Disabled external gits

This commit is contained in:
2022-04-07 18:46:57 +02:00
parent 88cb3426ad
commit 15e7120d6d
5316 changed files with 4563444 additions and 6 deletions

View File

@@ -0,0 +1 @@
# Intentionally empty

View File

@@ -0,0 +1,214 @@
# -*- coding: utf-8 -*-
# This file is part of Eigen, a lightweight C++ template library
# for linear algebra.
#
# Copyright (C) 2009 Benjamin Schindler <bschindler@inf.ethz.ch>
#
# This Source Code Form is subject to the terms of the Mozilla Public
# License, v. 2.0. If a copy of the MPL was not distributed with this
# file, You can obtain one at http://mozilla.org/MPL/2.0/.
# Pretty printers for Eigen::Matrix
# This is still pretty basic as the python extension to gdb is still pretty basic.
# It cannot handle complex eigen types and it doesn't support any of the other eigen types
# Such as quaternion or some other type.
# This code supports fixed size as well as dynamic size matrices
# To use it:
#
# * Create a directory and put the file as well as an empty __init__.py in
# that directory.
# * Create a ~/.gdbinit file, that contains the following:
# python
# import sys
# sys.path.insert(0, '/path/to/eigen/printer/directory')
# from printers import register_eigen_printers
# register_eigen_printers (None)
# end
import gdb
import re
import itertools
class EigenMatrixPrinter:
"Print Eigen Matrix or Array of some kind"
def __init__(self, variety, val):
"Extract all the necessary information"
# Save the variety (presumably "Matrix" or "Array") for later usage
self.variety = variety
# The gdb extension does not support value template arguments - need to extract them by hand
type = val.type
if type.code == gdb.TYPE_CODE_REF:
type = type.target()
self.type = type.unqualified().strip_typedefs()
tag = self.type.tag
regex = re.compile('\<.*\>')
m = regex.findall(tag)[0][1:-1]
template_params = m.split(',')
template_params = [x.replace(" ", "") for x in template_params]
if template_params[1] == '-0x00000000000000001' or template_params[1] == '-0x000000001' or template_params[1] == '-1':
self.rows = val['m_storage']['m_rows']
else:
self.rows = int(template_params[1])
if template_params[2] == '-0x00000000000000001' or template_params[2] == '-0x000000001' or template_params[2] == '-1':
self.cols = val['m_storage']['m_cols']
else:
self.cols = int(template_params[2])
self.options = 0 # default value
if len(template_params) > 3:
self.options = template_params[3];
self.rowMajor = (int(self.options) & 0x1)
self.innerType = self.type.template_argument(0)
self.val = val
# Fixed size matrices have a struct as their storage, so we need to walk through this
self.data = self.val['m_storage']['m_data']
if self.data.type.code == gdb.TYPE_CODE_STRUCT:
self.data = self.data['array']
self.data = self.data.cast(self.innerType.pointer())
class _iterator:
def __init__ (self, rows, cols, dataPtr, rowMajor):
self.rows = rows
self.cols = cols
self.dataPtr = dataPtr
self.currentRow = 0
self.currentCol = 0
self.rowMajor = rowMajor
def __iter__ (self):
return self
def next(self):
return self.__next__() # Python 2.x compatibility
def __next__(self):
row = self.currentRow
col = self.currentCol
if self.rowMajor == 0:
if self.currentCol >= self.cols:
raise StopIteration
self.currentRow = self.currentRow + 1
if self.currentRow >= self.rows:
self.currentRow = 0
self.currentCol = self.currentCol + 1
else:
if self.currentRow >= self.rows:
raise StopIteration
self.currentCol = self.currentCol + 1
if self.currentCol >= self.cols:
self.currentCol = 0
self.currentRow = self.currentRow + 1
item = self.dataPtr.dereference()
self.dataPtr = self.dataPtr + 1
if (self.cols == 1): #if it's a column vector
return ('[%d]' % (row,), item)
elif (self.rows == 1): #if it's a row vector
return ('[%d]' % (col,), item)
return ('[%d,%d]' % (row, col), item)
def children(self):
return self._iterator(self.rows, self.cols, self.data, self.rowMajor)
def to_string(self):
return "Eigen::%s<%s,%d,%d,%s> (data ptr: %s)" % (self.variety, self.innerType, self.rows, self.cols, "RowMajor" if self.rowMajor else "ColMajor", self.data)
class EigenQuaternionPrinter:
"Print an Eigen Quaternion"
def __init__(self, val):
"Extract all the necessary information"
# The gdb extension does not support value template arguments - need to extract them by hand
type = val.type
if type.code == gdb.TYPE_CODE_REF:
type = type.target()
self.type = type.unqualified().strip_typedefs()
self.innerType = self.type.template_argument(0)
self.val = val
# Quaternions have a struct as their storage, so we need to walk through this
self.data = self.val['m_coeffs']['m_storage']['m_data']['array']
self.data = self.data.cast(self.innerType.pointer())
class _iterator:
def __init__ (self, dataPtr):
self.dataPtr = dataPtr
self.currentElement = 0
self.elementNames = ['x', 'y', 'z', 'w']
def __iter__ (self):
return self
def next(self):
return self.__next__() # Python 2.x compatibility
def __next__(self):
element = self.currentElement
if self.currentElement >= 4: #there are 4 elements in a quanternion
raise StopIteration
self.currentElement = self.currentElement + 1
item = self.dataPtr.dereference()
self.dataPtr = self.dataPtr + 1
return ('[%s]' % (self.elementNames[element],), item)
def children(self):
return self._iterator(self.data)
def to_string(self):
return "Eigen::Quaternion<%s> (data ptr: %s)" % (self.innerType, self.data)
def build_eigen_dictionary ():
pretty_printers_dict[re.compile('^Eigen::Quaternion<.*>$')] = lambda val: EigenQuaternionPrinter(val)
pretty_printers_dict[re.compile('^Eigen::Matrix<.*>$')] = lambda val: EigenMatrixPrinter("Matrix", val)
pretty_printers_dict[re.compile('^Eigen::Array<.*>$')] = lambda val: EigenMatrixPrinter("Array", val)
def register_eigen_printers(obj):
"Register eigen pretty-printers with objfile Obj"
if obj == None:
obj = gdb
obj.pretty_printers.append(lookup_function)
def lookup_function(val):
"Look-up and return a pretty-printer that can print va."
type = val.type
if type.code == gdb.TYPE_CODE_REF:
type = type.target()
type = type.unqualified().strip_typedefs()
typename = type.tag
if typename == None:
return None
for function in pretty_printers_dict:
if function.search(typename):
return pretty_printers_dict[function](val)
return None
pretty_printers_dict = {}
build_eigen_dictionary ()

View File

@@ -0,0 +1,235 @@
<?xml version="1.0" encoding="utf-8"?>
<AutoVisualizer xmlns="http://schemas.microsoft.com/vstudio/debugger/natvis/2010">
<!-- Fixed x Fixed Matrix -->
<Type Name="Eigen::Matrix&lt;*,*,*,*,*,*&gt;">
<AlternativeType Name="Eigen::Array&lt;*,-1,-1,*,*,*&gt;"/>
<DisplayString>[{$T2}, {$T3}] (fixed matrix)</DisplayString>
<Expand>
<ArrayItems Condition="Flags%2"> <!-- row major layout -->
<Rank>2</Rank>
<Size>$i==0 ? $T2 : $T3</Size>
<ValuePointer>m_storage.m_data.array</ValuePointer>
</ArrayItems>
<ArrayItems Condition="!(Flags%2)"> <!-- column major layout -->
<Direction>Backward</Direction>
<Rank>2</Rank>
<Size>$i==0 ? $T2 : $T3</Size>
<ValuePointer>m_storage.m_data.array</ValuePointer>
</ArrayItems>
</Expand>
</Type>
<!-- 2 x 2 Matrix -->
<Type Name="Eigen::Matrix&lt;*,2,2,*,*,*&gt;">
<AlternativeType Name="Eigen::Array&lt;*,2,2,*,*,*&gt;"/>
<DisplayString>[2, 2] (fixed matrix)</DisplayString>
<Expand>
<Synthetic Name="[row 0]" Condition="Flags%2">
<DisplayString>({m_storage.m_data.array[0]}, {m_storage.m_data.array[1]})</DisplayString>
</Synthetic>
<Synthetic Name="[row 0]" Condition="!(Flags%2)">
<DisplayString>({m_storage.m_data.array[0]}, {m_storage.m_data.array[2]})</DisplayString>
</Synthetic>
<Synthetic Name="[row 1]" Condition="Flags%2">
<DisplayString>({m_storage.m_data.array[2]}, {m_storage.m_data.array[3]})</DisplayString>
</Synthetic>
<Synthetic Name="[row 1]" Condition="!(Flags%2)">
<DisplayString>({m_storage.m_data.array[1]}, {m_storage.m_data.array[3]})</DisplayString>
</Synthetic>
</Expand>
</Type>
<!-- 3 x 3 Matrix -->
<Type Name="Eigen::Matrix&lt;*,3,3,*,*,*&gt;">
<AlternativeType Name="Eigen::Array&lt;*,3,3,*,*,*&gt;"/>
<DisplayString>[3, 3] (fixed matrix)</DisplayString>
<Expand>
<Synthetic Name="[row 0]" Condition="Flags%2">
<DisplayString>({m_storage.m_data.array[0]}, {m_storage.m_data.array[1]}, {m_storage.m_data.array[2]})</DisplayString>
</Synthetic>
<Synthetic Name="[row 0]" Condition="!(Flags%2)">
<DisplayString>({m_storage.m_data.array[0]}, {m_storage.m_data.array[3]}, {m_storage.m_data.array[6]})</DisplayString>
</Synthetic>
<Synthetic Name="[row 1]" Condition="Flags%2">
<DisplayString>({m_storage.m_data.array[3]}, {m_storage.m_data.array[4]}, {m_storage.m_data.array[5]})</DisplayString>
</Synthetic>
<Synthetic Name="[row 1]" Condition="!(Flags%2)">
<DisplayString>({m_storage.m_data.array[1]}, {m_storage.m_data.array[4]}, {m_storage.m_data.array[7]})</DisplayString>
</Synthetic>
<Synthetic Name="[row 2]" Condition="Flags%2">
<DisplayString>({m_storage.m_data.array[6]}, {m_storage.m_data.array[7]}, {m_storage.m_data.array[8]})</DisplayString>
</Synthetic>
<Synthetic Name="[row 2]" Condition="!(Flags%2)">
<DisplayString>({m_storage.m_data.array[2]}, {m_storage.m_data.array[5]}, {m_storage.m_data.array[8]})</DisplayString>
</Synthetic>
</Expand>
</Type>
<!-- 4 x 4 Matrix -->
<Type Name="Eigen::Matrix&lt;*,4,4,*,*,*&gt;">
<AlternativeType Name="Eigen::Array&lt;*,4,4,*,*,*&gt;"/>
<DisplayString>[4, 4] (fixed matrix)</DisplayString>
<Expand>
<Synthetic Name="[row 0]" Condition="Flags%2">
<DisplayString>({m_storage.m_data.array[0]}, {m_storage.m_data.array[1]}, {m_storage.m_data.array[2]}, {m_storage.m_data.array[3]})</DisplayString>
</Synthetic>
<Synthetic Name="[row 0]" Condition="!(Flags%2)">
<DisplayString>({m_storage.m_data.array[0]}, {m_storage.m_data.array[4]}, {m_storage.m_data.array[8]}, {m_storage.m_data.array[12]})</DisplayString>
</Synthetic>
<Synthetic Name="[row 1]" Condition="Flags%2">
<DisplayString>({m_storage.m_data.array[4]}, {m_storage.m_data.array[5]}, {m_storage.m_data.array[6]}, {m_storage.m_data.array[7]})</DisplayString>
</Synthetic>
<Synthetic Name="[row 1]" Condition="!(Flags%2)">
<DisplayString>({m_storage.m_data.array[1]}, {m_storage.m_data.array[5]}, {m_storage.m_data.array[9]}, {m_storage.m_data.array[13]})</DisplayString>
</Synthetic>
<Synthetic Name="[row 2]" Condition="Flags%2">
<DisplayString>({m_storage.m_data.array[8]}, {m_storage.m_data.array[9]}, {m_storage.m_data.array[10]}, {m_storage.m_data.array[11]})</DisplayString>
</Synthetic>
<Synthetic Name="[row 2]" Condition="!(Flags%2)">
<DisplayString>({m_storage.m_data.array[2]}, {m_storage.m_data.array[6]}, {m_storage.m_data.array[10]}, {m_storage.m_data.array[14]})</DisplayString>
</Synthetic>
<Synthetic Name="[row 3]" Condition="Flags%2">
<DisplayString>({m_storage.m_data.array[12]}, {m_storage.m_data.array[13]}, {m_storage.m_data.array[14]}, {m_storage.m_data.array[15]})</DisplayString>
</Synthetic>
<Synthetic Name="[row 3]" Condition="!(Flags%2)">
<DisplayString>({m_storage.m_data.array[3]}, {m_storage.m_data.array[7]}, {m_storage.m_data.array[11]}, {m_storage.m_data.array[15]})</DisplayString>
</Synthetic>
</Expand>
</Type>
<!-- Dynamic x Dynamic Matrix -->
<Type Name="Eigen::Matrix&lt;*,-1,-1,*,*,*&gt;">
<AlternativeType Name="Eigen::Array&lt;*,-1,-1,*,*,*&gt;"/>
<DisplayString Condition="m_storage.m_data == 0">empty</DisplayString>
<DisplayString Condition="m_storage.m_data != 0">[{m_storage.m_rows}, {m_storage.m_cols}] (dynamic matrix)</DisplayString>
<Expand>
<ArrayItems Condition="Flags%2"> <!-- row major layout -->
<Rank>2</Rank>
<Size>$i==0 ? m_storage.m_rows : m_storage.m_cols</Size>
<ValuePointer>m_storage.m_data</ValuePointer>
</ArrayItems>
<ArrayItems Condition="!(Flags%2)"> <!-- column major layout -->
<Direction>Backward</Direction>
<Rank>2</Rank>
<Size>$i==0 ? m_storage.m_rows : m_storage.m_cols</Size>
<ValuePointer>m_storage.m_data</ValuePointer>
</ArrayItems>
</Expand>
</Type>
<!-- Fixed x Dynamic Matrix -->
<Type Name="Eigen::Matrix&lt;*,*,-1,*,*,*&gt;">
<AlternativeType Name="Eigen::Array&lt;*,*,-1,*,*,*&gt;"/>
<DisplayString Condition="m_storage.m_data == 0">empty</DisplayString>
<DisplayString Condition="m_storage.m_data != 0">[{$T2}, {m_storage.m_cols}] (dynamic column matrix)</DisplayString>
<Expand>
<ArrayItems Condition="Flags%2"> <!-- row major layout -->
<Rank>2</Rank>
<Size>$i==0 ? $T2 : m_storage.m_cols</Size>
<ValuePointer>m_storage.m_data</ValuePointer>
</ArrayItems>
<ArrayItems Condition="!(Flags%2)"> <!-- column major layout -->
<Direction>Backward</Direction>
<Rank>2</Rank>
<Size>$i==0 ? $T2 : m_storage.m_cols</Size>
<ValuePointer>m_storage.m_data</ValuePointer>
</ArrayItems>
</Expand>
</Type>
<!-- Dynamic x Fixed Matrix -->
<Type Name="Eigen::Matrix&lt;*,-1,*,*,*,*&gt;">
<AlternativeType Name="Eigen::Array&lt;*,-1,*,*,*,*&gt;"/>
<DisplayString Condition="m_storage.m_data == 0">empty</DisplayString>
<DisplayString Condition="m_storage.m_data != 0">[{m_storage.m_rows}, {$T2}] (dynamic row matrix)</DisplayString>
<Expand>
<ArrayItems Condition="Flags%2"> <!-- row major layout -->
<Rank>2</Rank>
<Size>$i==0 ? m_storage.m_rows : $T2</Size>
<ValuePointer>m_storage.m_data</ValuePointer>
</ArrayItems>
<ArrayItems Condition="!(Flags%2)"> <!-- column major layout -->
<Direction>Backward</Direction>
<Rank>2</Rank>
<Size>$i==0 ? m_storage.m_rows : $T2</Size>
<ValuePointer>m_storage.m_data</ValuePointer>
</ArrayItems>
</Expand>
</Type>
<!-- Dynamic Column Vector -->
<Type Name="Eigen::Matrix&lt;*,1,-1,*,*,*&gt;">
<AlternativeType Name="Eigen::Array&lt;*,1,-1,*,*,*&gt;"/>
<DisplayString Condition="m_storage.m_data == 0">empty</DisplayString>
<DisplayString Condition="m_storage.m_data != 0">[{m_storage.m_cols}] (dynamic column vector)</DisplayString>
<Expand>
<Item Name="[size]">m_storage.m_cols</Item>
<ArrayItems>
<Size>m_storage.m_cols</Size>
<ValuePointer>m_storage.m_data</ValuePointer>
</ArrayItems>
</Expand>
</Type>
<!-- Dynamic Row Vector -->
<Type Name="Eigen::Matrix&lt;*,-1,1,*,*,*&gt;">
<AlternativeType Name="Eigen::Array&lt;*,-1,1,*,*,*&gt;"/>
<DisplayString Condition="m_storage.m_data == 0">empty</DisplayString>
<DisplayString Condition="m_storage.m_data != 0">[{m_storage.m_rows}] (dynamic row vector)</DisplayString>
<Expand>
<Item Name="[size]">m_storage.m_rows</Item>
<ArrayItems>
<Size>m_storage.m_rows</Size>
<ValuePointer>m_storage.m_data</ValuePointer>
</ArrayItems>
</Expand>
</Type>
<!-- Fixed Vector -->
<Type Name="Eigen::Matrix&lt;*,1,1,*,*,*&gt;">
<AlternativeType Name="Eigen::Array&lt;*,1,1,*,*,*&gt;"/>
<DisplayString>[1] ({m_storage.m_data.array[0]})</DisplayString>
<Expand>
<Item Name="[x]">m_storage.m_data.array[0]</Item>
</Expand>
</Type>
<Type Name="Eigen::Matrix&lt;*,2,1,*,*,*&gt;">
<AlternativeType Name="Eigen::Matrix&lt;*,1,2,*,*,*&gt;"/>
<AlternativeType Name="Eigen::Array&lt;*,2,1,*,*,*&gt;"/>
<AlternativeType Name="Eigen::Array&lt;*,1,2,*,*,*&gt;"/>
<DisplayString>[2] ({m_storage.m_data.array[0]}, {m_storage.m_data.array[1]})</DisplayString>
<Expand>
<Item Name="[x]">m_storage.m_data.array[0]</Item>
<Item Name="[y]">m_storage.m_data.array[1]</Item>
</Expand>
</Type>
<Type Name="Eigen::Matrix&lt;*,3,1,*,*,*&gt;">
<AlternativeType Name="Eigen::Matrix&lt;*,1,3,*,*,*&gt;"/>
<AlternativeType Name="Eigen::Array&lt;*,3,1,*,*,*&gt;"/>
<AlternativeType Name="Eigen::Array&lt;*,1,3,*,*,*&gt;"/>
<DisplayString>[3] ({m_storage.m_data.array[0]}, {m_storage.m_data.array[1]}, {m_storage.m_data.array[2]})</DisplayString>
<Expand>
<Item Name="[x]">m_storage.m_data.array[0]</Item>
<Item Name="[y]">m_storage.m_data.array[1]</Item>
<Item Name="[z]">m_storage.m_data.array[2]</Item>
</Expand>
</Type>
<Type Name="Eigen::Matrix&lt;*,4,1,*,*,*&gt;">
<AlternativeType Name="Eigen::Matrix&lt;*,1,4,*,*,*&gt;"/>
<AlternativeType Name="Eigen::Array&lt;*,4,1,*,*,*&gt;"/>
<AlternativeType Name="Eigen::Array&lt;*,1,4,*,*,*&gt;"/>
<DisplayString>[4] ({m_storage.m_data.array[0]}, {m_storage.m_data.array[1]}, {m_storage.m_data.array[2]}, {m_storage.m_data.array[3]})</DisplayString>
<Expand>
<Item Name="[x]">m_storage.m_data.array[0]</Item>
<Item Name="[y]">m_storage.m_data.array[1]</Item>
<Item Name="[z]">m_storage.m_data.array[2]</Item>
<Item Name="[w]">m_storage.m_data.array[3]</Item>
</Expand>
</Type>
</AutoVisualizer>

View File

@@ -0,0 +1,295 @@
; ***************************************************************
; * Eigen Visualizer
; *
; * Author: Hauke Heibel <hauke.heibel@gmail.com>
; *
; * Support the enhanced debugging of the following Eigen
; * types (*: any, +:fixed dimension) :
; *
; * - Eigen::Matrix<*,4,1,*,*,*> and Eigen::Matrix<*,1,4,*,*,*>
; * - Eigen::Matrix<*,3,1,*,*,*> and Eigen::Matrix<*,1,3,*,*,*>
; * - Eigen::Matrix<*,2,1,*,*,*> and Eigen::Matrix<*,1,2,*,*,*>
; * - Eigen::Matrix<*,-1,-1,*,*,*>
; * - Eigen::Matrix<*,+,-1,*,*,*>
; * - Eigen::Matrix<*,-1,+,*,*,*>
; * - Eigen::Matrix<*,+,+,*,*,*>
; *
; * Matrices are displayed properly independantly of the memory
; * alignment (RowMajor vs. ColMajor).
; *
; * This file is distributed WITHOUT ANY WARRANTY. Please ensure
; * that your original autoexp.dat file is copied to a safe
; * place before proceeding with its modification.
; ***************************************************************
[Visualizer]
; Fixed size 4-vectors
Eigen::Matrix<*,4,1,*,*,*>|Eigen::Matrix<*,1,4,*,*,*>{
children
(
#(
[internals]: [$c,!],
x : ($c.m_storage.m_data.array)[0],
y : ($c.m_storage.m_data.array)[1],
z : ($c.m_storage.m_data.array)[2],
w : ($c.m_storage.m_data.array)[3]
)
)
preview
(
#(
"[",
4,
"](",
#array(expr: $e.m_storage.m_data.array[$i], size: 4),
")"
)
)
}
; Fixed size 3-vectors
Eigen::Matrix<*,3,1,*,*,*>|Eigen::Matrix<*,1,3,*,*,*>{
children
(
#(
[internals]: [$c,!],
x : ($c.m_storage.m_data.array)[0],
y : ($c.m_storage.m_data.array)[1],
z : ($c.m_storage.m_data.array)[2]
)
)
preview
(
#(
"[",
3,
"](",
#array(expr: $e.m_storage.m_data.array[$i], size: 3),
")"
)
)
}
; Fixed size 2-vectors
Eigen::Matrix<*,2,1,*,*,*>|Eigen::Matrix<*,1,2,*,*,*>{
children
(
#(
[internals]: [$c,!],
x : ($c.m_storage.m_data.array)[0],
y : ($c.m_storage.m_data.array)[1]
)
)
preview
(
#(
"[",
2,
"](",
#array(expr: $e.m_storage.m_data.array[$i], size: 2),
")"
)
)
}
; Fixed size 1-vectors
Eigen::Matrix<*,1,1,*,*,*>|Eigen::Matrix<*,1,1,*,*,*>{
children
(
#(
[internals]: [$c,!],
x : ($c.m_storage.m_data.array)[0]
)
)
preview
(
#(
"[",
1,
"](",
#array(expr: $e.m_storage.m_data.array[$i], size: 1),
")"
)
)
}
; Dynamic matrices (ColMajor and RowMajor support)
Eigen::Matrix<*,-1,-1,*,*,*>{
children
(
#(
[internals]: [$c,!],
rows: $c.m_storage.m_rows,
cols: $c.m_storage.m_cols,
; Check for RowMajorBit
#if ($c.Flags & 0x1) (
#array(
rank: 2,
base: 0,
expr: ($c.m_storage.m_data)[($i % $c.m_storage.m_rows)*$c.m_storage.m_cols + (($i- $i % $c.m_storage.m_rows)/$c.m_storage.m_rows)],
size: ($r==1)*$c.m_storage.m_rows+($r==0)*$c.m_storage.m_cols
)
) #else (
#array(
rank: 2,
base: 0,
expr: ($c.m_storage.m_data)[$i],
size: ($r==1)*$c.m_storage.m_rows+($r==0)*$c.m_storage.m_cols
)
)
)
)
preview
(
#(
"[",
$c.m_storage.m_rows,
",",
$c.m_storage.m_cols,
"](",
#array(
expr : [($c.m_storage.m_data)[$i],g],
size : $c.m_storage.m_rows*$c.m_storage.m_cols
),
")"
)
)
}
; Fixed rows, dynamic columns matrix (ColMajor and RowMajor support)
Eigen::Matrix<*,*,-1,*,*,*>{
children
(
#(
[internals]: [$c,!],
rows: $c.RowsAtCompileTime,
cols: $c.m_storage.m_cols,
; Check for RowMajorBit
#if ($c.Flags & 0x1) (
#array(
rank: 2,
base: 0,
expr: ($c.m_storage.m_data)[($i % $c.RowsAtCompileTime)*$c.m_storage.m_cols + (($i- $i % $c.RowsAtCompileTime)/$c.RowsAtCompileTime)],
size: ($r==1)*$c.RowsAtCompileTime+($r==0)*$c.m_storage.m_cols
)
) #else (
#array(
rank: 2,
base: 0,
expr: ($c.m_storage.m_data)[$i],
size: ($r==1)*$c.RowsAtCompileTime+($r==0)*$c.m_storage.m_cols
)
)
)
)
preview
(
#(
"[",
$c.RowsAtCompileTime,
",",
$c.m_storage.m_cols,
"](",
#array(
expr : [($c.m_storage.m_data)[$i],g],
size : $c.RowsAtCompileTime*$c.m_storage.m_cols
),
")"
)
)
}
; Dynamic rows, fixed columns matrix (ColMajor and RowMajor support)
Eigen::Matrix<*,-1,*,*,*,*>{
children
(
#(
[internals]: [$c,!],
rows: $c.m_storage.m_rows,
cols: $c.ColsAtCompileTime,
; Check for RowMajorBit
#if ($c.Flags & 0x1) (
#array(
rank: 2,
base: 0,
expr: ($c.m_storage.m_data)[($i % $c.m_storage.m_rows)*$c.ColsAtCompileTime + (($i- $i % $c.m_storage.m_rows)/$c.m_storage.m_rows)],
size: ($r==1)*$c.m_storage.m_rows+($r==0)*$c.ColsAtCompileTime
)
) #else (
#array(
rank: 2,
base: 0,
expr: ($c.m_storage.m_data)[$i],
size: ($r==1)*$c.m_storage.m_rows+($r==0)*$c.ColsAtCompileTime
)
)
)
)
preview
(
#(
"[",
$c.m_storage.m_rows,
",",
$c.ColsAtCompileTime,
"](",
#array(
expr : [($c.m_storage.m_data)[$i],g],
size : $c.m_storage.m_rows*$c.ColsAtCompileTime
),
")"
)
)
}
; Fixed size matrix (ColMajor and RowMajor support)
Eigen::Matrix<*,*,*,*,*,*>{
children
(
#(
[internals]: [$c,!],
rows: $c.RowsAtCompileTime,
cols: $c.ColsAtCompileTime,
; Check for RowMajorBit
#if ($c.Flags & 0x1) (
#array(
rank: 2,
base: 0,
expr: ($c.m_storage.m_data.array)[($i % $c.RowsAtCompileTime)*$c.ColsAtCompileTime + (($i- $i % $c.RowsAtCompileTime)/$c.RowsAtCompileTime)],
size: ($r==1)*$c.RowsAtCompileTime+($r==0)*$c.ColsAtCompileTime
)
) #else (
#array(
rank: 2,
base: 0,
expr: ($c.m_storage.m_data.array)[$i],
size: ($r==1)*$c.RowsAtCompileTime+($r==0)*$c.ColsAtCompileTime
)
)
)
)
preview
(
#(
"[",
$c.RowsAtCompileTime,
",",
$c.ColsAtCompileTime,
"](",
#array(
expr : [($c.m_storage.m_data.array)[$i],g],
size : $c.RowsAtCompileTime*$c.ColsAtCompileTime
),
")"
)
)
}