolation mode (abort)\n";
exit(2);
}
currentFrame.orientation.coeffs().normalize();
}
currentFrame.orientation = currentFrame.orientation.inverse();
currentFrame.position = - (currentFrame.orientation * currentFrame.position);
mCamera.setFrame(currentFrame);
updateGL();
}
void RenderingWidget::keyPressEvent(QKeyEvent * e)
{
switch(e->key())
{
case Qt::Key_Up:
mCamera.zoom(2);
break;
case Qt::Key_Down:
mCamera.zoom(-2);
break;
// add a frame
case Qt::Key_G:
grabFrame();
break;
// clear the time line
case Qt::Key_C:
m_timeline.clear();
break;
// move the camera to initial pos
case Qt::Key_R:
resetCamera();
break;
// start/stop the animation
case Qt::Key_A:
if (mAnimate)
{
stopAnimation();
}
else
{
m_alpha = 0;
connect(&m_timer, SIGNAL(timeout()), this, SLOT(animate()));
m_timer.start(1000/30);
mAnimate = true;
}
break;
default:
break;
}
updateGL();
}
void RenderingWidget::stopAnimation()
{
disconnect(&m_timer, SIGNAL(timeout()), this, SLOT(animate()));
m_timer.stop();
mAnimate = false;
m_alpha = 0;
}
void RenderingWidget::mousePressEvent(QMouseEvent* e)
{
mMouseCoords = Vector2i(e->pos().x(), e->pos().y());
bool fly = (mNavMode==NavFly) || (e->modifiers()&Qt::ControlModifier);
switch(e->button())
{
case Qt::LeftButton:
if(fly)
{
mCurrentTrackingMode = TM_LOCAL_ROTATE;
mTrackball.start(Trackball::Local);
}
else
{
mCurrentTrackingMode = TM_ROTATE_AROUND;
mTrackball.start(Trackball::Around);
}
mTrackball.track(mMouseCoords);
break;
case Qt::MidButton:
if(fly)
mCurrentTrackingMode = TM_FLY_Z;
else
mCurrentTrackingMode = TM_ZOOM;
break;
case Qt::RightButton:
mCurrentTrackingMode = TM_FLY_PAN;
break;
default:
break;
}
}
void RenderingWidget::mouseReleaseEvent(QMouseEvent*)
{
mCurrentTrackingMode = TM_NO_TRACK;
updateGL();
}
void RenderingWidget::mouseMoveEvent(QMouseEvent* e)
{
// tracking
if(mCurrentTrackingMode != TM_NO_TRACK)
{
float dx = float(e->x() - mMouseCoords.x()) / float(mCamera.vpWidth());
float dy = - float(e->y() - mMouseCoords.y()) / float(mCamera.vpHeight());
// speedup the transformations
if(e->modifiers() & Qt::ShiftModifier)
{
dx *= 10.;
dy *= 10.;
}
switch(mCurrentTrackingMode)
{
case TM_ROTATE_AROUND:
case TM_LOCAL_ROTATE:
if (mRotationMode==RotationStable)
{
// use the stable trackball implementation mapping
// the 2D coordinates to 3D points on a sphere.
mTrackball.track(Vector2i(e->pos().x(), e->pos().y()));
}
else
{
// standard approach mapping the x and y displacements as rotations
// around the camera's X and Y axes.
Quaternionf q = AngleAxisf( dx*M_PI, Vector3f::UnitY())
* AngleAxisf(-dy*M_PI, Vector3f::UnitX());
if (mCurrentTrackingMode==TM_LOCAL_ROTATE)
mCamera.localRotate(q);
else
mCamera.rotateAroundTarget(q);
}
break;
case TM_ZOOM :
mCamera.zoom(dy*100);
break;
case TM_FLY_Z :
mCamera.localTranslate(Vector3f(0, 0, -dy*200));
break;
case TM_FLY_PAN :
mCamera.localTranslate(Vector3f(dx*200, dy*200, 0));
break;
default:
break;
}
updateGL();
}
mMouseCoords = Vector2i(e->pos().x(), e->pos().y());
}
void RenderingWidget::paintGL()
{
glEnable(GL_DEPTH_TEST);
glDisable(GL_CULL_FACE);
glPolygonMode(GL_FRONT_AND_BACK,GL_FILL);
glDisable(GL_COLOR_MATERIAL);
glDisable(GL_BLEND);
glDisable(GL_ALPHA_TEST);
glDisable(GL_TEXTURE_1D);
glDisable(GL_TEXTURE_2D);
glDisable(GL_TEXTURE_3D);
// Clear buffers
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
mCamera.activateGL();
drawScene();
}
void RenderingWidget::initializeGL()
{
glClearColor(1., 1., 1., 0.);
glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER, 1);
glDepthMask(GL_TRUE);
glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);
mCamera.setPosition(Vector3f(-200, -200, -200));
mCamera.setTarget(Vector3f(0, 0, 0));
mInitFrame.orientation = mCamera.orientation().inverse();
mInitFrame.position = mCamera.viewMatrix().translation();
}
void RenderingWidget::resizeGL(int width, int height)
{
mCamera.setViewport(width,height);
}
void RenderingWidget::setNavMode(int m)
{
mNavMode = NavMode(m);
}
void RenderingWidget::setLerpMode(int m)
{
mLerpMode = LerpMode(m);
}
void RenderingWidget::setRotationMode(int m)
{
mRotationMode = RotationMode(m);
}
void RenderingWidget::resetCamera()
{
if (mAnimate)
stopAnimation();
m_timeline.clear();
Frame aux0 = mCamera.frame();
aux0.orientation = aux0.orientation.inverse();
aux0.position = mCamera.viewMatrix().translation();
m_timeline[0] = aux0;
Vector3f currentTarget = mCamera.target();
mCamera.setTarget(Vector3f::Zero());
// compute the rotation duration to move the camera to the target
Frame aux1 = mCamera.frame();
aux1.orientation = aux1.orientation.inverse();
aux1.position = mCamera.viewMatrix().translation();
float duration = aux0.orientation.angularDistance(aux1.orientation) * 0.9;
if (duration<0.1) duration = 0.1;
// put the camera at that time step:
aux1 = aux0.lerp(duration/2,mInitFrame);
// and make it look at the target again
aux1.orientation = aux1.orientation.inverse();
aux1.position = - (aux1.orientation * aux1.position);
mCamera.setFrame(aux1);
mCamera.setTarget(Vector3f::Zero());
// add this camera keyframe
aux1.orientation = aux1.orientation.inverse();
aux1.position = mCamera.viewMatrix().translation();
m_timeline[duration] = aux1;
m_timeline[2] = mInitFrame;
m_alpha = 0;
animate();
connect(&m_timer, SIGNAL(timeout()), this, SLOT(animate()));
m_timer.start(1000/30);
mAnimate = true;
}
QWidget* RenderingWidget::createNavigationControlWidget()
{
QWidget* panel = new QWidget();
QVBoxLayout* layout = new QVBoxLayout();
{
QPushButton* but = new QPushButton("reset");
but->setToolTip("move the camera to initial position (with animation)");
layout->addWidget(but);
connect(but, SIGNAL(clicked()), this, SLOT(resetCamera()));
}
{
// navigation mode
QGroupBox* box = new QGroupBox("navigation mode");
QVBoxLayout* boxLayout = new QVBoxLayout;
QButtonGroup* group = new QButtonGroup(panel);
QRadioButton* but;
but = new QRadioButton("turn around");
but->setToolTip("look around an object");
group->addButton(but, NavTurnAround);
boxLayout->addWidget(but);
but = new QRadioButton("fly");
but->setToolTip("free navigation like a spaceship\n(this mode can also be enabled pressing the \"shift\" key)");
group->addButton(but, NavFly);
boxLayout->addWidget(but);
group->button(mNavMode)->setChecked(true);
connect(group, SIGNAL(buttonClicked(int)), this, SLOT(setNavMode(int)));
box->setLayout(boxLayout);
layout->addWidget(box);
}
{
// track ball, rotation mode
QGroupBox* box = new QGroupBox("rotation mode");
QVBoxLayout* boxLayout = new QVBoxLayout;
QButtonGroup* group = new QButtonGroup(panel);
QRadioButton* but;
but = new QRadioButton("stable trackball");
group->addButton(but, RotationStable);
boxLayout->addWidget(but);
but->setToolTip("use the stable trackball implementation mapping\nthe 2D coordinates to 3D points on a sphere");
but = new QRadioButton("standard rotation");
group->addButton(but, RotationStandard);
boxLayout->addWidget(but);
but->setToolTip("standard approach mapping the x and y displacements\nas rotations around the camera's X and Y axes");
group->button(mRotationMode)->setChecked(true);
connect(group, SIGNAL(buttonClicked(int)), this, SLOT(setRotationMode(int)));
box->setLayout(boxLayout);
layout->addWidget(box);
}
{
// interpolation mode
QGroupBox* box = new QGroupBox("spherical interpolation");
QVBoxLayout* boxLayout = new QVBoxLayout;
QButtonGroup* group = new QButtonGroup(panel);
QRadioButton* but;
but = new QRadioButton("quaternion slerp");
group->addButton(but, LerpQuaternion);
boxLayout->addWidget(but);
but->setToolTip("use quaternion spherical interpolation\nto interpolate orientations");
but = new QRadioButton("euler angles");
group->addButton(but, LerpEulerAngles);
boxLayout->addWidget(but);
but->setToolTip("use Euler angles to interpolate orientations");
group->button(mNavMode)->setChecked(true);
connect(group, SIGNAL(buttonClicked(int)), this, SLOT(setLerpMode(int)));
box->setLayout(boxLayout);
layout->addWidget(box);
}
layout->addItem(new QSpacerItem(0,0,QSizePolicy::Minimum,QSizePolicy::Expanding));
panel->setLayout(layout);
return panel;
}
QuaternionDemo::QuaternionDemo()
{
mRenderingWidget = new RenderingWidget();
setCentralWidget(mRenderingWidget);
QDockWidget* panel = new QDockWidget("navigation", this);
panel->setAllowedAreas((QFlags<Qt::DockWidgetArea>)(Qt::RightDockWidgetArea | Qt::LeftDockWidgetArea));
addDockWidget(Qt::RightDockWidgetArea, panel);
panel->setWidget(mRenderingWidget->createNavigationControlWidget());
}
int main(int argc, char *argv[])
{
std::cout << "Navigation:\n";
std::cout << " left button: rotate around the target\n";
std::cout << " middle button: zoom\n";
std::cout << " left button + ctrl quake rotate (rotate around camera position)\n";
std::cout << " middle button + ctrl walk (progress along camera's z direction)\n";
std::cout << " left button: pan (translate in the XY camera's plane)\n\n";
std::cout << "R : move the camera to initial position\n";
std::cout << "A : start/stop animation\n";
std::cout << "C : clear the animation\n";
std::cout << "G : add a key frame\n";
QApplication app(argc, argv);
QuaternionDemo demo;
demo.resize(600,500);
demo.show();
return app.exec();
}
#include "quaternion_demo.moc"

View File

@@ -0,0 +1,114 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_QUATERNION_DEMO_H
#define EIGEN_QUATERNION_DEMO_H
#include "gpuhelper.h"
#include "camera.h"
#include "trackball.h"
#include <map>
#include <QTimer>
#include <QtGui/QApplication>
#include <QtOpenGL/QGLWidget>
#include <QtGui/QMainWindow>
class RenderingWidget : public QGLWidget
{
Q_OBJECT
typedef std::map<float,Frame> TimeLine;
TimeLine m_timeline;
Frame lerpFrame(float t);
Frame mInitFrame;
bool mAnimate;
float m_alpha;
enum TrackMode {
TM_NO_TRACK=0, TM_ROTATE_AROUND, TM_ZOOM,
TM_LOCAL_ROTATE, TM_FLY_Z, TM_FLY_PAN
};
enum NavMode {
NavTurnAround,
NavFly
};
enum LerpMode {
LerpQuaternion,
LerpEulerAngles
};
enum RotationMode {
RotationStable,
RotationStandard
};
Camera mCamera;
TrackMode mCurrentTrackingMode;
NavMode mNavMode;
LerpMode mLerpMode;
RotationMode mRotationMode;
Vector2i mMouseCoords;
Trackball mTrackball;
QTimer m_timer;
void setupCamera();
std::vector<Vector3f> mVertices;
std::vector<Vector3f> mNormals;
std::vector<int> mIndices;
protected slots:
virtual void animate(void);
virtual void drawScene(void);
virtual void grabFrame(void);
virtual void stopAnimation();
virtual void setNavMode(int);
virtual void setLerpMode(int);
virtual void setRotationMode(int);
virtual void resetCamera();
protected:
virtual void initializeGL();
virtual void resizeGL(int width, int height);
virtual void paintGL();
//--------------------------------------------------------------------------------
virtual void mousePressEvent(QMouseEvent * e);
virtual void mouseReleaseEvent(QMouseEvent * e);
virtual void mouseMoveEvent(QMouseEvent * e);
virtual void keyPressEvent(QKeyEvent * e);
//--------------------------------------------------------------------------------
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
RenderingWidget();
~RenderingWidget() { }
QWidget* createNavigationControlWidget();
};
class QuaternionDemo : public QMainWindow
{
Q_OBJECT
public:
QuaternionDemo();
protected:
RenderingWidget* mRenderingWidget;
};
#endif // EIGEN_QUATERNION_DEMO_H

View File

@@ -0,0 +1,59 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "trackball.h"
#include "camera.h"
using namespace Eigen;
void Trackball::track(const Vector2i& point2D)
{
if (mpCamera==0)
return;
Vector3f newPoint3D;
bool newPointOk = mapToSphere(point2D, newPoint3D);
if (mLastPointOk && newPointOk)
{
Vector3f axis = mLastPoint3D.cross(newPoint3D).normalized();
float cos_angle = mLastPoint3D.dot(newPoint3D);
if ( std::abs(cos_angle) < 1.0 )
{
float angle = 2. * acos(cos_angle);
if (mMode==Around)
mpCamera->rotateAroundTarget(Quaternionf(AngleAxisf(angle, axis)));
else
mpCamera->localRotate(Quaternionf(AngleAxisf(-angle, axis)));
}
}
mLastPoint3D = newPoint3D;
mLastPointOk = newPointOk;
}
bool Trackball::mapToSphere(const Vector2i& p2, Vector3f& v3)
{
if ((p2.x() >= 0) && (p2.x() <= int(mpCamera->vpWidth())) &&
(p2.y() >= 0) && (p2.y() <= int(mpCamera->vpHeight())) )
{
double x = (double)(p2.x() - 0.5*mpCamera->vpWidth()) / (double)mpCamera->vpWidth();
double y = (double)(0.5*mpCamera->vpHeight() - p2.y()) / (double)mpCamera->vpHeight();
double sinx = sin(M_PI * x * 0.5);
double siny = sin(M_PI * y * 0.5);
double sinx2siny2 = sinx * sinx + siny * siny;
v3.x() = sinx;
v3.y() = siny;
v3.z() = sinx2siny2 < 1.0 ? sqrt(1.0 - sinx2siny2) : 0.0;
return true;
}
else
return false;
}

View File

@@ -0,0 +1,42 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_TRACKBALL_H
#define EIGEN_TRACKBALL_H
#include <Eigen/Geometry>
class Camera;
class Trackball
{
public:
enum Mode {Around, Local};
Trackball() : mpCamera(0) {}
void start(Mode m = Around) { mMode = m; mLastPointOk = false; }
void setCamera(Camera* pCam) { mpCamera = pCam; }
void track(const Eigen::Vector2i& newPoint2D);
protected:
bool mapToSphere( const Eigen::Vector2i& p2, Eigen::Vector3f& v3);
Camera* mpCamera;
Eigen::Vector3f mLastPoint3D;
Mode mMode;
bool mLastPointOk;
};
#endif // EIGEN_TRACKBALL_H