Disabled external gits
This commit is contained in:
97
cs440-acg/ext/eigen/blas/BandTriangularSolver.h
Normal file
97
cs440-acg/ext/eigen/blas/BandTriangularSolver.h
Normal file
@@ -0,0 +1,97 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_BAND_TRIANGULARSOLVER_H
|
||||
#define EIGEN_BAND_TRIANGULARSOLVER_H
|
||||
|
||||
namespace internal {
|
||||
|
||||
/* \internal
|
||||
* Solve Ax=b with A a band triangular matrix
|
||||
* TODO: extend it to matrices for x abd b */
|
||||
template<typename Index, int Mode, typename LhsScalar, bool ConjLhs, typename RhsScalar, int StorageOrder>
|
||||
struct band_solve_triangular_selector;
|
||||
|
||||
|
||||
template<typename Index, int Mode, typename LhsScalar, bool ConjLhs, typename RhsScalar>
|
||||
struct band_solve_triangular_selector<Index,Mode,LhsScalar,ConjLhs,RhsScalar,RowMajor>
|
||||
{
|
||||
typedef Map<const Matrix<LhsScalar,Dynamic,Dynamic,RowMajor>, 0, OuterStride<> > LhsMap;
|
||||
typedef Map<Matrix<RhsScalar,Dynamic,1> > RhsMap;
|
||||
enum { IsLower = (Mode&Lower) ? 1 : 0 };
|
||||
static void run(Index size, Index k, const LhsScalar* _lhs, Index lhsStride, RhsScalar* _other)
|
||||
{
|
||||
const LhsMap lhs(_lhs,size,k+1,OuterStride<>(lhsStride));
|
||||
RhsMap other(_other,size,1);
|
||||
typename internal::conditional<
|
||||
ConjLhs,
|
||||
const CwiseUnaryOp<typename internal::scalar_conjugate_op<LhsScalar>,LhsMap>,
|
||||
const LhsMap&>
|
||||
::type cjLhs(lhs);
|
||||
|
||||
for(int col=0 ; col<other.cols() ; ++col)
|
||||
{
|
||||
for(int ii=0; ii<size; ++ii)
|
||||
{
|
||||
int i = IsLower ? ii : size-ii-1;
|
||||
int actual_k = (std::min)(k,ii);
|
||||
int actual_start = IsLower ? k-actual_k : 1;
|
||||
|
||||
if(actual_k>0)
|
||||
other.coeffRef(i,col) -= cjLhs.row(i).segment(actual_start,actual_k).transpose()
|
||||
.cwiseProduct(other.col(col).segment(IsLower ? i-actual_k : i+1,actual_k)).sum();
|
||||
|
||||
if((Mode&UnitDiag)==0)
|
||||
other.coeffRef(i,col) /= cjLhs(i,IsLower ? k : 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
template<typename Index, int Mode, typename LhsScalar, bool ConjLhs, typename RhsScalar>
|
||||
struct band_solve_triangular_selector<Index,Mode,LhsScalar,ConjLhs,RhsScalar,ColMajor>
|
||||
{
|
||||
typedef Map<const Matrix<LhsScalar,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> > LhsMap;
|
||||
typedef Map<Matrix<RhsScalar,Dynamic,1> > RhsMap;
|
||||
enum { IsLower = (Mode&Lower) ? 1 : 0 };
|
||||
static void run(Index size, Index k, const LhsScalar* _lhs, Index lhsStride, RhsScalar* _other)
|
||||
{
|
||||
const LhsMap lhs(_lhs,k+1,size,OuterStride<>(lhsStride));
|
||||
RhsMap other(_other,size,1);
|
||||
typename internal::conditional<
|
||||
ConjLhs,
|
||||
const CwiseUnaryOp<typename internal::scalar_conjugate_op<LhsScalar>,LhsMap>,
|
||||
const LhsMap&>
|
||||
::type cjLhs(lhs);
|
||||
|
||||
for(int col=0 ; col<other.cols() ; ++col)
|
||||
{
|
||||
for(int ii=0; ii<size; ++ii)
|
||||
{
|
||||
int i = IsLower ? ii : size-ii-1;
|
||||
int actual_k = (std::min)(k,size-ii-1);
|
||||
int actual_start = IsLower ? 1 : k-actual_k;
|
||||
|
||||
if((Mode&UnitDiag)==0)
|
||||
other.coeffRef(i,col) /= cjLhs(IsLower ? 0 : k, i);
|
||||
|
||||
if(actual_k>0)
|
||||
other.col(col).segment(IsLower ? i+1 : i-actual_k, actual_k)
|
||||
-= other.coeff(i,col) * cjLhs.col(i).segment(actual_start,actual_k);
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
#endif // EIGEN_BAND_TRIANGULARSOLVER_H
|
||||
57
cs440-acg/ext/eigen/blas/CMakeLists.txt
Normal file
57
cs440-acg/ext/eigen/blas/CMakeLists.txt
Normal file
@@ -0,0 +1,57 @@
|
||||
|
||||
project(EigenBlas CXX)
|
||||
|
||||
include("../cmake/language_support.cmake")
|
||||
|
||||
workaround_9220(Fortran EIGEN_Fortran_COMPILER_WORKS)
|
||||
|
||||
if(EIGEN_Fortran_COMPILER_WORKS)
|
||||
enable_language(Fortran OPTIONAL)
|
||||
if(NOT CMAKE_Fortran_COMPILER)
|
||||
set(EIGEN_Fortran_COMPILER_WORKS OFF)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
add_custom_target(blas)
|
||||
|
||||
set(EigenBlas_SRCS single.cpp double.cpp complex_single.cpp complex_double.cpp xerbla.cpp
|
||||
f2c/srotm.c f2c/srotmg.c f2c/drotm.c f2c/drotmg.c
|
||||
f2c/lsame.c f2c/dspmv.c f2c/ssbmv.c f2c/chbmv.c
|
||||
f2c/sspmv.c f2c/zhbmv.c f2c/chpmv.c f2c/dsbmv.c
|
||||
f2c/zhpmv.c f2c/dtbmv.c f2c/stbmv.c f2c/ctbmv.c
|
||||
f2c/ztbmv.c f2c/d_cnjg.c f2c/r_cnjg.c
|
||||
)
|
||||
|
||||
if (EIGEN_Fortran_COMPILER_WORKS)
|
||||
set(EigenBlas_SRCS ${EigenBlas_SRCS} fortran/complexdots.f)
|
||||
else()
|
||||
set(EigenBlas_SRCS ${EigenBlas_SRCS} f2c/complexdots.c)
|
||||
endif()
|
||||
|
||||
add_library(eigen_blas_static ${EigenBlas_SRCS})
|
||||
add_library(eigen_blas SHARED ${EigenBlas_SRCS})
|
||||
|
||||
if(EIGEN_STANDARD_LIBRARIES_TO_LINK_TO)
|
||||
target_link_libraries(eigen_blas_static ${EIGEN_STANDARD_LIBRARIES_TO_LINK_TO})
|
||||
target_link_libraries(eigen_blas ${EIGEN_STANDARD_LIBRARIES_TO_LINK_TO})
|
||||
endif()
|
||||
|
||||
add_dependencies(blas eigen_blas eigen_blas_static)
|
||||
|
||||
install(TARGETS eigen_blas eigen_blas_static
|
||||
RUNTIME DESTINATION bin
|
||||
LIBRARY DESTINATION lib
|
||||
ARCHIVE DESTINATION lib)
|
||||
|
||||
if(EIGEN_Fortran_COMPILER_WORKS)
|
||||
|
||||
if(BUILD_TESTING)
|
||||
if(EIGEN_LEAVE_TEST_IN_ALL_TARGET)
|
||||
add_subdirectory(testing) # can't do EXCLUDE_FROM_ALL here, breaks CTest
|
||||
else()
|
||||
add_subdirectory(testing EXCLUDE_FROM_ALL)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
endif()
|
||||
|
||||
44
cs440-acg/ext/eigen/blas/GeneralRank1Update.h
Normal file
44
cs440-acg/ext/eigen/blas/GeneralRank1Update.h
Normal file
@@ -0,0 +1,44 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_GENERAL_RANK1UPDATE_H
|
||||
#define EIGEN_GENERAL_RANK1UPDATE_H
|
||||
|
||||
namespace internal {
|
||||
|
||||
/* Optimized matrix += alpha * uv' */
|
||||
template<typename Scalar, typename Index, int StorageOrder, bool ConjLhs, bool ConjRhs>
|
||||
struct general_rank1_update;
|
||||
|
||||
template<typename Scalar, typename Index, bool ConjLhs, bool ConjRhs>
|
||||
struct general_rank1_update<Scalar,Index,ColMajor,ConjLhs,ConjRhs>
|
||||
{
|
||||
static void run(Index rows, Index cols, Scalar* mat, Index stride, const Scalar* u, const Scalar* v, Scalar alpha)
|
||||
{
|
||||
typedef Map<const Matrix<Scalar,Dynamic,1> > OtherMap;
|
||||
typedef typename conj_expr_if<ConjLhs,OtherMap>::type ConjRhsType;
|
||||
conj_if<ConjRhs> cj;
|
||||
|
||||
for (Index i=0; i<cols; ++i)
|
||||
Map<Matrix<Scalar,Dynamic,1> >(mat+stride*i,rows) += alpha * cj(v[i]) * ConjRhsType(OtherMap(u,rows));
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar, typename Index, bool ConjLhs, bool ConjRhs>
|
||||
struct general_rank1_update<Scalar,Index,RowMajor,ConjLhs,ConjRhs>
|
||||
{
|
||||
static void run(Index rows, Index cols, Scalar* mat, Index stride, const Scalar* u, const Scalar* v, Scalar alpha)
|
||||
{
|
||||
general_rank1_update<Scalar,Index,ColMajor,ConjRhs,ConjRhs>::run(rows,cols,mat,stride,u,v,alpha);
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
#endif // EIGEN_GENERAL_RANK1UPDATE_H
|
||||
53
cs440-acg/ext/eigen/blas/PackedSelfadjointProduct.h
Normal file
53
cs440-acg/ext/eigen/blas/PackedSelfadjointProduct.h
Normal file
@@ -0,0 +1,53 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_SELFADJOINT_PACKED_PRODUCT_H
|
||||
#define EIGEN_SELFADJOINT_PACKED_PRODUCT_H
|
||||
|
||||
namespace internal {
|
||||
|
||||
/* Optimized matrix += alpha * uv'
|
||||
* The matrix is in packed form.
|
||||
*/
|
||||
template<typename Scalar, typename Index, int StorageOrder, int UpLo, bool ConjLhs, bool ConjRhs>
|
||||
struct selfadjoint_packed_rank1_update;
|
||||
|
||||
template<typename Scalar, typename Index, int UpLo, bool ConjLhs, bool ConjRhs>
|
||||
struct selfadjoint_packed_rank1_update<Scalar,Index,ColMajor,UpLo,ConjLhs,ConjRhs>
|
||||
{
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
static void run(Index size, Scalar* mat, const Scalar* vec, RealScalar alpha)
|
||||
{
|
||||
typedef Map<const Matrix<Scalar,Dynamic,1> > OtherMap;
|
||||
typedef typename conj_expr_if<ConjLhs,OtherMap>::type ConjRhsType;
|
||||
conj_if<ConjRhs> cj;
|
||||
|
||||
for (Index i=0; i<size; ++i)
|
||||
{
|
||||
Map<Matrix<Scalar,Dynamic,1> >(mat, UpLo==Lower ? size-i : (i+1)) += alpha * cj(vec[i]) * ConjRhsType(OtherMap(vec+(UpLo==Lower ? i : 0), UpLo==Lower ? size-i : (i+1)));
|
||||
//FIXME This should be handled outside.
|
||||
mat[UpLo==Lower ? 0 : i] = numext::real(mat[UpLo==Lower ? 0 : i]);
|
||||
mat += UpLo==Lower ? size-i : (i+1);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<typename Scalar, typename Index, int UpLo, bool ConjLhs, bool ConjRhs>
|
||||
struct selfadjoint_packed_rank1_update<Scalar,Index,RowMajor,UpLo,ConjLhs,ConjRhs>
|
||||
{
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
static void run(Index size, Scalar* mat, const Scalar* vec, RealScalar alpha)
|
||||
{
|
||||
selfadjoint_packed_rank1_update<Scalar,Index,ColMajor,UpLo==Lower?Upper:Lower,ConjRhs,ConjLhs>::run(size,mat,vec,alpha);
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
#endif // EIGEN_SELFADJOINT_PACKED_PRODUCT_H
|
||||
79
cs440-acg/ext/eigen/blas/PackedTriangularMatrixVector.h
Normal file
79
cs440-acg/ext/eigen/blas/PackedTriangularMatrixVector.h
Normal file
@@ -0,0 +1,79 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_PACKED_TRIANGULAR_MATRIX_VECTOR_H
|
||||
#define EIGEN_PACKED_TRIANGULAR_MATRIX_VECTOR_H
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename Index, int Mode, typename LhsScalar, bool ConjLhs, typename RhsScalar, bool ConjRhs, int StorageOrder>
|
||||
struct packed_triangular_matrix_vector_product;
|
||||
|
||||
template<typename Index, int Mode, typename LhsScalar, bool ConjLhs, typename RhsScalar, bool ConjRhs>
|
||||
struct packed_triangular_matrix_vector_product<Index,Mode,LhsScalar,ConjLhs,RhsScalar,ConjRhs,ColMajor>
|
||||
{
|
||||
typedef typename ScalarBinaryOpTraits<LhsScalar, RhsScalar>::ReturnType ResScalar;
|
||||
enum {
|
||||
IsLower = (Mode & Lower) ==Lower,
|
||||
HasUnitDiag = (Mode & UnitDiag)==UnitDiag,
|
||||
HasZeroDiag = (Mode & ZeroDiag)==ZeroDiag
|
||||
};
|
||||
static void run(Index size, const LhsScalar* lhs, const RhsScalar* rhs, ResScalar* res, ResScalar alpha)
|
||||
{
|
||||
internal::conj_if<ConjRhs> cj;
|
||||
typedef Map<const Matrix<LhsScalar,Dynamic,1> > LhsMap;
|
||||
typedef typename conj_expr_if<ConjLhs,LhsMap>::type ConjLhsType;
|
||||
typedef Map<Matrix<ResScalar,Dynamic,1> > ResMap;
|
||||
|
||||
for (Index i=0; i<size; ++i)
|
||||
{
|
||||
Index s = IsLower&&(HasUnitDiag||HasZeroDiag) ? 1 : 0;
|
||||
Index r = IsLower ? size-i: i+1;
|
||||
if (EIGEN_IMPLIES(HasUnitDiag||HasZeroDiag, (--r)>0))
|
||||
ResMap(res+(IsLower ? s+i : 0),r) += alpha * cj(rhs[i]) * ConjLhsType(LhsMap(lhs+s,r));
|
||||
if (HasUnitDiag)
|
||||
res[i] += alpha * cj(rhs[i]);
|
||||
lhs += IsLower ? size-i: i+1;
|
||||
}
|
||||
};
|
||||
};
|
||||
|
||||
template<typename Index, int Mode, typename LhsScalar, bool ConjLhs, typename RhsScalar, bool ConjRhs>
|
||||
struct packed_triangular_matrix_vector_product<Index,Mode,LhsScalar,ConjLhs,RhsScalar,ConjRhs,RowMajor>
|
||||
{
|
||||
typedef typename ScalarBinaryOpTraits<LhsScalar, RhsScalar>::ReturnType ResScalar;
|
||||
enum {
|
||||
IsLower = (Mode & Lower) ==Lower,
|
||||
HasUnitDiag = (Mode & UnitDiag)==UnitDiag,
|
||||
HasZeroDiag = (Mode & ZeroDiag)==ZeroDiag
|
||||
};
|
||||
static void run(Index size, const LhsScalar* lhs, const RhsScalar* rhs, ResScalar* res, ResScalar alpha)
|
||||
{
|
||||
internal::conj_if<ConjRhs> cj;
|
||||
typedef Map<const Matrix<LhsScalar,Dynamic,1> > LhsMap;
|
||||
typedef typename conj_expr_if<ConjLhs,LhsMap>::type ConjLhsType;
|
||||
typedef Map<const Matrix<RhsScalar,Dynamic,1> > RhsMap;
|
||||
typedef typename conj_expr_if<ConjRhs,RhsMap>::type ConjRhsType;
|
||||
|
||||
for (Index i=0; i<size; ++i)
|
||||
{
|
||||
Index s = !IsLower&&(HasUnitDiag||HasZeroDiag) ? 1 : 0;
|
||||
Index r = IsLower ? i+1 : size-i;
|
||||
if (EIGEN_IMPLIES(HasUnitDiag||HasZeroDiag, (--r)>0))
|
||||
res[i] += alpha * (ConjLhsType(LhsMap(lhs+s,r)).cwiseProduct(ConjRhsType(RhsMap(rhs+(IsLower ? 0 : s+i),r)))).sum();
|
||||
if (HasUnitDiag)
|
||||
res[i] += alpha * cj(rhs[i]);
|
||||
lhs += IsLower ? i+1 : size-i;
|
||||
}
|
||||
};
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
#endif // EIGEN_PACKED_TRIANGULAR_MATRIX_VECTOR_H
|
||||
88
cs440-acg/ext/eigen/blas/PackedTriangularSolverVector.h
Normal file
88
cs440-acg/ext/eigen/blas/PackedTriangularSolverVector.h
Normal file
@@ -0,0 +1,88 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_PACKED_TRIANGULAR_SOLVER_VECTOR_H
|
||||
#define EIGEN_PACKED_TRIANGULAR_SOLVER_VECTOR_H
|
||||
|
||||
namespace internal {
|
||||
|
||||
template<typename LhsScalar, typename RhsScalar, typename Index, int Side, int Mode, bool Conjugate, int StorageOrder>
|
||||
struct packed_triangular_solve_vector;
|
||||
|
||||
// forward and backward substitution, row-major, rhs is a vector
|
||||
template<typename LhsScalar, typename RhsScalar, typename Index, int Mode, bool Conjugate>
|
||||
struct packed_triangular_solve_vector<LhsScalar, RhsScalar, Index, OnTheLeft, Mode, Conjugate, RowMajor>
|
||||
{
|
||||
enum {
|
||||
IsLower = (Mode&Lower)==Lower
|
||||
};
|
||||
static void run(Index size, const LhsScalar* lhs, RhsScalar* rhs)
|
||||
{
|
||||
internal::conj_if<Conjugate> cj;
|
||||
typedef Map<const Matrix<LhsScalar,Dynamic,1> > LhsMap;
|
||||
typedef typename conj_expr_if<Conjugate,LhsMap>::type ConjLhsType;
|
||||
|
||||
lhs += IsLower ? 0 : (size*(size+1)>>1)-1;
|
||||
for(Index pi=0; pi<size; ++pi)
|
||||
{
|
||||
Index i = IsLower ? pi : size-pi-1;
|
||||
Index s = IsLower ? 0 : 1;
|
||||
if (pi>0)
|
||||
rhs[i] -= (ConjLhsType(LhsMap(lhs+s,pi))
|
||||
.cwiseProduct(Map<const Matrix<RhsScalar,Dynamic,1> >(rhs+(IsLower ? 0 : i+1),pi))).sum();
|
||||
if (!(Mode & UnitDiag))
|
||||
rhs[i] /= cj(lhs[IsLower ? i : 0]);
|
||||
IsLower ? lhs += pi+1 : lhs -= pi+2;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// forward and backward substitution, column-major, rhs is a vector
|
||||
template<typename LhsScalar, typename RhsScalar, typename Index, int Mode, bool Conjugate>
|
||||
struct packed_triangular_solve_vector<LhsScalar, RhsScalar, Index, OnTheLeft, Mode, Conjugate, ColMajor>
|
||||
{
|
||||
enum {
|
||||
IsLower = (Mode&Lower)==Lower
|
||||
};
|
||||
static void run(Index size, const LhsScalar* lhs, RhsScalar* rhs)
|
||||
{
|
||||
internal::conj_if<Conjugate> cj;
|
||||
typedef Map<const Matrix<LhsScalar,Dynamic,1> > LhsMap;
|
||||
typedef typename conj_expr_if<Conjugate,LhsMap>::type ConjLhsType;
|
||||
|
||||
lhs += IsLower ? 0 : size*(size-1)>>1;
|
||||
for(Index pi=0; pi<size; ++pi)
|
||||
{
|
||||
Index i = IsLower ? pi : size-pi-1;
|
||||
Index r = size - pi - 1;
|
||||
if (!(Mode & UnitDiag))
|
||||
rhs[i] /= cj(lhs[IsLower ? 0 : i]);
|
||||
if (r>0)
|
||||
Map<Matrix<RhsScalar,Dynamic,1> >(rhs+(IsLower? i+1 : 0),r) -=
|
||||
rhs[i] * ConjLhsType(LhsMap(lhs+(IsLower? 1 : 0),r));
|
||||
IsLower ? lhs += size-pi : lhs -= r;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<typename LhsScalar, typename RhsScalar, typename Index, int Mode, bool Conjugate, int StorageOrder>
|
||||
struct packed_triangular_solve_vector<LhsScalar, RhsScalar, Index, OnTheRight, Mode, Conjugate, StorageOrder>
|
||||
{
|
||||
static void run(Index size, const LhsScalar* lhs, RhsScalar* rhs)
|
||||
{
|
||||
packed_triangular_solve_vector<LhsScalar,RhsScalar,Index,OnTheLeft,
|
||||
((Mode&Upper)==Upper ? Lower : Upper) | (Mode&UnitDiag),
|
||||
Conjugate,StorageOrder==RowMajor?ColMajor:RowMajor
|
||||
>::run(size, lhs, rhs);
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
#endif // EIGEN_PACKED_TRIANGULAR_SOLVER_VECTOR_H
|
||||
6
cs440-acg/ext/eigen/blas/README.txt
Normal file
6
cs440-acg/ext/eigen/blas/README.txt
Normal file
@@ -0,0 +1,6 @@
|
||||
|
||||
This directory contains a BLAS library built on top of Eigen.
|
||||
|
||||
This module is not built by default. In order to compile it, you need to
|
||||
type 'make blas' from within your build dir.
|
||||
|
||||
57
cs440-acg/ext/eigen/blas/Rank2Update.h
Normal file
57
cs440-acg/ext/eigen/blas/Rank2Update.h
Normal file
@@ -0,0 +1,57 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_RANK2UPDATE_H
|
||||
#define EIGEN_RANK2UPDATE_H
|
||||
|
||||
namespace internal {
|
||||
|
||||
/* Optimized selfadjoint matrix += alpha * uv' + conj(alpha)*vu'
|
||||
* This is the low-level version of SelfadjointRank2Update.h
|
||||
*/
|
||||
template<typename Scalar, typename Index, int UpLo>
|
||||
struct rank2_update_selector
|
||||
{
|
||||
static void run(Index size, Scalar* mat, Index stride, const Scalar* u, const Scalar* v, Scalar alpha)
|
||||
{
|
||||
typedef Map<const Matrix<Scalar,Dynamic,1> > OtherMap;
|
||||
for (Index i=0; i<size; ++i)
|
||||
{
|
||||
Map<Matrix<Scalar,Dynamic,1> >(mat+stride*i+(UpLo==Lower ? i : 0), UpLo==Lower ? size-i : (i+1)) +=
|
||||
numext::conj(alpha) * numext::conj(u[i]) * OtherMap(v+(UpLo==Lower ? i : 0), UpLo==Lower ? size-i : (i+1))
|
||||
+ alpha * numext::conj(v[i]) * OtherMap(u+(UpLo==Lower ? i : 0), UpLo==Lower ? size-i : (i+1));
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
/* Optimized selfadjoint matrix += alpha * uv' + conj(alpha)*vu'
|
||||
* The matrix is in packed form.
|
||||
*/
|
||||
template<typename Scalar, typename Index, int UpLo>
|
||||
struct packed_rank2_update_selector
|
||||
{
|
||||
static void run(Index size, Scalar* mat, const Scalar* u, const Scalar* v, Scalar alpha)
|
||||
{
|
||||
typedef Map<const Matrix<Scalar,Dynamic,1> > OtherMap;
|
||||
Index offset = 0;
|
||||
for (Index i=0; i<size; ++i)
|
||||
{
|
||||
Map<Matrix<Scalar,Dynamic,1> >(mat+offset, UpLo==Lower ? size-i : (i+1)) +=
|
||||
numext::conj(alpha) * numext::conj(u[i]) * OtherMap(v+(UpLo==Lower ? i : 0), UpLo==Lower ? size-i : (i+1))
|
||||
+ alpha * numext::conj(v[i]) * OtherMap(u+(UpLo==Lower ? i : 0), UpLo==Lower ? size-i : (i+1));
|
||||
//FIXME This should be handled outside.
|
||||
mat[offset+(UpLo==Lower ? 0 : i)] = numext::real(mat[offset+(UpLo==Lower ? 0 : i)]);
|
||||
offset += UpLo==Lower ? size-i : (i+1);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // end namespace internal
|
||||
|
||||
#endif // EIGEN_RANK2UPDATE_H
|
||||
163
cs440-acg/ext/eigen/blas/common.h
Normal file
163
cs440-acg/ext/eigen/blas/common.h
Normal file
@@ -0,0 +1,163 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009-2015 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#ifndef EIGEN_BLAS_COMMON_H
|
||||
#define EIGEN_BLAS_COMMON_H
|
||||
|
||||
#include "../Eigen/Core"
|
||||
#include "../Eigen/Jacobi"
|
||||
|
||||
#include <complex>
|
||||
|
||||
#ifndef SCALAR
|
||||
#error the token SCALAR must be defined to compile this file
|
||||
#endif
|
||||
|
||||
#include "../Eigen/src/misc/blas.h"
|
||||
|
||||
#define NOTR 0
|
||||
#define TR 1
|
||||
#define ADJ 2
|
||||
|
||||
#define LEFT 0
|
||||
#define RIGHT 1
|
||||
|
||||
#define UP 0
|
||||
#define LO 1
|
||||
|
||||
#define NUNIT 0
|
||||
#define UNIT 1
|
||||
|
||||
#define INVALID 0xff
|
||||
|
||||
#define OP(X) ( ((X)=='N' || (X)=='n') ? NOTR \
|
||||
: ((X)=='T' || (X)=='t') ? TR \
|
||||
: ((X)=='C' || (X)=='c') ? ADJ \
|
||||
: INVALID)
|
||||
|
||||
#define SIDE(X) ( ((X)=='L' || (X)=='l') ? LEFT \
|
||||
: ((X)=='R' || (X)=='r') ? RIGHT \
|
||||
: INVALID)
|
||||
|
||||
#define UPLO(X) ( ((X)=='U' || (X)=='u') ? UP \
|
||||
: ((X)=='L' || (X)=='l') ? LO \
|
||||
: INVALID)
|
||||
|
||||
#define DIAG(X) ( ((X)=='N' || (X)=='n') ? NUNIT \
|
||||
: ((X)=='U' || (X)=='u') ? UNIT \
|
||||
: INVALID)
|
||||
|
||||
|
||||
inline bool check_op(const char* op)
|
||||
{
|
||||
return OP(*op)!=0xff;
|
||||
}
|
||||
|
||||
inline bool check_side(const char* side)
|
||||
{
|
||||
return SIDE(*side)!=0xff;
|
||||
}
|
||||
|
||||
inline bool check_uplo(const char* uplo)
|
||||
{
|
||||
return UPLO(*uplo)!=0xff;
|
||||
}
|
||||
|
||||
|
||||
namespace Eigen {
|
||||
#include "BandTriangularSolver.h"
|
||||
#include "GeneralRank1Update.h"
|
||||
#include "PackedSelfadjointProduct.h"
|
||||
#include "PackedTriangularMatrixVector.h"
|
||||
#include "PackedTriangularSolverVector.h"
|
||||
#include "Rank2Update.h"
|
||||
}
|
||||
|
||||
using namespace Eigen;
|
||||
|
||||
typedef SCALAR Scalar;
|
||||
typedef NumTraits<Scalar>::Real RealScalar;
|
||||
typedef std::complex<RealScalar> Complex;
|
||||
|
||||
enum
|
||||
{
|
||||
IsComplex = Eigen::NumTraits<SCALAR>::IsComplex,
|
||||
Conj = IsComplex
|
||||
};
|
||||
|
||||
typedef Matrix<Scalar,Dynamic,Dynamic,ColMajor> PlainMatrixType;
|
||||
typedef Map<Matrix<Scalar,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> > MatrixType;
|
||||
typedef Map<const Matrix<Scalar,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> > ConstMatrixType;
|
||||
typedef Map<Matrix<Scalar,Dynamic,1>, 0, InnerStride<Dynamic> > StridedVectorType;
|
||||
typedef Map<Matrix<Scalar,Dynamic,1> > CompactVectorType;
|
||||
|
||||
template<typename T>
|
||||
Map<Matrix<T,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> >
|
||||
matrix(T* data, int rows, int cols, int stride)
|
||||
{
|
||||
return Map<Matrix<T,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> >(data, rows, cols, OuterStride<>(stride));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
Map<const Matrix<T,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> >
|
||||
matrix(const T* data, int rows, int cols, int stride)
|
||||
{
|
||||
return Map<const Matrix<T,Dynamic,Dynamic,ColMajor>, 0, OuterStride<> >(data, rows, cols, OuterStride<>(stride));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
Map<Matrix<T,Dynamic,1>, 0, InnerStride<Dynamic> > make_vector(T* data, int size, int incr)
|
||||
{
|
||||
return Map<Matrix<T,Dynamic,1>, 0, InnerStride<Dynamic> >(data, size, InnerStride<Dynamic>(incr));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
Map<const Matrix<T,Dynamic,1>, 0, InnerStride<Dynamic> > make_vector(const T* data, int size, int incr)
|
||||
{
|
||||
return Map<const Matrix<T,Dynamic,1>, 0, InnerStride<Dynamic> >(data, size, InnerStride<Dynamic>(incr));
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
Map<Matrix<T,Dynamic,1> > make_vector(T* data, int size)
|
||||
{
|
||||
return Map<Matrix<T,Dynamic,1> >(data, size);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
Map<const Matrix<T,Dynamic,1> > make_vector(const T* data, int size)
|
||||
{
|
||||
return Map<const Matrix<T,Dynamic,1> >(data, size);
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
T* get_compact_vector(T* x, int n, int incx)
|
||||
{
|
||||
if(incx==1)
|
||||
return x;
|
||||
|
||||
typename Eigen::internal::remove_const<T>::type* ret = new Scalar[n];
|
||||
if(incx<0) make_vector(ret,n) = make_vector(x,n,-incx).reverse();
|
||||
else make_vector(ret,n) = make_vector(x,n, incx);
|
||||
return ret;
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
T* copy_back(T* x_cpy, T* x, int n, int incx)
|
||||
{
|
||||
if(x_cpy==x)
|
||||
return 0;
|
||||
|
||||
if(incx<0) make_vector(x,n,-incx).reverse() = make_vector(x_cpy,n);
|
||||
else make_vector(x,n, incx) = make_vector(x_cpy,n);
|
||||
return x_cpy;
|
||||
}
|
||||
|
||||
#define EIGEN_BLAS_FUNC(X) EIGEN_CAT(SCALAR_SUFFIX,X##_)
|
||||
|
||||
#endif // EIGEN_BLAS_COMMON_H
|
||||
20
cs440-acg/ext/eigen/blas/complex_double.cpp
Normal file
20
cs440-acg/ext/eigen/blas/complex_double.cpp
Normal file
@@ -0,0 +1,20 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#define SCALAR std::complex<double>
|
||||
#define SCALAR_SUFFIX z
|
||||
#define SCALAR_SUFFIX_UP "Z"
|
||||
#define REAL_SCALAR_SUFFIX d
|
||||
#define ISCOMPLEX 1
|
||||
|
||||
#include "level1_impl.h"
|
||||
#include "level1_cplx_impl.h"
|
||||
#include "level2_impl.h"
|
||||
#include "level2_cplx_impl.h"
|
||||
#include "level3_impl.h"
|
||||
20
cs440-acg/ext/eigen/blas/complex_single.cpp
Normal file
20
cs440-acg/ext/eigen/blas/complex_single.cpp
Normal file
@@ -0,0 +1,20 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#define SCALAR std::complex<float>
|
||||
#define SCALAR_SUFFIX c
|
||||
#define SCALAR_SUFFIX_UP "C"
|
||||
#define REAL_SCALAR_SUFFIX s
|
||||
#define ISCOMPLEX 1
|
||||
|
||||
#include "level1_impl.h"
|
||||
#include "level1_cplx_impl.h"
|
||||
#include "level2_impl.h"
|
||||
#include "level2_cplx_impl.h"
|
||||
#include "level3_impl.h"
|
||||
32
cs440-acg/ext/eigen/blas/double.cpp
Normal file
32
cs440-acg/ext/eigen/blas/double.cpp
Normal file
@@ -0,0 +1,32 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#define SCALAR double
|
||||
#define SCALAR_SUFFIX d
|
||||
#define SCALAR_SUFFIX_UP "D"
|
||||
#define ISCOMPLEX 0
|
||||
|
||||
#include "level1_impl.h"
|
||||
#include "level1_real_impl.h"
|
||||
#include "level2_impl.h"
|
||||
#include "level2_real_impl.h"
|
||||
#include "level3_impl.h"
|
||||
|
||||
double BLASFUNC(dsdot)(int* n, float* x, int* incx, float* y, int* incy)
|
||||
{
|
||||
if(*n<=0) return 0;
|
||||
|
||||
if(*incx==1 && *incy==1) return (make_vector(x,*n).cast<double>().cwiseProduct(make_vector(y,*n).cast<double>())).sum();
|
||||
else if(*incx>0 && *incy>0) return (make_vector(x,*n,*incx).cast<double>().cwiseProduct(make_vector(y,*n,*incy).cast<double>())).sum();
|
||||
else if(*incx<0 && *incy>0) return (make_vector(x,*n,-*incx).reverse().cast<double>().cwiseProduct(make_vector(y,*n,*incy).cast<double>())).sum();
|
||||
else if(*incx>0 && *incy<0) return (make_vector(x,*n,*incx).cast<double>().cwiseProduct(make_vector(y,*n,-*incy).reverse().cast<double>())).sum();
|
||||
else if(*incx<0 && *incy<0) return (make_vector(x,*n,-*incx).reverse().cast<double>().cwiseProduct(make_vector(y,*n,-*incy).reverse().cast<double>())).sum();
|
||||
else return 0;
|
||||
}
|
||||
487
cs440-acg/ext/eigen/blas/f2c/chbmv.c
Normal file
487
cs440-acg/ext/eigen/blas/f2c/chbmv.c
Normal file
@@ -0,0 +1,487 @@
|
||||
/* chbmv.f -- translated by f2c (version 20100827).
|
||||
You must link the resulting object file with libf2c:
|
||||
on Microsoft Windows system, link with libf2c.lib;
|
||||
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
||||
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
||||
-- in that order, at the end of the command line, as in
|
||||
cc *.o -lf2c -lm
|
||||
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
||||
|
||||
http://www.netlib.org/f2c/libf2c.zip
|
||||
*/
|
||||
|
||||
#include "datatypes.h"
|
||||
|
||||
/* Subroutine */ int chbmv_(char *uplo, integer *n, integer *k, complex *
|
||||
alpha, complex *a, integer *lda, complex *x, integer *incx, complex *
|
||||
beta, complex *y, integer *incy, ftnlen uplo_len)
|
||||
{
|
||||
/* System generated locals */
|
||||
integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
|
||||
real r__1;
|
||||
complex q__1, q__2, q__3, q__4;
|
||||
|
||||
/* Builtin functions */
|
||||
void r_cnjg(complex *, complex *);
|
||||
|
||||
/* Local variables */
|
||||
integer i__, j, l, ix, iy, jx, jy, kx, ky, info;
|
||||
complex temp1, temp2;
|
||||
extern logical lsame_(char *, char *, ftnlen, ftnlen);
|
||||
integer kplus1;
|
||||
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
|
||||
/* CHBMV performs the matrix-vector operation */
|
||||
|
||||
/* y := alpha*A*x + beta*y, */
|
||||
|
||||
/* where alpha and beta are scalars, x and y are n element vectors and */
|
||||
/* A is an n by n hermitian band matrix, with k super-diagonals. */
|
||||
|
||||
/* Arguments */
|
||||
/* ========== */
|
||||
|
||||
/* UPLO - CHARACTER*1. */
|
||||
/* On entry, UPLO specifies whether the upper or lower */
|
||||
/* triangular part of the band matrix A is being supplied as */
|
||||
/* follows: */
|
||||
|
||||
/* UPLO = 'U' or 'u' The upper triangular part of A is */
|
||||
/* being supplied. */
|
||||
|
||||
/* UPLO = 'L' or 'l' The lower triangular part of A is */
|
||||
/* being supplied. */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* N - INTEGER. */
|
||||
/* On entry, N specifies the order of the matrix A. */
|
||||
/* N must be at least zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* K - INTEGER. */
|
||||
/* On entry, K specifies the number of super-diagonals of the */
|
||||
/* matrix A. K must satisfy 0 .le. K. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* ALPHA - COMPLEX . */
|
||||
/* On entry, ALPHA specifies the scalar alpha. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* A - COMPLEX array of DIMENSION ( LDA, n ). */
|
||||
/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the upper triangular */
|
||||
/* band part of the hermitian matrix, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row */
|
||||
/* ( k + 1 ) of the array, the first super-diagonal starting at */
|
||||
/* position 2 in row k, and so on. The top left k by k triangle */
|
||||
/* of the array A is not referenced. */
|
||||
/* The following program segment will transfer the upper */
|
||||
/* triangular part of a hermitian band matrix from conventional */
|
||||
/* full matrix storage to band storage: */
|
||||
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = K + 1 - J */
|
||||
/* DO 10, I = MAX( 1, J - K ), J */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
|
||||
/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the lower triangular */
|
||||
/* band part of the hermitian matrix, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row 1 of */
|
||||
/* the array, the first sub-diagonal starting at position 1 in */
|
||||
/* row 2, and so on. The bottom right k by k triangle of the */
|
||||
/* array A is not referenced. */
|
||||
/* The following program segment will transfer the lower */
|
||||
/* triangular part of a hermitian band matrix from conventional */
|
||||
/* full matrix storage to band storage: */
|
||||
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = 1 - J */
|
||||
/* DO 10, I = J, MIN( N, J + K ) */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
|
||||
/* Note that the imaginary parts of the diagonal elements need */
|
||||
/* not be set and are assumed to be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* LDA - INTEGER. */
|
||||
/* On entry, LDA specifies the first dimension of A as declared */
|
||||
/* in the calling (sub) program. LDA must be at least */
|
||||
/* ( k + 1 ). */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* X - COMPLEX array of DIMENSION at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
|
||||
/* Before entry, the incremented array X must contain the */
|
||||
/* vector x. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* INCX - INTEGER. */
|
||||
/* On entry, INCX specifies the increment for the elements of */
|
||||
/* X. INCX must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* BETA - COMPLEX . */
|
||||
/* On entry, BETA specifies the scalar beta. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* Y - COMPLEX array of DIMENSION at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCY ) ). */
|
||||
/* Before entry, the incremented array Y must contain the */
|
||||
/* vector y. On exit, Y is overwritten by the updated vector y. */
|
||||
|
||||
/* INCY - INTEGER. */
|
||||
/* On entry, INCY specifies the increment for the elements of */
|
||||
/* Y. INCY must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* Further Details */
|
||||
/* =============== */
|
||||
|
||||
/* Level 2 Blas routine. */
|
||||
|
||||
/* -- Written on 22-October-1986. */
|
||||
/* Jack Dongarra, Argonne National Lab. */
|
||||
/* Jeremy Du Croz, Nag Central Office. */
|
||||
/* Sven Hammarling, Nag Central Office. */
|
||||
/* Richard Hanson, Sandia National Labs. */
|
||||
|
||||
/* ===================================================================== */
|
||||
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
|
||||
/* Test the input parameters. */
|
||||
|
||||
/* Parameter adjustments */
|
||||
a_dim1 = *lda;
|
||||
a_offset = 1 + a_dim1;
|
||||
a -= a_offset;
|
||||
--x;
|
||||
--y;
|
||||
|
||||
/* Function Body */
|
||||
info = 0;
|
||||
if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
|
||||
ftnlen)1, (ftnlen)1)) {
|
||||
info = 1;
|
||||
} else if (*n < 0) {
|
||||
info = 2;
|
||||
} else if (*k < 0) {
|
||||
info = 3;
|
||||
} else if (*lda < *k + 1) {
|
||||
info = 6;
|
||||
} else if (*incx == 0) {
|
||||
info = 8;
|
||||
} else if (*incy == 0) {
|
||||
info = 11;
|
||||
}
|
||||
if (info != 0) {
|
||||
xerbla_("CHBMV ", &info, (ftnlen)6);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Quick return if possible. */
|
||||
|
||||
if (*n == 0 || (alpha->r == 0.f && alpha->i == 0.f && (beta->r == 1.f &&
|
||||
beta->i == 0.f))) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Set up the start points in X and Y. */
|
||||
|
||||
if (*incx > 0) {
|
||||
kx = 1;
|
||||
} else {
|
||||
kx = 1 - (*n - 1) * *incx;
|
||||
}
|
||||
if (*incy > 0) {
|
||||
ky = 1;
|
||||
} else {
|
||||
ky = 1 - (*n - 1) * *incy;
|
||||
}
|
||||
|
||||
/* Start the operations. In this version the elements of the array A */
|
||||
/* are accessed sequentially with one pass through A. */
|
||||
|
||||
/* First form y := beta*y. */
|
||||
|
||||
if (beta->r != 1.f || beta->i != 0.f) {
|
||||
if (*incy == 1) {
|
||||
if (beta->r == 0.f && beta->i == 0.f) {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
i__2 = i__;
|
||||
y[i__2].r = 0.f, y[i__2].i = 0.f;
|
||||
/* L10: */
|
||||
}
|
||||
} else {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
i__2 = i__;
|
||||
i__3 = i__;
|
||||
q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
|
||||
q__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
|
||||
.r;
|
||||
y[i__2].r = q__1.r, y[i__2].i = q__1.i;
|
||||
/* L20: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
iy = ky;
|
||||
if (beta->r == 0.f && beta->i == 0.f) {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
i__2 = iy;
|
||||
y[i__2].r = 0.f, y[i__2].i = 0.f;
|
||||
iy += *incy;
|
||||
/* L30: */
|
||||
}
|
||||
} else {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
i__2 = iy;
|
||||
i__3 = iy;
|
||||
q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
|
||||
q__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
|
||||
.r;
|
||||
y[i__2].r = q__1.r, y[i__2].i = q__1.i;
|
||||
iy += *incy;
|
||||
/* L40: */
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (alpha->r == 0.f && alpha->i == 0.f) {
|
||||
return 0;
|
||||
}
|
||||
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
|
||||
|
||||
/* Form y when upper triangle of A is stored. */
|
||||
|
||||
kplus1 = *k + 1;
|
||||
if (*incx == 1 && *incy == 1) {
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
i__2 = j;
|
||||
q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i =
|
||||
alpha->r * x[i__2].i + alpha->i * x[i__2].r;
|
||||
temp1.r = q__1.r, temp1.i = q__1.i;
|
||||
temp2.r = 0.f, temp2.i = 0.f;
|
||||
l = kplus1 - j;
|
||||
/* Computing MAX */
|
||||
i__2 = 1, i__3 = j - *k;
|
||||
i__4 = j - 1;
|
||||
for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
|
||||
i__2 = i__;
|
||||
i__3 = i__;
|
||||
i__5 = l + i__ + j * a_dim1;
|
||||
q__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
|
||||
q__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
|
||||
.r;
|
||||
q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i;
|
||||
y[i__2].r = q__1.r, y[i__2].i = q__1.i;
|
||||
r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
|
||||
i__2 = i__;
|
||||
q__2.r = q__3.r * x[i__2].r - q__3.i * x[i__2].i, q__2.i =
|
||||
q__3.r * x[i__2].i + q__3.i * x[i__2].r;
|
||||
q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
|
||||
temp2.r = q__1.r, temp2.i = q__1.i;
|
||||
/* L50: */
|
||||
}
|
||||
i__4 = j;
|
||||
i__2 = j;
|
||||
i__3 = kplus1 + j * a_dim1;
|
||||
r__1 = a[i__3].r;
|
||||
q__3.r = r__1 * temp1.r, q__3.i = r__1 * temp1.i;
|
||||
q__2.r = y[i__2].r + q__3.r, q__2.i = y[i__2].i + q__3.i;
|
||||
q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i =
|
||||
alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
|
||||
y[i__4].r = q__1.r, y[i__4].i = q__1.i;
|
||||
/* L60: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
jy = ky;
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
i__4 = jx;
|
||||
q__1.r = alpha->r * x[i__4].r - alpha->i * x[i__4].i, q__1.i =
|
||||
alpha->r * x[i__4].i + alpha->i * x[i__4].r;
|
||||
temp1.r = q__1.r, temp1.i = q__1.i;
|
||||
temp2.r = 0.f, temp2.i = 0.f;
|
||||
ix = kx;
|
||||
iy = ky;
|
||||
l = kplus1 - j;
|
||||
/* Computing MAX */
|
||||
i__4 = 1, i__2 = j - *k;
|
||||
i__3 = j - 1;
|
||||
for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
|
||||
i__4 = iy;
|
||||
i__2 = iy;
|
||||
i__5 = l + i__ + j * a_dim1;
|
||||
q__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
|
||||
q__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
|
||||
.r;
|
||||
q__1.r = y[i__2].r + q__2.r, q__1.i = y[i__2].i + q__2.i;
|
||||
y[i__4].r = q__1.r, y[i__4].i = q__1.i;
|
||||
r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
|
||||
i__4 = ix;
|
||||
q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, q__2.i =
|
||||
q__3.r * x[i__4].i + q__3.i * x[i__4].r;
|
||||
q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
|
||||
temp2.r = q__1.r, temp2.i = q__1.i;
|
||||
ix += *incx;
|
||||
iy += *incy;
|
||||
/* L70: */
|
||||
}
|
||||
i__3 = jy;
|
||||
i__4 = jy;
|
||||
i__2 = kplus1 + j * a_dim1;
|
||||
r__1 = a[i__2].r;
|
||||
q__3.r = r__1 * temp1.r, q__3.i = r__1 * temp1.i;
|
||||
q__2.r = y[i__4].r + q__3.r, q__2.i = y[i__4].i + q__3.i;
|
||||
q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i =
|
||||
alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
|
||||
y[i__3].r = q__1.r, y[i__3].i = q__1.i;
|
||||
jx += *incx;
|
||||
jy += *incy;
|
||||
if (j > *k) {
|
||||
kx += *incx;
|
||||
ky += *incy;
|
||||
}
|
||||
/* L80: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
||||
/* Form y when lower triangle of A is stored. */
|
||||
|
||||
if (*incx == 1 && *incy == 1) {
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
i__3 = j;
|
||||
q__1.r = alpha->r * x[i__3].r - alpha->i * x[i__3].i, q__1.i =
|
||||
alpha->r * x[i__3].i + alpha->i * x[i__3].r;
|
||||
temp1.r = q__1.r, temp1.i = q__1.i;
|
||||
temp2.r = 0.f, temp2.i = 0.f;
|
||||
i__3 = j;
|
||||
i__4 = j;
|
||||
i__2 = j * a_dim1 + 1;
|
||||
r__1 = a[i__2].r;
|
||||
q__2.r = r__1 * temp1.r, q__2.i = r__1 * temp1.i;
|
||||
q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
|
||||
y[i__3].r = q__1.r, y[i__3].i = q__1.i;
|
||||
l = 1 - j;
|
||||
/* Computing MIN */
|
||||
i__4 = *n, i__2 = j + *k;
|
||||
i__3 = min(i__4,i__2);
|
||||
for (i__ = j + 1; i__ <= i__3; ++i__) {
|
||||
i__4 = i__;
|
||||
i__2 = i__;
|
||||
i__5 = l + i__ + j * a_dim1;
|
||||
q__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
|
||||
q__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
|
||||
.r;
|
||||
q__1.r = y[i__2].r + q__2.r, q__1.i = y[i__2].i + q__2.i;
|
||||
y[i__4].r = q__1.r, y[i__4].i = q__1.i;
|
||||
r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
|
||||
i__4 = i__;
|
||||
q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, q__2.i =
|
||||
q__3.r * x[i__4].i + q__3.i * x[i__4].r;
|
||||
q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
|
||||
temp2.r = q__1.r, temp2.i = q__1.i;
|
||||
/* L90: */
|
||||
}
|
||||
i__3 = j;
|
||||
i__4 = j;
|
||||
q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i =
|
||||
alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
|
||||
y[i__3].r = q__1.r, y[i__3].i = q__1.i;
|
||||
/* L100: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
jy = ky;
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
i__3 = jx;
|
||||
q__1.r = alpha->r * x[i__3].r - alpha->i * x[i__3].i, q__1.i =
|
||||
alpha->r * x[i__3].i + alpha->i * x[i__3].r;
|
||||
temp1.r = q__1.r, temp1.i = q__1.i;
|
||||
temp2.r = 0.f, temp2.i = 0.f;
|
||||
i__3 = jy;
|
||||
i__4 = jy;
|
||||
i__2 = j * a_dim1 + 1;
|
||||
r__1 = a[i__2].r;
|
||||
q__2.r = r__1 * temp1.r, q__2.i = r__1 * temp1.i;
|
||||
q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
|
||||
y[i__3].r = q__1.r, y[i__3].i = q__1.i;
|
||||
l = 1 - j;
|
||||
ix = jx;
|
||||
iy = jy;
|
||||
/* Computing MIN */
|
||||
i__4 = *n, i__2 = j + *k;
|
||||
i__3 = min(i__4,i__2);
|
||||
for (i__ = j + 1; i__ <= i__3; ++i__) {
|
||||
ix += *incx;
|
||||
iy += *incy;
|
||||
i__4 = iy;
|
||||
i__2 = iy;
|
||||
i__5 = l + i__ + j * a_dim1;
|
||||
q__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
|
||||
q__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
|
||||
.r;
|
||||
q__1.r = y[i__2].r + q__2.r, q__1.i = y[i__2].i + q__2.i;
|
||||
y[i__4].r = q__1.r, y[i__4].i = q__1.i;
|
||||
r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
|
||||
i__4 = ix;
|
||||
q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, q__2.i =
|
||||
q__3.r * x[i__4].i + q__3.i * x[i__4].r;
|
||||
q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
|
||||
temp2.r = q__1.r, temp2.i = q__1.i;
|
||||
/* L110: */
|
||||
}
|
||||
i__3 = jy;
|
||||
i__4 = jy;
|
||||
q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i =
|
||||
alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
|
||||
y[i__3].r = q__1.r, y[i__3].i = q__1.i;
|
||||
jx += *incx;
|
||||
jy += *incy;
|
||||
/* L120: */
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
/* End of CHBMV . */
|
||||
|
||||
} /* chbmv_ */
|
||||
|
||||
438
cs440-acg/ext/eigen/blas/f2c/chpmv.c
Normal file
438
cs440-acg/ext/eigen/blas/f2c/chpmv.c
Normal file
@@ -0,0 +1,438 @@
|
||||
/* chpmv.f -- translated by f2c (version 20100827).
|
||||
You must link the resulting object file with libf2c:
|
||||
on Microsoft Windows system, link with libf2c.lib;
|
||||
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
||||
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
||||
-- in that order, at the end of the command line, as in
|
||||
cc *.o -lf2c -lm
|
||||
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
||||
|
||||
http://www.netlib.org/f2c/libf2c.zip
|
||||
*/
|
||||
|
||||
#include "datatypes.h"
|
||||
|
||||
/* Subroutine */ int chpmv_(char *uplo, integer *n, complex *alpha, complex *
|
||||
ap, complex *x, integer *incx, complex *beta, complex *y, integer *
|
||||
incy, ftnlen uplo_len)
|
||||
{
|
||||
/* System generated locals */
|
||||
integer i__1, i__2, i__3, i__4, i__5;
|
||||
real r__1;
|
||||
complex q__1, q__2, q__3, q__4;
|
||||
|
||||
/* Builtin functions */
|
||||
void r_cnjg(complex *, complex *);
|
||||
|
||||
/* Local variables */
|
||||
integer i__, j, k, kk, ix, iy, jx, jy, kx, ky, info;
|
||||
complex temp1, temp2;
|
||||
extern logical lsame_(char *, char *, ftnlen, ftnlen);
|
||||
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
|
||||
/* CHPMV performs the matrix-vector operation */
|
||||
|
||||
/* y := alpha*A*x + beta*y, */
|
||||
|
||||
/* where alpha and beta are scalars, x and y are n element vectors and */
|
||||
/* A is an n by n hermitian matrix, supplied in packed form. */
|
||||
|
||||
/* Arguments */
|
||||
/* ========== */
|
||||
|
||||
/* UPLO - CHARACTER*1. */
|
||||
/* On entry, UPLO specifies whether the upper or lower */
|
||||
/* triangular part of the matrix A is supplied in the packed */
|
||||
/* array AP as follows: */
|
||||
|
||||
/* UPLO = 'U' or 'u' The upper triangular part of A is */
|
||||
/* supplied in AP. */
|
||||
|
||||
/* UPLO = 'L' or 'l' The lower triangular part of A is */
|
||||
/* supplied in AP. */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* N - INTEGER. */
|
||||
/* On entry, N specifies the order of the matrix A. */
|
||||
/* N must be at least zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* ALPHA - COMPLEX . */
|
||||
/* On entry, ALPHA specifies the scalar alpha. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* AP - COMPLEX array of DIMENSION at least */
|
||||
/* ( ( n*( n + 1 ) )/2 ). */
|
||||
/* Before entry with UPLO = 'U' or 'u', the array AP must */
|
||||
/* contain the upper triangular part of the hermitian matrix */
|
||||
/* packed sequentially, column by column, so that AP( 1 ) */
|
||||
/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */
|
||||
/* and a( 2, 2 ) respectively, and so on. */
|
||||
/* Before entry with UPLO = 'L' or 'l', the array AP must */
|
||||
/* contain the lower triangular part of the hermitian matrix */
|
||||
/* packed sequentially, column by column, so that AP( 1 ) */
|
||||
/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */
|
||||
/* and a( 3, 1 ) respectively, and so on. */
|
||||
/* Note that the imaginary parts of the diagonal elements need */
|
||||
/* not be set and are assumed to be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* X - COMPLEX array of dimension at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
|
||||
/* Before entry, the incremented array X must contain the n */
|
||||
/* element vector x. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* INCX - INTEGER. */
|
||||
/* On entry, INCX specifies the increment for the elements of */
|
||||
/* X. INCX must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* BETA - COMPLEX . */
|
||||
/* On entry, BETA specifies the scalar beta. When BETA is */
|
||||
/* supplied as zero then Y need not be set on input. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* Y - COMPLEX array of dimension at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCY ) ). */
|
||||
/* Before entry, the incremented array Y must contain the n */
|
||||
/* element vector y. On exit, Y is overwritten by the updated */
|
||||
/* vector y. */
|
||||
|
||||
/* INCY - INTEGER. */
|
||||
/* On entry, INCY specifies the increment for the elements of */
|
||||
/* Y. INCY must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* Further Details */
|
||||
/* =============== */
|
||||
|
||||
/* Level 2 Blas routine. */
|
||||
|
||||
/* -- Written on 22-October-1986. */
|
||||
/* Jack Dongarra, Argonne National Lab. */
|
||||
/* Jeremy Du Croz, Nag Central Office. */
|
||||
/* Sven Hammarling, Nag Central Office. */
|
||||
/* Richard Hanson, Sandia National Labs. */
|
||||
|
||||
/* ===================================================================== */
|
||||
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
|
||||
/* Test the input parameters. */
|
||||
|
||||
/* Parameter adjustments */
|
||||
--y;
|
||||
--x;
|
||||
--ap;
|
||||
|
||||
/* Function Body */
|
||||
info = 0;
|
||||
if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
|
||||
ftnlen)1, (ftnlen)1)) {
|
||||
info = 1;
|
||||
} else if (*n < 0) {
|
||||
info = 2;
|
||||
} else if (*incx == 0) {
|
||||
info = 6;
|
||||
} else if (*incy == 0) {
|
||||
info = 9;
|
||||
}
|
||||
if (info != 0) {
|
||||
xerbla_("CHPMV ", &info, (ftnlen)6);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Quick return if possible. */
|
||||
|
||||
if (*n == 0 || (alpha->r == 0.f && alpha->i == 0.f && (beta->r == 1.f &&
|
||||
beta->i == 0.f))) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Set up the start points in X and Y. */
|
||||
|
||||
if (*incx > 0) {
|
||||
kx = 1;
|
||||
} else {
|
||||
kx = 1 - (*n - 1) * *incx;
|
||||
}
|
||||
if (*incy > 0) {
|
||||
ky = 1;
|
||||
} else {
|
||||
ky = 1 - (*n - 1) * *incy;
|
||||
}
|
||||
|
||||
/* Start the operations. In this version the elements of the array AP */
|
||||
/* are accessed sequentially with one pass through AP. */
|
||||
|
||||
/* First form y := beta*y. */
|
||||
|
||||
if (beta->r != 1.f || beta->i != 0.f) {
|
||||
if (*incy == 1) {
|
||||
if (beta->r == 0.f && beta->i == 0.f) {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
i__2 = i__;
|
||||
y[i__2].r = 0.f, y[i__2].i = 0.f;
|
||||
/* L10: */
|
||||
}
|
||||
} else {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
i__2 = i__;
|
||||
i__3 = i__;
|
||||
q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
|
||||
q__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
|
||||
.r;
|
||||
y[i__2].r = q__1.r, y[i__2].i = q__1.i;
|
||||
/* L20: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
iy = ky;
|
||||
if (beta->r == 0.f && beta->i == 0.f) {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
i__2 = iy;
|
||||
y[i__2].r = 0.f, y[i__2].i = 0.f;
|
||||
iy += *incy;
|
||||
/* L30: */
|
||||
}
|
||||
} else {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
i__2 = iy;
|
||||
i__3 = iy;
|
||||
q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
|
||||
q__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
|
||||
.r;
|
||||
y[i__2].r = q__1.r, y[i__2].i = q__1.i;
|
||||
iy += *incy;
|
||||
/* L40: */
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (alpha->r == 0.f && alpha->i == 0.f) {
|
||||
return 0;
|
||||
}
|
||||
kk = 1;
|
||||
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
|
||||
|
||||
/* Form y when AP contains the upper triangle. */
|
||||
|
||||
if (*incx == 1 && *incy == 1) {
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
i__2 = j;
|
||||
q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i =
|
||||
alpha->r * x[i__2].i + alpha->i * x[i__2].r;
|
||||
temp1.r = q__1.r, temp1.i = q__1.i;
|
||||
temp2.r = 0.f, temp2.i = 0.f;
|
||||
k = kk;
|
||||
i__2 = j - 1;
|
||||
for (i__ = 1; i__ <= i__2; ++i__) {
|
||||
i__3 = i__;
|
||||
i__4 = i__;
|
||||
i__5 = k;
|
||||
q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
|
||||
q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
|
||||
.r;
|
||||
q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
|
||||
y[i__3].r = q__1.r, y[i__3].i = q__1.i;
|
||||
r_cnjg(&q__3, &ap[k]);
|
||||
i__3 = i__;
|
||||
q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i =
|
||||
q__3.r * x[i__3].i + q__3.i * x[i__3].r;
|
||||
q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
|
||||
temp2.r = q__1.r, temp2.i = q__1.i;
|
||||
++k;
|
||||
/* L50: */
|
||||
}
|
||||
i__2 = j;
|
||||
i__3 = j;
|
||||
i__4 = kk + j - 1;
|
||||
r__1 = ap[i__4].r;
|
||||
q__3.r = r__1 * temp1.r, q__3.i = r__1 * temp1.i;
|
||||
q__2.r = y[i__3].r + q__3.r, q__2.i = y[i__3].i + q__3.i;
|
||||
q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i =
|
||||
alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
|
||||
y[i__2].r = q__1.r, y[i__2].i = q__1.i;
|
||||
kk += j;
|
||||
/* L60: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
jy = ky;
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
i__2 = jx;
|
||||
q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i =
|
||||
alpha->r * x[i__2].i + alpha->i * x[i__2].r;
|
||||
temp1.r = q__1.r, temp1.i = q__1.i;
|
||||
temp2.r = 0.f, temp2.i = 0.f;
|
||||
ix = kx;
|
||||
iy = ky;
|
||||
i__2 = kk + j - 2;
|
||||
for (k = kk; k <= i__2; ++k) {
|
||||
i__3 = iy;
|
||||
i__4 = iy;
|
||||
i__5 = k;
|
||||
q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
|
||||
q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
|
||||
.r;
|
||||
q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
|
||||
y[i__3].r = q__1.r, y[i__3].i = q__1.i;
|
||||
r_cnjg(&q__3, &ap[k]);
|
||||
i__3 = ix;
|
||||
q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i =
|
||||
q__3.r * x[i__3].i + q__3.i * x[i__3].r;
|
||||
q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
|
||||
temp2.r = q__1.r, temp2.i = q__1.i;
|
||||
ix += *incx;
|
||||
iy += *incy;
|
||||
/* L70: */
|
||||
}
|
||||
i__2 = jy;
|
||||
i__3 = jy;
|
||||
i__4 = kk + j - 1;
|
||||
r__1 = ap[i__4].r;
|
||||
q__3.r = r__1 * temp1.r, q__3.i = r__1 * temp1.i;
|
||||
q__2.r = y[i__3].r + q__3.r, q__2.i = y[i__3].i + q__3.i;
|
||||
q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i =
|
||||
alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
|
||||
y[i__2].r = q__1.r, y[i__2].i = q__1.i;
|
||||
jx += *incx;
|
||||
jy += *incy;
|
||||
kk += j;
|
||||
/* L80: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
||||
/* Form y when AP contains the lower triangle. */
|
||||
|
||||
if (*incx == 1 && *incy == 1) {
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
i__2 = j;
|
||||
q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i =
|
||||
alpha->r * x[i__2].i + alpha->i * x[i__2].r;
|
||||
temp1.r = q__1.r, temp1.i = q__1.i;
|
||||
temp2.r = 0.f, temp2.i = 0.f;
|
||||
i__2 = j;
|
||||
i__3 = j;
|
||||
i__4 = kk;
|
||||
r__1 = ap[i__4].r;
|
||||
q__2.r = r__1 * temp1.r, q__2.i = r__1 * temp1.i;
|
||||
q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i;
|
||||
y[i__2].r = q__1.r, y[i__2].i = q__1.i;
|
||||
k = kk + 1;
|
||||
i__2 = *n;
|
||||
for (i__ = j + 1; i__ <= i__2; ++i__) {
|
||||
i__3 = i__;
|
||||
i__4 = i__;
|
||||
i__5 = k;
|
||||
q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
|
||||
q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
|
||||
.r;
|
||||
q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
|
||||
y[i__3].r = q__1.r, y[i__3].i = q__1.i;
|
||||
r_cnjg(&q__3, &ap[k]);
|
||||
i__3 = i__;
|
||||
q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i =
|
||||
q__3.r * x[i__3].i + q__3.i * x[i__3].r;
|
||||
q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
|
||||
temp2.r = q__1.r, temp2.i = q__1.i;
|
||||
++k;
|
||||
/* L90: */
|
||||
}
|
||||
i__2 = j;
|
||||
i__3 = j;
|
||||
q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i =
|
||||
alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i;
|
||||
y[i__2].r = q__1.r, y[i__2].i = q__1.i;
|
||||
kk += *n - j + 1;
|
||||
/* L100: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
jy = ky;
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
i__2 = jx;
|
||||
q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i =
|
||||
alpha->r * x[i__2].i + alpha->i * x[i__2].r;
|
||||
temp1.r = q__1.r, temp1.i = q__1.i;
|
||||
temp2.r = 0.f, temp2.i = 0.f;
|
||||
i__2 = jy;
|
||||
i__3 = jy;
|
||||
i__4 = kk;
|
||||
r__1 = ap[i__4].r;
|
||||
q__2.r = r__1 * temp1.r, q__2.i = r__1 * temp1.i;
|
||||
q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i;
|
||||
y[i__2].r = q__1.r, y[i__2].i = q__1.i;
|
||||
ix = jx;
|
||||
iy = jy;
|
||||
i__2 = kk + *n - j;
|
||||
for (k = kk + 1; k <= i__2; ++k) {
|
||||
ix += *incx;
|
||||
iy += *incy;
|
||||
i__3 = iy;
|
||||
i__4 = iy;
|
||||
i__5 = k;
|
||||
q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
|
||||
q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
|
||||
.r;
|
||||
q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
|
||||
y[i__3].r = q__1.r, y[i__3].i = q__1.i;
|
||||
r_cnjg(&q__3, &ap[k]);
|
||||
i__3 = ix;
|
||||
q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i =
|
||||
q__3.r * x[i__3].i + q__3.i * x[i__3].r;
|
||||
q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
|
||||
temp2.r = q__1.r, temp2.i = q__1.i;
|
||||
/* L110: */
|
||||
}
|
||||
i__2 = jy;
|
||||
i__3 = jy;
|
||||
q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i =
|
||||
alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i;
|
||||
y[i__2].r = q__1.r, y[i__2].i = q__1.i;
|
||||
jx += *incx;
|
||||
jy += *incy;
|
||||
kk += *n - j + 1;
|
||||
/* L120: */
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
/* End of CHPMV . */
|
||||
|
||||
} /* chpmv_ */
|
||||
|
||||
84
cs440-acg/ext/eigen/blas/f2c/complexdots.c
Normal file
84
cs440-acg/ext/eigen/blas/f2c/complexdots.c
Normal file
@@ -0,0 +1,84 @@
|
||||
/* This file has been modified to use the standard gfortran calling
|
||||
convention, rather than the f2c calling convention.
|
||||
|
||||
It does not require -ff2c when compiled with gfortran.
|
||||
*/
|
||||
|
||||
/* complexdots.f -- translated by f2c (version 20100827).
|
||||
You must link the resulting object file with libf2c:
|
||||
on Microsoft Windows system, link with libf2c.lib;
|
||||
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
||||
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
||||
-- in that order, at the end of the command line, as in
|
||||
cc *.o -lf2c -lm
|
||||
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
||||
|
||||
http://www.netlib.org/f2c/libf2c.zip
|
||||
*/
|
||||
|
||||
#include "datatypes.h"
|
||||
|
||||
complex cdotc_(integer *n, complex *cx, integer
|
||||
*incx, complex *cy, integer *incy)
|
||||
{
|
||||
complex res;
|
||||
extern /* Subroutine */ int cdotcw_(integer *, complex *, integer *,
|
||||
complex *, integer *, complex *);
|
||||
|
||||
/* Parameter adjustments */
|
||||
--cy;
|
||||
--cx;
|
||||
|
||||
/* Function Body */
|
||||
cdotcw_(n, &cx[1], incx, &cy[1], incy, &res);
|
||||
return res;
|
||||
} /* cdotc_ */
|
||||
|
||||
complex cdotu_(integer *n, complex *cx, integer
|
||||
*incx, complex *cy, integer *incy)
|
||||
{
|
||||
complex res;
|
||||
extern /* Subroutine */ int cdotuw_(integer *, complex *, integer *,
|
||||
complex *, integer *, complex *);
|
||||
|
||||
/* Parameter adjustments */
|
||||
--cy;
|
||||
--cx;
|
||||
|
||||
/* Function Body */
|
||||
cdotuw_(n, &cx[1], incx, &cy[1], incy, &res);
|
||||
return res;
|
||||
} /* cdotu_ */
|
||||
|
||||
doublecomplex zdotc_(integer *n, doublecomplex *cx, integer *incx,
|
||||
doublecomplex *cy, integer *incy)
|
||||
{
|
||||
doublecomplex res;
|
||||
extern /* Subroutine */ int zdotcw_(integer *, doublecomplex *, integer *,
|
||||
doublecomplex *, integer *, doublecomplex *);
|
||||
|
||||
/* Parameter adjustments */
|
||||
--cy;
|
||||
--cx;
|
||||
|
||||
/* Function Body */
|
||||
zdotcw_(n, &cx[1], incx, &cy[1], incy, &res);
|
||||
return res;
|
||||
} /* zdotc_ */
|
||||
|
||||
doublecomplex zdotu_(integer *n, doublecomplex *cx, integer *incx,
|
||||
doublecomplex *cy, integer *incy)
|
||||
{
|
||||
doublecomplex res;
|
||||
extern /* Subroutine */ int zdotuw_(integer *, doublecomplex *, integer *,
|
||||
doublecomplex *, integer *, doublecomplex *);
|
||||
|
||||
/* Parameter adjustments */
|
||||
--cy;
|
||||
--cx;
|
||||
|
||||
/* Function Body */
|
||||
zdotuw_(n, &cx[1], incx, &cy[1], incy, &res);
|
||||
return res;
|
||||
} /* zdotu_ */
|
||||
|
||||
647
cs440-acg/ext/eigen/blas/f2c/ctbmv.c
Normal file
647
cs440-acg/ext/eigen/blas/f2c/ctbmv.c
Normal file
@@ -0,0 +1,647 @@
|
||||
/* ctbmv.f -- translated by f2c (version 20100827).
|
||||
You must link the resulting object file with libf2c:
|
||||
on Microsoft Windows system, link with libf2c.lib;
|
||||
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
||||
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
||||
-- in that order, at the end of the command line, as in
|
||||
cc *.o -lf2c -lm
|
||||
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
||||
|
||||
http://www.netlib.org/f2c/libf2c.zip
|
||||
*/
|
||||
|
||||
#include "datatypes.h"
|
||||
|
||||
/* Subroutine */ int ctbmv_(char *uplo, char *trans, char *diag, integer *n,
|
||||
integer *k, complex *a, integer *lda, complex *x, integer *incx,
|
||||
ftnlen uplo_len, ftnlen trans_len, ftnlen diag_len)
|
||||
{
|
||||
/* System generated locals */
|
||||
integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
|
||||
complex q__1, q__2, q__3;
|
||||
|
||||
/* Builtin functions */
|
||||
void r_cnjg(complex *, complex *);
|
||||
|
||||
/* Local variables */
|
||||
integer i__, j, l, ix, jx, kx, info;
|
||||
complex temp;
|
||||
extern logical lsame_(char *, char *, ftnlen, ftnlen);
|
||||
integer kplus1;
|
||||
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
||||
logical noconj, nounit;
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
|
||||
/* CTBMV performs one of the matrix-vector operations */
|
||||
|
||||
/* x := A*x, or x := A'*x, or x := conjg( A' )*x, */
|
||||
|
||||
/* where x is an n element vector and A is an n by n unit, or non-unit, */
|
||||
/* upper or lower triangular band matrix, with ( k + 1 ) diagonals. */
|
||||
|
||||
/* Arguments */
|
||||
/* ========== */
|
||||
|
||||
/* UPLO - CHARACTER*1. */
|
||||
/* On entry, UPLO specifies whether the matrix is an upper or */
|
||||
/* lower triangular matrix as follows: */
|
||||
|
||||
/* UPLO = 'U' or 'u' A is an upper triangular matrix. */
|
||||
|
||||
/* UPLO = 'L' or 'l' A is a lower triangular matrix. */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* TRANS - CHARACTER*1. */
|
||||
/* On entry, TRANS specifies the operation to be performed as */
|
||||
/* follows: */
|
||||
|
||||
/* TRANS = 'N' or 'n' x := A*x. */
|
||||
|
||||
/* TRANS = 'T' or 't' x := A'*x. */
|
||||
|
||||
/* TRANS = 'C' or 'c' x := conjg( A' )*x. */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* DIAG - CHARACTER*1. */
|
||||
/* On entry, DIAG specifies whether or not A is unit */
|
||||
/* triangular as follows: */
|
||||
|
||||
/* DIAG = 'U' or 'u' A is assumed to be unit triangular. */
|
||||
|
||||
/* DIAG = 'N' or 'n' A is not assumed to be unit */
|
||||
/* triangular. */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* N - INTEGER. */
|
||||
/* On entry, N specifies the order of the matrix A. */
|
||||
/* N must be at least zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* K - INTEGER. */
|
||||
/* On entry with UPLO = 'U' or 'u', K specifies the number of */
|
||||
/* super-diagonals of the matrix A. */
|
||||
/* On entry with UPLO = 'L' or 'l', K specifies the number of */
|
||||
/* sub-diagonals of the matrix A. */
|
||||
/* K must satisfy 0 .le. K. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* A - COMPLEX array of DIMENSION ( LDA, n ). */
|
||||
/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the upper triangular */
|
||||
/* band part of the matrix of coefficients, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row */
|
||||
/* ( k + 1 ) of the array, the first super-diagonal starting at */
|
||||
/* position 2 in row k, and so on. The top left k by k triangle */
|
||||
/* of the array A is not referenced. */
|
||||
/* The following program segment will transfer an upper */
|
||||
/* triangular band matrix from conventional full matrix storage */
|
||||
/* to band storage: */
|
||||
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = K + 1 - J */
|
||||
/* DO 10, I = MAX( 1, J - K ), J */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
|
||||
/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the lower triangular */
|
||||
/* band part of the matrix of coefficients, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row 1 of */
|
||||
/* the array, the first sub-diagonal starting at position 1 in */
|
||||
/* row 2, and so on. The bottom right k by k triangle of the */
|
||||
/* array A is not referenced. */
|
||||
/* The following program segment will transfer a lower */
|
||||
/* triangular band matrix from conventional full matrix storage */
|
||||
/* to band storage: */
|
||||
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = 1 - J */
|
||||
/* DO 10, I = J, MIN( N, J + K ) */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
|
||||
/* Note that when DIAG = 'U' or 'u' the elements of the array A */
|
||||
/* corresponding to the diagonal elements of the matrix are not */
|
||||
/* referenced, but are assumed to be unity. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* LDA - INTEGER. */
|
||||
/* On entry, LDA specifies the first dimension of A as declared */
|
||||
/* in the calling (sub) program. LDA must be at least */
|
||||
/* ( k + 1 ). */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* X - COMPLEX array of dimension at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
|
||||
/* Before entry, the incremented array X must contain the n */
|
||||
/* element vector x. On exit, X is overwritten with the */
|
||||
/* tranformed vector x. */
|
||||
|
||||
/* INCX - INTEGER. */
|
||||
/* On entry, INCX specifies the increment for the elements of */
|
||||
/* X. INCX must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* Further Details */
|
||||
/* =============== */
|
||||
|
||||
/* Level 2 Blas routine. */
|
||||
|
||||
/* -- Written on 22-October-1986. */
|
||||
/* Jack Dongarra, Argonne National Lab. */
|
||||
/* Jeremy Du Croz, Nag Central Office. */
|
||||
/* Sven Hammarling, Nag Central Office. */
|
||||
/* Richard Hanson, Sandia National Labs. */
|
||||
|
||||
/* ===================================================================== */
|
||||
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
|
||||
/* Test the input parameters. */
|
||||
|
||||
/* Parameter adjustments */
|
||||
a_dim1 = *lda;
|
||||
a_offset = 1 + a_dim1;
|
||||
a -= a_offset;
|
||||
--x;
|
||||
|
||||
/* Function Body */
|
||||
info = 0;
|
||||
if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
|
||||
ftnlen)1, (ftnlen)1)) {
|
||||
info = 1;
|
||||
} else if (! lsame_(trans, "N", (ftnlen)1, (ftnlen)1) && ! lsame_(trans,
|
||||
"T", (ftnlen)1, (ftnlen)1) && ! lsame_(trans, "C", (ftnlen)1, (
|
||||
ftnlen)1)) {
|
||||
info = 2;
|
||||
} else if (! lsame_(diag, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(diag,
|
||||
"N", (ftnlen)1, (ftnlen)1)) {
|
||||
info = 3;
|
||||
} else if (*n < 0) {
|
||||
info = 4;
|
||||
} else if (*k < 0) {
|
||||
info = 5;
|
||||
} else if (*lda < *k + 1) {
|
||||
info = 7;
|
||||
} else if (*incx == 0) {
|
||||
info = 9;
|
||||
}
|
||||
if (info != 0) {
|
||||
xerbla_("CTBMV ", &info, (ftnlen)6);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Quick return if possible. */
|
||||
|
||||
if (*n == 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
noconj = lsame_(trans, "T", (ftnlen)1, (ftnlen)1);
|
||||
nounit = lsame_(diag, "N", (ftnlen)1, (ftnlen)1);
|
||||
|
||||
/* Set up the start point in X if the increment is not unity. This */
|
||||
/* will be ( N - 1 )*INCX too small for descending loops. */
|
||||
|
||||
if (*incx <= 0) {
|
||||
kx = 1 - (*n - 1) * *incx;
|
||||
} else if (*incx != 1) {
|
||||
kx = 1;
|
||||
}
|
||||
|
||||
/* Start the operations. In this version the elements of A are */
|
||||
/* accessed sequentially with one pass through A. */
|
||||
|
||||
if (lsame_(trans, "N", (ftnlen)1, (ftnlen)1)) {
|
||||
|
||||
/* Form x := A*x. */
|
||||
|
||||
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
|
||||
kplus1 = *k + 1;
|
||||
if (*incx == 1) {
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
i__2 = j;
|
||||
if (x[i__2].r != 0.f || x[i__2].i != 0.f) {
|
||||
i__2 = j;
|
||||
temp.r = x[i__2].r, temp.i = x[i__2].i;
|
||||
l = kplus1 - j;
|
||||
/* Computing MAX */
|
||||
i__2 = 1, i__3 = j - *k;
|
||||
i__4 = j - 1;
|
||||
for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
|
||||
i__2 = i__;
|
||||
i__3 = i__;
|
||||
i__5 = l + i__ + j * a_dim1;
|
||||
q__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
|
||||
q__2.i = temp.r * a[i__5].i + temp.i * a[
|
||||
i__5].r;
|
||||
q__1.r = x[i__3].r + q__2.r, q__1.i = x[i__3].i +
|
||||
q__2.i;
|
||||
x[i__2].r = q__1.r, x[i__2].i = q__1.i;
|
||||
/* L10: */
|
||||
}
|
||||
if (nounit) {
|
||||
i__4 = j;
|
||||
i__2 = j;
|
||||
i__3 = kplus1 + j * a_dim1;
|
||||
q__1.r = x[i__2].r * a[i__3].r - x[i__2].i * a[
|
||||
i__3].i, q__1.i = x[i__2].r * a[i__3].i +
|
||||
x[i__2].i * a[i__3].r;
|
||||
x[i__4].r = q__1.r, x[i__4].i = q__1.i;
|
||||
}
|
||||
}
|
||||
/* L20: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
i__4 = jx;
|
||||
if (x[i__4].r != 0.f || x[i__4].i != 0.f) {
|
||||
i__4 = jx;
|
||||
temp.r = x[i__4].r, temp.i = x[i__4].i;
|
||||
ix = kx;
|
||||
l = kplus1 - j;
|
||||
/* Computing MAX */
|
||||
i__4 = 1, i__2 = j - *k;
|
||||
i__3 = j - 1;
|
||||
for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
|
||||
i__4 = ix;
|
||||
i__2 = ix;
|
||||
i__5 = l + i__ + j * a_dim1;
|
||||
q__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
|
||||
q__2.i = temp.r * a[i__5].i + temp.i * a[
|
||||
i__5].r;
|
||||
q__1.r = x[i__2].r + q__2.r, q__1.i = x[i__2].i +
|
||||
q__2.i;
|
||||
x[i__4].r = q__1.r, x[i__4].i = q__1.i;
|
||||
ix += *incx;
|
||||
/* L30: */
|
||||
}
|
||||
if (nounit) {
|
||||
i__3 = jx;
|
||||
i__4 = jx;
|
||||
i__2 = kplus1 + j * a_dim1;
|
||||
q__1.r = x[i__4].r * a[i__2].r - x[i__4].i * a[
|
||||
i__2].i, q__1.i = x[i__4].r * a[i__2].i +
|
||||
x[i__4].i * a[i__2].r;
|
||||
x[i__3].r = q__1.r, x[i__3].i = q__1.i;
|
||||
}
|
||||
}
|
||||
jx += *incx;
|
||||
if (j > *k) {
|
||||
kx += *incx;
|
||||
}
|
||||
/* L40: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if (*incx == 1) {
|
||||
for (j = *n; j >= 1; --j) {
|
||||
i__1 = j;
|
||||
if (x[i__1].r != 0.f || x[i__1].i != 0.f) {
|
||||
i__1 = j;
|
||||
temp.r = x[i__1].r, temp.i = x[i__1].i;
|
||||
l = 1 - j;
|
||||
/* Computing MIN */
|
||||
i__1 = *n, i__3 = j + *k;
|
||||
i__4 = j + 1;
|
||||
for (i__ = min(i__1,i__3); i__ >= i__4; --i__) {
|
||||
i__1 = i__;
|
||||
i__3 = i__;
|
||||
i__2 = l + i__ + j * a_dim1;
|
||||
q__2.r = temp.r * a[i__2].r - temp.i * a[i__2].i,
|
||||
q__2.i = temp.r * a[i__2].i + temp.i * a[
|
||||
i__2].r;
|
||||
q__1.r = x[i__3].r + q__2.r, q__1.i = x[i__3].i +
|
||||
q__2.i;
|
||||
x[i__1].r = q__1.r, x[i__1].i = q__1.i;
|
||||
/* L50: */
|
||||
}
|
||||
if (nounit) {
|
||||
i__4 = j;
|
||||
i__1 = j;
|
||||
i__3 = j * a_dim1 + 1;
|
||||
q__1.r = x[i__1].r * a[i__3].r - x[i__1].i * a[
|
||||
i__3].i, q__1.i = x[i__1].r * a[i__3].i +
|
||||
x[i__1].i * a[i__3].r;
|
||||
x[i__4].r = q__1.r, x[i__4].i = q__1.i;
|
||||
}
|
||||
}
|
||||
/* L60: */
|
||||
}
|
||||
} else {
|
||||
kx += (*n - 1) * *incx;
|
||||
jx = kx;
|
||||
for (j = *n; j >= 1; --j) {
|
||||
i__4 = jx;
|
||||
if (x[i__4].r != 0.f || x[i__4].i != 0.f) {
|
||||
i__4 = jx;
|
||||
temp.r = x[i__4].r, temp.i = x[i__4].i;
|
||||
ix = kx;
|
||||
l = 1 - j;
|
||||
/* Computing MIN */
|
||||
i__4 = *n, i__1 = j + *k;
|
||||
i__3 = j + 1;
|
||||
for (i__ = min(i__4,i__1); i__ >= i__3; --i__) {
|
||||
i__4 = ix;
|
||||
i__1 = ix;
|
||||
i__2 = l + i__ + j * a_dim1;
|
||||
q__2.r = temp.r * a[i__2].r - temp.i * a[i__2].i,
|
||||
q__2.i = temp.r * a[i__2].i + temp.i * a[
|
||||
i__2].r;
|
||||
q__1.r = x[i__1].r + q__2.r, q__1.i = x[i__1].i +
|
||||
q__2.i;
|
||||
x[i__4].r = q__1.r, x[i__4].i = q__1.i;
|
||||
ix -= *incx;
|
||||
/* L70: */
|
||||
}
|
||||
if (nounit) {
|
||||
i__3 = jx;
|
||||
i__4 = jx;
|
||||
i__1 = j * a_dim1 + 1;
|
||||
q__1.r = x[i__4].r * a[i__1].r - x[i__4].i * a[
|
||||
i__1].i, q__1.i = x[i__4].r * a[i__1].i +
|
||||
x[i__4].i * a[i__1].r;
|
||||
x[i__3].r = q__1.r, x[i__3].i = q__1.i;
|
||||
}
|
||||
}
|
||||
jx -= *incx;
|
||||
if (*n - j >= *k) {
|
||||
kx -= *incx;
|
||||
}
|
||||
/* L80: */
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
||||
/* Form x := A'*x or x := conjg( A' )*x. */
|
||||
|
||||
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
|
||||
kplus1 = *k + 1;
|
||||
if (*incx == 1) {
|
||||
for (j = *n; j >= 1; --j) {
|
||||
i__3 = j;
|
||||
temp.r = x[i__3].r, temp.i = x[i__3].i;
|
||||
l = kplus1 - j;
|
||||
if (noconj) {
|
||||
if (nounit) {
|
||||
i__3 = kplus1 + j * a_dim1;
|
||||
q__1.r = temp.r * a[i__3].r - temp.i * a[i__3].i,
|
||||
q__1.i = temp.r * a[i__3].i + temp.i * a[
|
||||
i__3].r;
|
||||
temp.r = q__1.r, temp.i = q__1.i;
|
||||
}
|
||||
/* Computing MAX */
|
||||
i__4 = 1, i__1 = j - *k;
|
||||
i__3 = max(i__4,i__1);
|
||||
for (i__ = j - 1; i__ >= i__3; --i__) {
|
||||
i__4 = l + i__ + j * a_dim1;
|
||||
i__1 = i__;
|
||||
q__2.r = a[i__4].r * x[i__1].r - a[i__4].i * x[
|
||||
i__1].i, q__2.i = a[i__4].r * x[i__1].i +
|
||||
a[i__4].i * x[i__1].r;
|
||||
q__1.r = temp.r + q__2.r, q__1.i = temp.i +
|
||||
q__2.i;
|
||||
temp.r = q__1.r, temp.i = q__1.i;
|
||||
/* L90: */
|
||||
}
|
||||
} else {
|
||||
if (nounit) {
|
||||
r_cnjg(&q__2, &a[kplus1 + j * a_dim1]);
|
||||
q__1.r = temp.r * q__2.r - temp.i * q__2.i,
|
||||
q__1.i = temp.r * q__2.i + temp.i *
|
||||
q__2.r;
|
||||
temp.r = q__1.r, temp.i = q__1.i;
|
||||
}
|
||||
/* Computing MAX */
|
||||
i__4 = 1, i__1 = j - *k;
|
||||
i__3 = max(i__4,i__1);
|
||||
for (i__ = j - 1; i__ >= i__3; --i__) {
|
||||
r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
|
||||
i__4 = i__;
|
||||
q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i,
|
||||
q__2.i = q__3.r * x[i__4].i + q__3.i * x[
|
||||
i__4].r;
|
||||
q__1.r = temp.r + q__2.r, q__1.i = temp.i +
|
||||
q__2.i;
|
||||
temp.r = q__1.r, temp.i = q__1.i;
|
||||
/* L100: */
|
||||
}
|
||||
}
|
||||
i__3 = j;
|
||||
x[i__3].r = temp.r, x[i__3].i = temp.i;
|
||||
/* L110: */
|
||||
}
|
||||
} else {
|
||||
kx += (*n - 1) * *incx;
|
||||
jx = kx;
|
||||
for (j = *n; j >= 1; --j) {
|
||||
i__3 = jx;
|
||||
temp.r = x[i__3].r, temp.i = x[i__3].i;
|
||||
kx -= *incx;
|
||||
ix = kx;
|
||||
l = kplus1 - j;
|
||||
if (noconj) {
|
||||
if (nounit) {
|
||||
i__3 = kplus1 + j * a_dim1;
|
||||
q__1.r = temp.r * a[i__3].r - temp.i * a[i__3].i,
|
||||
q__1.i = temp.r * a[i__3].i + temp.i * a[
|
||||
i__3].r;
|
||||
temp.r = q__1.r, temp.i = q__1.i;
|
||||
}
|
||||
/* Computing MAX */
|
||||
i__4 = 1, i__1 = j - *k;
|
||||
i__3 = max(i__4,i__1);
|
||||
for (i__ = j - 1; i__ >= i__3; --i__) {
|
||||
i__4 = l + i__ + j * a_dim1;
|
||||
i__1 = ix;
|
||||
q__2.r = a[i__4].r * x[i__1].r - a[i__4].i * x[
|
||||
i__1].i, q__2.i = a[i__4].r * x[i__1].i +
|
||||
a[i__4].i * x[i__1].r;
|
||||
q__1.r = temp.r + q__2.r, q__1.i = temp.i +
|
||||
q__2.i;
|
||||
temp.r = q__1.r, temp.i = q__1.i;
|
||||
ix -= *incx;
|
||||
/* L120: */
|
||||
}
|
||||
} else {
|
||||
if (nounit) {
|
||||
r_cnjg(&q__2, &a[kplus1 + j * a_dim1]);
|
||||
q__1.r = temp.r * q__2.r - temp.i * q__2.i,
|
||||
q__1.i = temp.r * q__2.i + temp.i *
|
||||
q__2.r;
|
||||
temp.r = q__1.r, temp.i = q__1.i;
|
||||
}
|
||||
/* Computing MAX */
|
||||
i__4 = 1, i__1 = j - *k;
|
||||
i__3 = max(i__4,i__1);
|
||||
for (i__ = j - 1; i__ >= i__3; --i__) {
|
||||
r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
|
||||
i__4 = ix;
|
||||
q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i,
|
||||
q__2.i = q__3.r * x[i__4].i + q__3.i * x[
|
||||
i__4].r;
|
||||
q__1.r = temp.r + q__2.r, q__1.i = temp.i +
|
||||
q__2.i;
|
||||
temp.r = q__1.r, temp.i = q__1.i;
|
||||
ix -= *incx;
|
||||
/* L130: */
|
||||
}
|
||||
}
|
||||
i__3 = jx;
|
||||
x[i__3].r = temp.r, x[i__3].i = temp.i;
|
||||
jx -= *incx;
|
||||
/* L140: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if (*incx == 1) {
|
||||
i__3 = *n;
|
||||
for (j = 1; j <= i__3; ++j) {
|
||||
i__4 = j;
|
||||
temp.r = x[i__4].r, temp.i = x[i__4].i;
|
||||
l = 1 - j;
|
||||
if (noconj) {
|
||||
if (nounit) {
|
||||
i__4 = j * a_dim1 + 1;
|
||||
q__1.r = temp.r * a[i__4].r - temp.i * a[i__4].i,
|
||||
q__1.i = temp.r * a[i__4].i + temp.i * a[
|
||||
i__4].r;
|
||||
temp.r = q__1.r, temp.i = q__1.i;
|
||||
}
|
||||
/* Computing MIN */
|
||||
i__1 = *n, i__2 = j + *k;
|
||||
i__4 = min(i__1,i__2);
|
||||
for (i__ = j + 1; i__ <= i__4; ++i__) {
|
||||
i__1 = l + i__ + j * a_dim1;
|
||||
i__2 = i__;
|
||||
q__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[
|
||||
i__2].i, q__2.i = a[i__1].r * x[i__2].i +
|
||||
a[i__1].i * x[i__2].r;
|
||||
q__1.r = temp.r + q__2.r, q__1.i = temp.i +
|
||||
q__2.i;
|
||||
temp.r = q__1.r, temp.i = q__1.i;
|
||||
/* L150: */
|
||||
}
|
||||
} else {
|
||||
if (nounit) {
|
||||
r_cnjg(&q__2, &a[j * a_dim1 + 1]);
|
||||
q__1.r = temp.r * q__2.r - temp.i * q__2.i,
|
||||
q__1.i = temp.r * q__2.i + temp.i *
|
||||
q__2.r;
|
||||
temp.r = q__1.r, temp.i = q__1.i;
|
||||
}
|
||||
/* Computing MIN */
|
||||
i__1 = *n, i__2 = j + *k;
|
||||
i__4 = min(i__1,i__2);
|
||||
for (i__ = j + 1; i__ <= i__4; ++i__) {
|
||||
r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
|
||||
i__1 = i__;
|
||||
q__2.r = q__3.r * x[i__1].r - q__3.i * x[i__1].i,
|
||||
q__2.i = q__3.r * x[i__1].i + q__3.i * x[
|
||||
i__1].r;
|
||||
q__1.r = temp.r + q__2.r, q__1.i = temp.i +
|
||||
q__2.i;
|
||||
temp.r = q__1.r, temp.i = q__1.i;
|
||||
/* L160: */
|
||||
}
|
||||
}
|
||||
i__4 = j;
|
||||
x[i__4].r = temp.r, x[i__4].i = temp.i;
|
||||
/* L170: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
i__3 = *n;
|
||||
for (j = 1; j <= i__3; ++j) {
|
||||
i__4 = jx;
|
||||
temp.r = x[i__4].r, temp.i = x[i__4].i;
|
||||
kx += *incx;
|
||||
ix = kx;
|
||||
l = 1 - j;
|
||||
if (noconj) {
|
||||
if (nounit) {
|
||||
i__4 = j * a_dim1 + 1;
|
||||
q__1.r = temp.r * a[i__4].r - temp.i * a[i__4].i,
|
||||
q__1.i = temp.r * a[i__4].i + temp.i * a[
|
||||
i__4].r;
|
||||
temp.r = q__1.r, temp.i = q__1.i;
|
||||
}
|
||||
/* Computing MIN */
|
||||
i__1 = *n, i__2 = j + *k;
|
||||
i__4 = min(i__1,i__2);
|
||||
for (i__ = j + 1; i__ <= i__4; ++i__) {
|
||||
i__1 = l + i__ + j * a_dim1;
|
||||
i__2 = ix;
|
||||
q__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[
|
||||
i__2].i, q__2.i = a[i__1].r * x[i__2].i +
|
||||
a[i__1].i * x[i__2].r;
|
||||
q__1.r = temp.r + q__2.r, q__1.i = temp.i +
|
||||
q__2.i;
|
||||
temp.r = q__1.r, temp.i = q__1.i;
|
||||
ix += *incx;
|
||||
/* L180: */
|
||||
}
|
||||
} else {
|
||||
if (nounit) {
|
||||
r_cnjg(&q__2, &a[j * a_dim1 + 1]);
|
||||
q__1.r = temp.r * q__2.r - temp.i * q__2.i,
|
||||
q__1.i = temp.r * q__2.i + temp.i *
|
||||
q__2.r;
|
||||
temp.r = q__1.r, temp.i = q__1.i;
|
||||
}
|
||||
/* Computing MIN */
|
||||
i__1 = *n, i__2 = j + *k;
|
||||
i__4 = min(i__1,i__2);
|
||||
for (i__ = j + 1; i__ <= i__4; ++i__) {
|
||||
r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
|
||||
i__1 = ix;
|
||||
q__2.r = q__3.r * x[i__1].r - q__3.i * x[i__1].i,
|
||||
q__2.i = q__3.r * x[i__1].i + q__3.i * x[
|
||||
i__1].r;
|
||||
q__1.r = temp.r + q__2.r, q__1.i = temp.i +
|
||||
q__2.i;
|
||||
temp.r = q__1.r, temp.i = q__1.i;
|
||||
ix += *incx;
|
||||
/* L190: */
|
||||
}
|
||||
}
|
||||
i__4 = jx;
|
||||
x[i__4].r = temp.r, x[i__4].i = temp.i;
|
||||
jx += *incx;
|
||||
/* L200: */
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
/* End of CTBMV . */
|
||||
|
||||
} /* ctbmv_ */
|
||||
|
||||
6
cs440-acg/ext/eigen/blas/f2c/d_cnjg.c
Normal file
6
cs440-acg/ext/eigen/blas/f2c/d_cnjg.c
Normal file
@@ -0,0 +1,6 @@
|
||||
#include "datatypes.h"
|
||||
|
||||
void d_cnjg(doublecomplex *r, doublecomplex *z) {
|
||||
r->r = z->r;
|
||||
r->i = -(z->i);
|
||||
}
|
||||
24
cs440-acg/ext/eigen/blas/f2c/datatypes.h
Normal file
24
cs440-acg/ext/eigen/blas/f2c/datatypes.h
Normal file
@@ -0,0 +1,24 @@
|
||||
/* This contains a limited subset of the typedefs exposed by f2c
|
||||
for use by the Eigen BLAS C-only implementation.
|
||||
*/
|
||||
|
||||
#ifndef __EIGEN_DATATYPES_H__
|
||||
#define __EIGEN_DATATYPES_H__
|
||||
|
||||
typedef int integer;
|
||||
typedef unsigned int uinteger;
|
||||
typedef float real;
|
||||
typedef double doublereal;
|
||||
typedef struct { real r, i; } complex;
|
||||
typedef struct { doublereal r, i; } doublecomplex;
|
||||
typedef int ftnlen;
|
||||
typedef int logical;
|
||||
|
||||
#define abs(x) ((x) >= 0 ? (x) : -(x))
|
||||
#define dabs(x) (doublereal)abs(x)
|
||||
#define min(a,b) ((a) <= (b) ? (a) : (b))
|
||||
#define max(a,b) ((a) >= (b) ? (a) : (b))
|
||||
#define dmin(a,b) (doublereal)min(a,b)
|
||||
#define dmax(a,b) (doublereal)max(a,b)
|
||||
|
||||
#endif
|
||||
215
cs440-acg/ext/eigen/blas/f2c/drotm.c
Normal file
215
cs440-acg/ext/eigen/blas/f2c/drotm.c
Normal file
@@ -0,0 +1,215 @@
|
||||
/* drotm.f -- translated by f2c (version 20100827).
|
||||
You must link the resulting object file with libf2c:
|
||||
on Microsoft Windows system, link with libf2c.lib;
|
||||
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
||||
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
||||
-- in that order, at the end of the command line, as in
|
||||
cc *.o -lf2c -lm
|
||||
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
||||
|
||||
http://www.netlib.org/f2c/libf2c.zip
|
||||
*/
|
||||
|
||||
#include "datatypes.h"
|
||||
|
||||
/* Subroutine */ int drotm_(integer *n, doublereal *dx, integer *incx,
|
||||
doublereal *dy, integer *incy, doublereal *dparam)
|
||||
{
|
||||
/* Initialized data */
|
||||
|
||||
static doublereal zero = 0.;
|
||||
static doublereal two = 2.;
|
||||
|
||||
/* System generated locals */
|
||||
integer i__1, i__2;
|
||||
|
||||
/* Local variables */
|
||||
integer i__;
|
||||
doublereal w, z__;
|
||||
integer kx, ky;
|
||||
doublereal dh11, dh12, dh21, dh22, dflag;
|
||||
integer nsteps;
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
|
||||
/* APPLY THE MODIFIED GIVENS TRANSFORMATION, H, TO THE 2 BY N MATRIX */
|
||||
|
||||
/* (DX**T) , WHERE **T INDICATES TRANSPOSE. THE ELEMENTS OF DX ARE IN */
|
||||
/* (DY**T) */
|
||||
|
||||
/* DX(LX+I*INCX), I = 0 TO N-1, WHERE LX = 1 IF INCX .GE. 0, ELSE */
|
||||
/* LX = (-INCX)*N, AND SIMILARLY FOR SY USING LY AND INCY. */
|
||||
/* WITH DPARAM(1)=DFLAG, H HAS ONE OF THE FOLLOWING FORMS.. */
|
||||
|
||||
/* DFLAG=-1.D0 DFLAG=0.D0 DFLAG=1.D0 DFLAG=-2.D0 */
|
||||
|
||||
/* (DH11 DH12) (1.D0 DH12) (DH11 1.D0) (1.D0 0.D0) */
|
||||
/* H=( ) ( ) ( ) ( ) */
|
||||
/* (DH21 DH22), (DH21 1.D0), (-1.D0 DH22), (0.D0 1.D0). */
|
||||
/* SEE DROTMG FOR A DESCRIPTION OF DATA STORAGE IN DPARAM. */
|
||||
|
||||
/* Arguments */
|
||||
/* ========= */
|
||||
|
||||
/* N (input) INTEGER */
|
||||
/* number of elements in input vector(s) */
|
||||
|
||||
/* DX (input/output) DOUBLE PRECISION array, dimension N */
|
||||
/* double precision vector with N elements */
|
||||
|
||||
/* INCX (input) INTEGER */
|
||||
/* storage spacing between elements of DX */
|
||||
|
||||
/* DY (input/output) DOUBLE PRECISION array, dimension N */
|
||||
/* double precision vector with N elements */
|
||||
|
||||
/* INCY (input) INTEGER */
|
||||
/* storage spacing between elements of DY */
|
||||
|
||||
/* DPARAM (input/output) DOUBLE PRECISION array, dimension 5 */
|
||||
/* DPARAM(1)=DFLAG */
|
||||
/* DPARAM(2)=DH11 */
|
||||
/* DPARAM(3)=DH21 */
|
||||
/* DPARAM(4)=DH12 */
|
||||
/* DPARAM(5)=DH22 */
|
||||
|
||||
/* ===================================================================== */
|
||||
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. Data statements .. */
|
||||
/* Parameter adjustments */
|
||||
--dparam;
|
||||
--dy;
|
||||
--dx;
|
||||
|
||||
/* Function Body */
|
||||
/* .. */
|
||||
|
||||
dflag = dparam[1];
|
||||
if (*n <= 0 || dflag + two == zero) {
|
||||
goto L140;
|
||||
}
|
||||
if (! (*incx == *incy && *incx > 0)) {
|
||||
goto L70;
|
||||
}
|
||||
|
||||
nsteps = *n * *incx;
|
||||
if (dflag < 0.) {
|
||||
goto L50;
|
||||
} else if (dflag == 0) {
|
||||
goto L10;
|
||||
} else {
|
||||
goto L30;
|
||||
}
|
||||
L10:
|
||||
dh12 = dparam[4];
|
||||
dh21 = dparam[3];
|
||||
i__1 = nsteps;
|
||||
i__2 = *incx;
|
||||
for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
|
||||
w = dx[i__];
|
||||
z__ = dy[i__];
|
||||
dx[i__] = w + z__ * dh12;
|
||||
dy[i__] = w * dh21 + z__;
|
||||
/* L20: */
|
||||
}
|
||||
goto L140;
|
||||
L30:
|
||||
dh11 = dparam[2];
|
||||
dh22 = dparam[5];
|
||||
i__2 = nsteps;
|
||||
i__1 = *incx;
|
||||
for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {
|
||||
w = dx[i__];
|
||||
z__ = dy[i__];
|
||||
dx[i__] = w * dh11 + z__;
|
||||
dy[i__] = -w + dh22 * z__;
|
||||
/* L40: */
|
||||
}
|
||||
goto L140;
|
||||
L50:
|
||||
dh11 = dparam[2];
|
||||
dh12 = dparam[4];
|
||||
dh21 = dparam[3];
|
||||
dh22 = dparam[5];
|
||||
i__1 = nsteps;
|
||||
i__2 = *incx;
|
||||
for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
|
||||
w = dx[i__];
|
||||
z__ = dy[i__];
|
||||
dx[i__] = w * dh11 + z__ * dh12;
|
||||
dy[i__] = w * dh21 + z__ * dh22;
|
||||
/* L60: */
|
||||
}
|
||||
goto L140;
|
||||
L70:
|
||||
kx = 1;
|
||||
ky = 1;
|
||||
if (*incx < 0) {
|
||||
kx = (1 - *n) * *incx + 1;
|
||||
}
|
||||
if (*incy < 0) {
|
||||
ky = (1 - *n) * *incy + 1;
|
||||
}
|
||||
|
||||
if (dflag < 0.) {
|
||||
goto L120;
|
||||
} else if (dflag == 0) {
|
||||
goto L80;
|
||||
} else {
|
||||
goto L100;
|
||||
}
|
||||
L80:
|
||||
dh12 = dparam[4];
|
||||
dh21 = dparam[3];
|
||||
i__2 = *n;
|
||||
for (i__ = 1; i__ <= i__2; ++i__) {
|
||||
w = dx[kx];
|
||||
z__ = dy[ky];
|
||||
dx[kx] = w + z__ * dh12;
|
||||
dy[ky] = w * dh21 + z__;
|
||||
kx += *incx;
|
||||
ky += *incy;
|
||||
/* L90: */
|
||||
}
|
||||
goto L140;
|
||||
L100:
|
||||
dh11 = dparam[2];
|
||||
dh22 = dparam[5];
|
||||
i__2 = *n;
|
||||
for (i__ = 1; i__ <= i__2; ++i__) {
|
||||
w = dx[kx];
|
||||
z__ = dy[ky];
|
||||
dx[kx] = w * dh11 + z__;
|
||||
dy[ky] = -w + dh22 * z__;
|
||||
kx += *incx;
|
||||
ky += *incy;
|
||||
/* L110: */
|
||||
}
|
||||
goto L140;
|
||||
L120:
|
||||
dh11 = dparam[2];
|
||||
dh12 = dparam[4];
|
||||
dh21 = dparam[3];
|
||||
dh22 = dparam[5];
|
||||
i__2 = *n;
|
||||
for (i__ = 1; i__ <= i__2; ++i__) {
|
||||
w = dx[kx];
|
||||
z__ = dy[ky];
|
||||
dx[kx] = w * dh11 + z__ * dh12;
|
||||
dy[ky] = w * dh21 + z__ * dh22;
|
||||
kx += *incx;
|
||||
ky += *incy;
|
||||
/* L130: */
|
||||
}
|
||||
L140:
|
||||
return 0;
|
||||
} /* drotm_ */
|
||||
|
||||
293
cs440-acg/ext/eigen/blas/f2c/drotmg.c
Normal file
293
cs440-acg/ext/eigen/blas/f2c/drotmg.c
Normal file
@@ -0,0 +1,293 @@
|
||||
/* drotmg.f -- translated by f2c (version 20100827).
|
||||
You must link the resulting object file with libf2c:
|
||||
on Microsoft Windows system, link with libf2c.lib;
|
||||
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
||||
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
||||
-- in that order, at the end of the command line, as in
|
||||
cc *.o -lf2c -lm
|
||||
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
||||
|
||||
http://www.netlib.org/f2c/libf2c.zip
|
||||
*/
|
||||
|
||||
#include "datatypes.h"
|
||||
|
||||
/* Subroutine */ int drotmg_(doublereal *dd1, doublereal *dd2, doublereal *
|
||||
dx1, doublereal *dy1, doublereal *dparam)
|
||||
{
|
||||
/* Initialized data */
|
||||
|
||||
static doublereal zero = 0.;
|
||||
static doublereal one = 1.;
|
||||
static doublereal two = 2.;
|
||||
static doublereal gam = 4096.;
|
||||
static doublereal gamsq = 16777216.;
|
||||
static doublereal rgamsq = 5.9604645e-8;
|
||||
|
||||
/* Format strings */
|
||||
static char fmt_120[] = "";
|
||||
static char fmt_150[] = "";
|
||||
static char fmt_180[] = "";
|
||||
static char fmt_210[] = "";
|
||||
|
||||
/* System generated locals */
|
||||
doublereal d__1;
|
||||
|
||||
/* Local variables */
|
||||
doublereal du, dp1, dp2, dq1, dq2, dh11, dh12, dh21, dh22;
|
||||
integer igo;
|
||||
doublereal dflag, dtemp;
|
||||
|
||||
/* Assigned format variables */
|
||||
static char *igo_fmt;
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
|
||||
/* CONSTRUCT THE MODIFIED GIVENS TRANSFORMATION MATRIX H WHICH ZEROS */
|
||||
/* THE SECOND COMPONENT OF THE 2-VECTOR (DSQRT(DD1)*DX1,DSQRT(DD2)* */
|
||||
/* DY2)**T. */
|
||||
/* WITH DPARAM(1)=DFLAG, H HAS ONE OF THE FOLLOWING FORMS.. */
|
||||
|
||||
/* DFLAG=-1.D0 DFLAG=0.D0 DFLAG=1.D0 DFLAG=-2.D0 */
|
||||
|
||||
/* (DH11 DH12) (1.D0 DH12) (DH11 1.D0) (1.D0 0.D0) */
|
||||
/* H=( ) ( ) ( ) ( ) */
|
||||
/* (DH21 DH22), (DH21 1.D0), (-1.D0 DH22), (0.D0 1.D0). */
|
||||
/* LOCATIONS 2-4 OF DPARAM CONTAIN DH11, DH21, DH12, AND DH22 */
|
||||
/* RESPECTIVELY. (VALUES OF 1.D0, -1.D0, OR 0.D0 IMPLIED BY THE */
|
||||
/* VALUE OF DPARAM(1) ARE NOT STORED IN DPARAM.) */
|
||||
|
||||
/* THE VALUES OF GAMSQ AND RGAMSQ SET IN THE DATA STATEMENT MAY BE */
|
||||
/* INEXACT. THIS IS OK AS THEY ARE ONLY USED FOR TESTING THE SIZE */
|
||||
/* OF DD1 AND DD2. ALL ACTUAL SCALING OF DATA IS DONE USING GAM. */
|
||||
|
||||
|
||||
/* Arguments */
|
||||
/* ========= */
|
||||
|
||||
/* DD1 (input/output) DOUBLE PRECISION */
|
||||
|
||||
/* DD2 (input/output) DOUBLE PRECISION */
|
||||
|
||||
/* DX1 (input/output) DOUBLE PRECISION */
|
||||
|
||||
/* DY1 (input) DOUBLE PRECISION */
|
||||
|
||||
/* DPARAM (input/output) DOUBLE PRECISION array, dimension 5 */
|
||||
/* DPARAM(1)=DFLAG */
|
||||
/* DPARAM(2)=DH11 */
|
||||
/* DPARAM(3)=DH21 */
|
||||
/* DPARAM(4)=DH12 */
|
||||
/* DPARAM(5)=DH22 */
|
||||
|
||||
/* ===================================================================== */
|
||||
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
/* .. Data statements .. */
|
||||
|
||||
/* Parameter adjustments */
|
||||
--dparam;
|
||||
|
||||
/* Function Body */
|
||||
/* .. */
|
||||
if (! (*dd1 < zero)) {
|
||||
goto L10;
|
||||
}
|
||||
/* GO ZERO-H-D-AND-DX1.. */
|
||||
goto L60;
|
||||
L10:
|
||||
/* CASE-DD1-NONNEGATIVE */
|
||||
dp2 = *dd2 * *dy1;
|
||||
if (! (dp2 == zero)) {
|
||||
goto L20;
|
||||
}
|
||||
dflag = -two;
|
||||
goto L260;
|
||||
/* REGULAR-CASE.. */
|
||||
L20:
|
||||
dp1 = *dd1 * *dx1;
|
||||
dq2 = dp2 * *dy1;
|
||||
dq1 = dp1 * *dx1;
|
||||
|
||||
if (! (abs(dq1) > abs(dq2))) {
|
||||
goto L40;
|
||||
}
|
||||
dh21 = -(*dy1) / *dx1;
|
||||
dh12 = dp2 / dp1;
|
||||
|
||||
du = one - dh12 * dh21;
|
||||
|
||||
if (! (du <= zero)) {
|
||||
goto L30;
|
||||
}
|
||||
/* GO ZERO-H-D-AND-DX1.. */
|
||||
goto L60;
|
||||
L30:
|
||||
dflag = zero;
|
||||
*dd1 /= du;
|
||||
*dd2 /= du;
|
||||
*dx1 *= du;
|
||||
/* GO SCALE-CHECK.. */
|
||||
goto L100;
|
||||
L40:
|
||||
if (! (dq2 < zero)) {
|
||||
goto L50;
|
||||
}
|
||||
/* GO ZERO-H-D-AND-DX1.. */
|
||||
goto L60;
|
||||
L50:
|
||||
dflag = one;
|
||||
dh11 = dp1 / dp2;
|
||||
dh22 = *dx1 / *dy1;
|
||||
du = one + dh11 * dh22;
|
||||
dtemp = *dd2 / du;
|
||||
*dd2 = *dd1 / du;
|
||||
*dd1 = dtemp;
|
||||
*dx1 = *dy1 * du;
|
||||
/* GO SCALE-CHECK */
|
||||
goto L100;
|
||||
/* PROCEDURE..ZERO-H-D-AND-DX1.. */
|
||||
L60:
|
||||
dflag = -one;
|
||||
dh11 = zero;
|
||||
dh12 = zero;
|
||||
dh21 = zero;
|
||||
dh22 = zero;
|
||||
|
||||
*dd1 = zero;
|
||||
*dd2 = zero;
|
||||
*dx1 = zero;
|
||||
/* RETURN.. */
|
||||
goto L220;
|
||||
/* PROCEDURE..FIX-H.. */
|
||||
L70:
|
||||
if (! (dflag >= zero)) {
|
||||
goto L90;
|
||||
}
|
||||
|
||||
if (! (dflag == zero)) {
|
||||
goto L80;
|
||||
}
|
||||
dh11 = one;
|
||||
dh22 = one;
|
||||
dflag = -one;
|
||||
goto L90;
|
||||
L80:
|
||||
dh21 = -one;
|
||||
dh12 = one;
|
||||
dflag = -one;
|
||||
L90:
|
||||
switch (igo) {
|
||||
case 0: goto L120;
|
||||
case 1: goto L150;
|
||||
case 2: goto L180;
|
||||
case 3: goto L210;
|
||||
}
|
||||
/* PROCEDURE..SCALE-CHECK */
|
||||
L100:
|
||||
L110:
|
||||
if (! (*dd1 <= rgamsq)) {
|
||||
goto L130;
|
||||
}
|
||||
if (*dd1 == zero) {
|
||||
goto L160;
|
||||
}
|
||||
igo = 0;
|
||||
igo_fmt = fmt_120;
|
||||
/* FIX-H.. */
|
||||
goto L70;
|
||||
L120:
|
||||
/* Computing 2nd power */
|
||||
d__1 = gam;
|
||||
*dd1 *= d__1 * d__1;
|
||||
*dx1 /= gam;
|
||||
dh11 /= gam;
|
||||
dh12 /= gam;
|
||||
goto L110;
|
||||
L130:
|
||||
L140:
|
||||
if (! (*dd1 >= gamsq)) {
|
||||
goto L160;
|
||||
}
|
||||
igo = 1;
|
||||
igo_fmt = fmt_150;
|
||||
/* FIX-H.. */
|
||||
goto L70;
|
||||
L150:
|
||||
/* Computing 2nd power */
|
||||
d__1 = gam;
|
||||
*dd1 /= d__1 * d__1;
|
||||
*dx1 *= gam;
|
||||
dh11 *= gam;
|
||||
dh12 *= gam;
|
||||
goto L140;
|
||||
L160:
|
||||
L170:
|
||||
if (! (abs(*dd2) <= rgamsq)) {
|
||||
goto L190;
|
||||
}
|
||||
if (*dd2 == zero) {
|
||||
goto L220;
|
||||
}
|
||||
igo = 2;
|
||||
igo_fmt = fmt_180;
|
||||
/* FIX-H.. */
|
||||
goto L70;
|
||||
L180:
|
||||
/* Computing 2nd power */
|
||||
d__1 = gam;
|
||||
*dd2 *= d__1 * d__1;
|
||||
dh21 /= gam;
|
||||
dh22 /= gam;
|
||||
goto L170;
|
||||
L190:
|
||||
L200:
|
||||
if (! (abs(*dd2) >= gamsq)) {
|
||||
goto L220;
|
||||
}
|
||||
igo = 3;
|
||||
igo_fmt = fmt_210;
|
||||
/* FIX-H.. */
|
||||
goto L70;
|
||||
L210:
|
||||
/* Computing 2nd power */
|
||||
d__1 = gam;
|
||||
*dd2 /= d__1 * d__1;
|
||||
dh21 *= gam;
|
||||
dh22 *= gam;
|
||||
goto L200;
|
||||
L220:
|
||||
if (dflag < 0.) {
|
||||
goto L250;
|
||||
} else if (dflag == 0) {
|
||||
goto L230;
|
||||
} else {
|
||||
goto L240;
|
||||
}
|
||||
L230:
|
||||
dparam[3] = dh21;
|
||||
dparam[4] = dh12;
|
||||
goto L260;
|
||||
L240:
|
||||
dparam[2] = dh11;
|
||||
dparam[5] = dh22;
|
||||
goto L260;
|
||||
L250:
|
||||
dparam[2] = dh11;
|
||||
dparam[3] = dh21;
|
||||
dparam[4] = dh12;
|
||||
dparam[5] = dh22;
|
||||
L260:
|
||||
dparam[1] = dflag;
|
||||
return 0;
|
||||
} /* drotmg_ */
|
||||
|
||||
366
cs440-acg/ext/eigen/blas/f2c/dsbmv.c
Normal file
366
cs440-acg/ext/eigen/blas/f2c/dsbmv.c
Normal file
@@ -0,0 +1,366 @@
|
||||
/* dsbmv.f -- translated by f2c (version 20100827).
|
||||
You must link the resulting object file with libf2c:
|
||||
on Microsoft Windows system, link with libf2c.lib;
|
||||
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
||||
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
||||
-- in that order, at the end of the command line, as in
|
||||
cc *.o -lf2c -lm
|
||||
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
||||
|
||||
http://www.netlib.org/f2c/libf2c.zip
|
||||
*/
|
||||
|
||||
#include "datatypes.h"
|
||||
|
||||
/* Subroutine */ int dsbmv_(char *uplo, integer *n, integer *k, doublereal *
|
||||
alpha, doublereal *a, integer *lda, doublereal *x, integer *incx,
|
||||
doublereal *beta, doublereal *y, integer *incy, ftnlen uplo_len)
|
||||
{
|
||||
/* System generated locals */
|
||||
integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
|
||||
|
||||
/* Local variables */
|
||||
integer i__, j, l, ix, iy, jx, jy, kx, ky, info;
|
||||
doublereal temp1, temp2;
|
||||
extern logical lsame_(char *, char *, ftnlen, ftnlen);
|
||||
integer kplus1;
|
||||
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
|
||||
/* DSBMV performs the matrix-vector operation */
|
||||
|
||||
/* y := alpha*A*x + beta*y, */
|
||||
|
||||
/* where alpha and beta are scalars, x and y are n element vectors and */
|
||||
/* A is an n by n symmetric band matrix, with k super-diagonals. */
|
||||
|
||||
/* Arguments */
|
||||
/* ========== */
|
||||
|
||||
/* UPLO - CHARACTER*1. */
|
||||
/* On entry, UPLO specifies whether the upper or lower */
|
||||
/* triangular part of the band matrix A is being supplied as */
|
||||
/* follows: */
|
||||
|
||||
/* UPLO = 'U' or 'u' The upper triangular part of A is */
|
||||
/* being supplied. */
|
||||
|
||||
/* UPLO = 'L' or 'l' The lower triangular part of A is */
|
||||
/* being supplied. */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* N - INTEGER. */
|
||||
/* On entry, N specifies the order of the matrix A. */
|
||||
/* N must be at least zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* K - INTEGER. */
|
||||
/* On entry, K specifies the number of super-diagonals of the */
|
||||
/* matrix A. K must satisfy 0 .le. K. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* ALPHA - DOUBLE PRECISION. */
|
||||
/* On entry, ALPHA specifies the scalar alpha. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). */
|
||||
/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the upper triangular */
|
||||
/* band part of the symmetric matrix, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row */
|
||||
/* ( k + 1 ) of the array, the first super-diagonal starting at */
|
||||
/* position 2 in row k, and so on. The top left k by k triangle */
|
||||
/* of the array A is not referenced. */
|
||||
/* The following program segment will transfer the upper */
|
||||
/* triangular part of a symmetric band matrix from conventional */
|
||||
/* full matrix storage to band storage: */
|
||||
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = K + 1 - J */
|
||||
/* DO 10, I = MAX( 1, J - K ), J */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
|
||||
/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the lower triangular */
|
||||
/* band part of the symmetric matrix, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row 1 of */
|
||||
/* the array, the first sub-diagonal starting at position 1 in */
|
||||
/* row 2, and so on. The bottom right k by k triangle of the */
|
||||
/* array A is not referenced. */
|
||||
/* The following program segment will transfer the lower */
|
||||
/* triangular part of a symmetric band matrix from conventional */
|
||||
/* full matrix storage to band storage: */
|
||||
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = 1 - J */
|
||||
/* DO 10, I = J, MIN( N, J + K ) */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* LDA - INTEGER. */
|
||||
/* On entry, LDA specifies the first dimension of A as declared */
|
||||
/* in the calling (sub) program. LDA must be at least */
|
||||
/* ( k + 1 ). */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* X - DOUBLE PRECISION array of DIMENSION at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
|
||||
/* Before entry, the incremented array X must contain the */
|
||||
/* vector x. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* INCX - INTEGER. */
|
||||
/* On entry, INCX specifies the increment for the elements of */
|
||||
/* X. INCX must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* BETA - DOUBLE PRECISION. */
|
||||
/* On entry, BETA specifies the scalar beta. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* Y - DOUBLE PRECISION array of DIMENSION at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCY ) ). */
|
||||
/* Before entry, the incremented array Y must contain the */
|
||||
/* vector y. On exit, Y is overwritten by the updated vector y. */
|
||||
|
||||
/* INCY - INTEGER. */
|
||||
/* On entry, INCY specifies the increment for the elements of */
|
||||
/* Y. INCY must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
|
||||
/* Level 2 Blas routine. */
|
||||
|
||||
/* -- Written on 22-October-1986. */
|
||||
/* Jack Dongarra, Argonne National Lab. */
|
||||
/* Jeremy Du Croz, Nag Central Office. */
|
||||
/* Sven Hammarling, Nag Central Office. */
|
||||
/* Richard Hanson, Sandia National Labs. */
|
||||
|
||||
/* ===================================================================== */
|
||||
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
|
||||
/* Test the input parameters. */
|
||||
|
||||
/* Parameter adjustments */
|
||||
a_dim1 = *lda;
|
||||
a_offset = 1 + a_dim1;
|
||||
a -= a_offset;
|
||||
--x;
|
||||
--y;
|
||||
|
||||
/* Function Body */
|
||||
info = 0;
|
||||
if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
|
||||
ftnlen)1, (ftnlen)1)) {
|
||||
info = 1;
|
||||
} else if (*n < 0) {
|
||||
info = 2;
|
||||
} else if (*k < 0) {
|
||||
info = 3;
|
||||
} else if (*lda < *k + 1) {
|
||||
info = 6;
|
||||
} else if (*incx == 0) {
|
||||
info = 8;
|
||||
} else if (*incy == 0) {
|
||||
info = 11;
|
||||
}
|
||||
if (info != 0) {
|
||||
xerbla_("DSBMV ", &info, (ftnlen)6);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Quick return if possible. */
|
||||
|
||||
if (*n == 0 || (*alpha == 0. && *beta == 1.)) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Set up the start points in X and Y. */
|
||||
|
||||
if (*incx > 0) {
|
||||
kx = 1;
|
||||
} else {
|
||||
kx = 1 - (*n - 1) * *incx;
|
||||
}
|
||||
if (*incy > 0) {
|
||||
ky = 1;
|
||||
} else {
|
||||
ky = 1 - (*n - 1) * *incy;
|
||||
}
|
||||
|
||||
/* Start the operations. In this version the elements of the array A */
|
||||
/* are accessed sequentially with one pass through A. */
|
||||
|
||||
/* First form y := beta*y. */
|
||||
|
||||
if (*beta != 1.) {
|
||||
if (*incy == 1) {
|
||||
if (*beta == 0.) {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
y[i__] = 0.;
|
||||
/* L10: */
|
||||
}
|
||||
} else {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
y[i__] = *beta * y[i__];
|
||||
/* L20: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
iy = ky;
|
||||
if (*beta == 0.) {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
y[iy] = 0.;
|
||||
iy += *incy;
|
||||
/* L30: */
|
||||
}
|
||||
} else {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
y[iy] = *beta * y[iy];
|
||||
iy += *incy;
|
||||
/* L40: */
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (*alpha == 0.) {
|
||||
return 0;
|
||||
}
|
||||
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
|
||||
|
||||
/* Form y when upper triangle of A is stored. */
|
||||
|
||||
kplus1 = *k + 1;
|
||||
if (*incx == 1 && *incy == 1) {
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
temp1 = *alpha * x[j];
|
||||
temp2 = 0.;
|
||||
l = kplus1 - j;
|
||||
/* Computing MAX */
|
||||
i__2 = 1, i__3 = j - *k;
|
||||
i__4 = j - 1;
|
||||
for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
|
||||
y[i__] += temp1 * a[l + i__ + j * a_dim1];
|
||||
temp2 += a[l + i__ + j * a_dim1] * x[i__];
|
||||
/* L50: */
|
||||
}
|
||||
y[j] = y[j] + temp1 * a[kplus1 + j * a_dim1] + *alpha * temp2;
|
||||
/* L60: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
jy = ky;
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
temp1 = *alpha * x[jx];
|
||||
temp2 = 0.;
|
||||
ix = kx;
|
||||
iy = ky;
|
||||
l = kplus1 - j;
|
||||
/* Computing MAX */
|
||||
i__4 = 1, i__2 = j - *k;
|
||||
i__3 = j - 1;
|
||||
for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
|
||||
y[iy] += temp1 * a[l + i__ + j * a_dim1];
|
||||
temp2 += a[l + i__ + j * a_dim1] * x[ix];
|
||||
ix += *incx;
|
||||
iy += *incy;
|
||||
/* L70: */
|
||||
}
|
||||
y[jy] = y[jy] + temp1 * a[kplus1 + j * a_dim1] + *alpha *
|
||||
temp2;
|
||||
jx += *incx;
|
||||
jy += *incy;
|
||||
if (j > *k) {
|
||||
kx += *incx;
|
||||
ky += *incy;
|
||||
}
|
||||
/* L80: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
||||
/* Form y when lower triangle of A is stored. */
|
||||
|
||||
if (*incx == 1 && *incy == 1) {
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
temp1 = *alpha * x[j];
|
||||
temp2 = 0.;
|
||||
y[j] += temp1 * a[j * a_dim1 + 1];
|
||||
l = 1 - j;
|
||||
/* Computing MIN */
|
||||
i__4 = *n, i__2 = j + *k;
|
||||
i__3 = min(i__4,i__2);
|
||||
for (i__ = j + 1; i__ <= i__3; ++i__) {
|
||||
y[i__] += temp1 * a[l + i__ + j * a_dim1];
|
||||
temp2 += a[l + i__ + j * a_dim1] * x[i__];
|
||||
/* L90: */
|
||||
}
|
||||
y[j] += *alpha * temp2;
|
||||
/* L100: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
jy = ky;
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
temp1 = *alpha * x[jx];
|
||||
temp2 = 0.;
|
||||
y[jy] += temp1 * a[j * a_dim1 + 1];
|
||||
l = 1 - j;
|
||||
ix = jx;
|
||||
iy = jy;
|
||||
/* Computing MIN */
|
||||
i__4 = *n, i__2 = j + *k;
|
||||
i__3 = min(i__4,i__2);
|
||||
for (i__ = j + 1; i__ <= i__3; ++i__) {
|
||||
ix += *incx;
|
||||
iy += *incy;
|
||||
y[iy] += temp1 * a[l + i__ + j * a_dim1];
|
||||
temp2 += a[l + i__ + j * a_dim1] * x[ix];
|
||||
/* L110: */
|
||||
}
|
||||
y[jy] += *alpha * temp2;
|
||||
jx += *incx;
|
||||
jy += *incy;
|
||||
/* L120: */
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
/* End of DSBMV . */
|
||||
|
||||
} /* dsbmv_ */
|
||||
|
||||
316
cs440-acg/ext/eigen/blas/f2c/dspmv.c
Normal file
316
cs440-acg/ext/eigen/blas/f2c/dspmv.c
Normal file
@@ -0,0 +1,316 @@
|
||||
/* dspmv.f -- translated by f2c (version 20100827).
|
||||
You must link the resulting object file with libf2c:
|
||||
on Microsoft Windows system, link with libf2c.lib;
|
||||
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
||||
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
||||
-- in that order, at the end of the command line, as in
|
||||
cc *.o -lf2c -lm
|
||||
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
||||
|
||||
http://www.netlib.org/f2c/libf2c.zip
|
||||
*/
|
||||
|
||||
#include "datatypes.h"
|
||||
|
||||
/* Subroutine */ int dspmv_(char *uplo, integer *n, doublereal *alpha,
|
||||
doublereal *ap, doublereal *x, integer *incx, doublereal *beta,
|
||||
doublereal *y, integer *incy, ftnlen uplo_len)
|
||||
{
|
||||
/* System generated locals */
|
||||
integer i__1, i__2;
|
||||
|
||||
/* Local variables */
|
||||
integer i__, j, k, kk, ix, iy, jx, jy, kx, ky, info;
|
||||
doublereal temp1, temp2;
|
||||
extern logical lsame_(char *, char *, ftnlen, ftnlen);
|
||||
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
|
||||
/* DSPMV performs the matrix-vector operation */
|
||||
|
||||
/* y := alpha*A*x + beta*y, */
|
||||
|
||||
/* where alpha and beta are scalars, x and y are n element vectors and */
|
||||
/* A is an n by n symmetric matrix, supplied in packed form. */
|
||||
|
||||
/* Arguments */
|
||||
/* ========== */
|
||||
|
||||
/* UPLO - CHARACTER*1. */
|
||||
/* On entry, UPLO specifies whether the upper or lower */
|
||||
/* triangular part of the matrix A is supplied in the packed */
|
||||
/* array AP as follows: */
|
||||
|
||||
/* UPLO = 'U' or 'u' The upper triangular part of A is */
|
||||
/* supplied in AP. */
|
||||
|
||||
/* UPLO = 'L' or 'l' The lower triangular part of A is */
|
||||
/* supplied in AP. */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* N - INTEGER. */
|
||||
/* On entry, N specifies the order of the matrix A. */
|
||||
/* N must be at least zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* ALPHA - DOUBLE PRECISION. */
|
||||
/* On entry, ALPHA specifies the scalar alpha. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* AP - DOUBLE PRECISION array of DIMENSION at least */
|
||||
/* ( ( n*( n + 1 ) )/2 ). */
|
||||
/* Before entry with UPLO = 'U' or 'u', the array AP must */
|
||||
/* contain the upper triangular part of the symmetric matrix */
|
||||
/* packed sequentially, column by column, so that AP( 1 ) */
|
||||
/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */
|
||||
/* and a( 2, 2 ) respectively, and so on. */
|
||||
/* Before entry with UPLO = 'L' or 'l', the array AP must */
|
||||
/* contain the lower triangular part of the symmetric matrix */
|
||||
/* packed sequentially, column by column, so that AP( 1 ) */
|
||||
/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */
|
||||
/* and a( 3, 1 ) respectively, and so on. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* X - DOUBLE PRECISION array of dimension at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
|
||||
/* Before entry, the incremented array X must contain the n */
|
||||
/* element vector x. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* INCX - INTEGER. */
|
||||
/* On entry, INCX specifies the increment for the elements of */
|
||||
/* X. INCX must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* BETA - DOUBLE PRECISION. */
|
||||
/* On entry, BETA specifies the scalar beta. When BETA is */
|
||||
/* supplied as zero then Y need not be set on input. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* Y - DOUBLE PRECISION array of dimension at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCY ) ). */
|
||||
/* Before entry, the incremented array Y must contain the n */
|
||||
/* element vector y. On exit, Y is overwritten by the updated */
|
||||
/* vector y. */
|
||||
|
||||
/* INCY - INTEGER. */
|
||||
/* On entry, INCY specifies the increment for the elements of */
|
||||
/* Y. INCY must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* Further Details */
|
||||
/* =============== */
|
||||
|
||||
/* Level 2 Blas routine. */
|
||||
|
||||
/* -- Written on 22-October-1986. */
|
||||
/* Jack Dongarra, Argonne National Lab. */
|
||||
/* Jeremy Du Croz, Nag Central Office. */
|
||||
/* Sven Hammarling, Nag Central Office. */
|
||||
/* Richard Hanson, Sandia National Labs. */
|
||||
|
||||
/* ===================================================================== */
|
||||
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
|
||||
/* Test the input parameters. */
|
||||
|
||||
/* Parameter adjustments */
|
||||
--y;
|
||||
--x;
|
||||
--ap;
|
||||
|
||||
/* Function Body */
|
||||
info = 0;
|
||||
if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
|
||||
ftnlen)1, (ftnlen)1)) {
|
||||
info = 1;
|
||||
} else if (*n < 0) {
|
||||
info = 2;
|
||||
} else if (*incx == 0) {
|
||||
info = 6;
|
||||
} else if (*incy == 0) {
|
||||
info = 9;
|
||||
}
|
||||
if (info != 0) {
|
||||
xerbla_("DSPMV ", &info, (ftnlen)6);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Quick return if possible. */
|
||||
|
||||
if (*n == 0 || (*alpha == 0. && *beta == 1.)) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Set up the start points in X and Y. */
|
||||
|
||||
if (*incx > 0) {
|
||||
kx = 1;
|
||||
} else {
|
||||
kx = 1 - (*n - 1) * *incx;
|
||||
}
|
||||
if (*incy > 0) {
|
||||
ky = 1;
|
||||
} else {
|
||||
ky = 1 - (*n - 1) * *incy;
|
||||
}
|
||||
|
||||
/* Start the operations. In this version the elements of the array AP */
|
||||
/* are accessed sequentially with one pass through AP. */
|
||||
|
||||
/* First form y := beta*y. */
|
||||
|
||||
if (*beta != 1.) {
|
||||
if (*incy == 1) {
|
||||
if (*beta == 0.) {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
y[i__] = 0.;
|
||||
/* L10: */
|
||||
}
|
||||
} else {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
y[i__] = *beta * y[i__];
|
||||
/* L20: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
iy = ky;
|
||||
if (*beta == 0.) {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
y[iy] = 0.;
|
||||
iy += *incy;
|
||||
/* L30: */
|
||||
}
|
||||
} else {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
y[iy] = *beta * y[iy];
|
||||
iy += *incy;
|
||||
/* L40: */
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (*alpha == 0.) {
|
||||
return 0;
|
||||
}
|
||||
kk = 1;
|
||||
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
|
||||
|
||||
/* Form y when AP contains the upper triangle. */
|
||||
|
||||
if (*incx == 1 && *incy == 1) {
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
temp1 = *alpha * x[j];
|
||||
temp2 = 0.;
|
||||
k = kk;
|
||||
i__2 = j - 1;
|
||||
for (i__ = 1; i__ <= i__2; ++i__) {
|
||||
y[i__] += temp1 * ap[k];
|
||||
temp2 += ap[k] * x[i__];
|
||||
++k;
|
||||
/* L50: */
|
||||
}
|
||||
y[j] = y[j] + temp1 * ap[kk + j - 1] + *alpha * temp2;
|
||||
kk += j;
|
||||
/* L60: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
jy = ky;
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
temp1 = *alpha * x[jx];
|
||||
temp2 = 0.;
|
||||
ix = kx;
|
||||
iy = ky;
|
||||
i__2 = kk + j - 2;
|
||||
for (k = kk; k <= i__2; ++k) {
|
||||
y[iy] += temp1 * ap[k];
|
||||
temp2 += ap[k] * x[ix];
|
||||
ix += *incx;
|
||||
iy += *incy;
|
||||
/* L70: */
|
||||
}
|
||||
y[jy] = y[jy] + temp1 * ap[kk + j - 1] + *alpha * temp2;
|
||||
jx += *incx;
|
||||
jy += *incy;
|
||||
kk += j;
|
||||
/* L80: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
||||
/* Form y when AP contains the lower triangle. */
|
||||
|
||||
if (*incx == 1 && *incy == 1) {
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
temp1 = *alpha * x[j];
|
||||
temp2 = 0.;
|
||||
y[j] += temp1 * ap[kk];
|
||||
k = kk + 1;
|
||||
i__2 = *n;
|
||||
for (i__ = j + 1; i__ <= i__2; ++i__) {
|
||||
y[i__] += temp1 * ap[k];
|
||||
temp2 += ap[k] * x[i__];
|
||||
++k;
|
||||
/* L90: */
|
||||
}
|
||||
y[j] += *alpha * temp2;
|
||||
kk += *n - j + 1;
|
||||
/* L100: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
jy = ky;
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
temp1 = *alpha * x[jx];
|
||||
temp2 = 0.;
|
||||
y[jy] += temp1 * ap[kk];
|
||||
ix = jx;
|
||||
iy = jy;
|
||||
i__2 = kk + *n - j;
|
||||
for (k = kk + 1; k <= i__2; ++k) {
|
||||
ix += *incx;
|
||||
iy += *incy;
|
||||
y[iy] += temp1 * ap[k];
|
||||
temp2 += ap[k] * x[ix];
|
||||
/* L110: */
|
||||
}
|
||||
y[jy] += *alpha * temp2;
|
||||
jx += *incx;
|
||||
jy += *incy;
|
||||
kk += *n - j + 1;
|
||||
/* L120: */
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
/* End of DSPMV . */
|
||||
|
||||
} /* dspmv_ */
|
||||
|
||||
428
cs440-acg/ext/eigen/blas/f2c/dtbmv.c
Normal file
428
cs440-acg/ext/eigen/blas/f2c/dtbmv.c
Normal file
@@ -0,0 +1,428 @@
|
||||
/* dtbmv.f -- translated by f2c (version 20100827).
|
||||
You must link the resulting object file with libf2c:
|
||||
on Microsoft Windows system, link with libf2c.lib;
|
||||
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
||||
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
||||
-- in that order, at the end of the command line, as in
|
||||
cc *.o -lf2c -lm
|
||||
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
||||
|
||||
http://www.netlib.org/f2c/libf2c.zip
|
||||
*/
|
||||
|
||||
#include "datatypes.h"
|
||||
|
||||
/* Subroutine */ int dtbmv_(char *uplo, char *trans, char *diag, integer *n,
|
||||
integer *k, doublereal *a, integer *lda, doublereal *x, integer *incx,
|
||||
ftnlen uplo_len, ftnlen trans_len, ftnlen diag_len)
|
||||
{
|
||||
/* System generated locals */
|
||||
integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
|
||||
|
||||
/* Local variables */
|
||||
integer i__, j, l, ix, jx, kx, info;
|
||||
doublereal temp;
|
||||
extern logical lsame_(char *, char *, ftnlen, ftnlen);
|
||||
integer kplus1;
|
||||
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
||||
logical nounit;
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
|
||||
/* DTBMV performs one of the matrix-vector operations */
|
||||
|
||||
/* x := A*x, or x := A'*x, */
|
||||
|
||||
/* where x is an n element vector and A is an n by n unit, or non-unit, */
|
||||
/* upper or lower triangular band matrix, with ( k + 1 ) diagonals. */
|
||||
|
||||
/* Arguments */
|
||||
/* ========== */
|
||||
|
||||
/* UPLO - CHARACTER*1. */
|
||||
/* On entry, UPLO specifies whether the matrix is an upper or */
|
||||
/* lower triangular matrix as follows: */
|
||||
|
||||
/* UPLO = 'U' or 'u' A is an upper triangular matrix. */
|
||||
|
||||
/* UPLO = 'L' or 'l' A is a lower triangular matrix. */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* TRANS - CHARACTER*1. */
|
||||
/* On entry, TRANS specifies the operation to be performed as */
|
||||
/* follows: */
|
||||
|
||||
/* TRANS = 'N' or 'n' x := A*x. */
|
||||
|
||||
/* TRANS = 'T' or 't' x := A'*x. */
|
||||
|
||||
/* TRANS = 'C' or 'c' x := A'*x. */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* DIAG - CHARACTER*1. */
|
||||
/* On entry, DIAG specifies whether or not A is unit */
|
||||
/* triangular as follows: */
|
||||
|
||||
/* DIAG = 'U' or 'u' A is assumed to be unit triangular. */
|
||||
|
||||
/* DIAG = 'N' or 'n' A is not assumed to be unit */
|
||||
/* triangular. */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* N - INTEGER. */
|
||||
/* On entry, N specifies the order of the matrix A. */
|
||||
/* N must be at least zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* K - INTEGER. */
|
||||
/* On entry with UPLO = 'U' or 'u', K specifies the number of */
|
||||
/* super-diagonals of the matrix A. */
|
||||
/* On entry with UPLO = 'L' or 'l', K specifies the number of */
|
||||
/* sub-diagonals of the matrix A. */
|
||||
/* K must satisfy 0 .le. K. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). */
|
||||
/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the upper triangular */
|
||||
/* band part of the matrix of coefficients, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row */
|
||||
/* ( k + 1 ) of the array, the first super-diagonal starting at */
|
||||
/* position 2 in row k, and so on. The top left k by k triangle */
|
||||
/* of the array A is not referenced. */
|
||||
/* The following program segment will transfer an upper */
|
||||
/* triangular band matrix from conventional full matrix storage */
|
||||
/* to band storage: */
|
||||
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = K + 1 - J */
|
||||
/* DO 10, I = MAX( 1, J - K ), J */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
|
||||
/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the lower triangular */
|
||||
/* band part of the matrix of coefficients, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row 1 of */
|
||||
/* the array, the first sub-diagonal starting at position 1 in */
|
||||
/* row 2, and so on. The bottom right k by k triangle of the */
|
||||
/* array A is not referenced. */
|
||||
/* The following program segment will transfer a lower */
|
||||
/* triangular band matrix from conventional full matrix storage */
|
||||
/* to band storage: */
|
||||
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = 1 - J */
|
||||
/* DO 10, I = J, MIN( N, J + K ) */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
|
||||
/* Note that when DIAG = 'U' or 'u' the elements of the array A */
|
||||
/* corresponding to the diagonal elements of the matrix are not */
|
||||
/* referenced, but are assumed to be unity. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* LDA - INTEGER. */
|
||||
/* On entry, LDA specifies the first dimension of A as declared */
|
||||
/* in the calling (sub) program. LDA must be at least */
|
||||
/* ( k + 1 ). */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* X - DOUBLE PRECISION array of dimension at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
|
||||
/* Before entry, the incremented array X must contain the n */
|
||||
/* element vector x. On exit, X is overwritten with the */
|
||||
/* tranformed vector x. */
|
||||
|
||||
/* INCX - INTEGER. */
|
||||
/* On entry, INCX specifies the increment for the elements of */
|
||||
/* X. INCX must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* Further Details */
|
||||
/* =============== */
|
||||
|
||||
/* Level 2 Blas routine. */
|
||||
|
||||
/* -- Written on 22-October-1986. */
|
||||
/* Jack Dongarra, Argonne National Lab. */
|
||||
/* Jeremy Du Croz, Nag Central Office. */
|
||||
/* Sven Hammarling, Nag Central Office. */
|
||||
/* Richard Hanson, Sandia National Labs. */
|
||||
|
||||
/* ===================================================================== */
|
||||
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
|
||||
/* Test the input parameters. */
|
||||
|
||||
/* Parameter adjustments */
|
||||
a_dim1 = *lda;
|
||||
a_offset = 1 + a_dim1;
|
||||
a -= a_offset;
|
||||
--x;
|
||||
|
||||
/* Function Body */
|
||||
info = 0;
|
||||
if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
|
||||
ftnlen)1, (ftnlen)1)) {
|
||||
info = 1;
|
||||
} else if (! lsame_(trans, "N", (ftnlen)1, (ftnlen)1) && ! lsame_(trans,
|
||||
"T", (ftnlen)1, (ftnlen)1) && ! lsame_(trans, "C", (ftnlen)1, (
|
||||
ftnlen)1)) {
|
||||
info = 2;
|
||||
} else if (! lsame_(diag, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(diag,
|
||||
"N", (ftnlen)1, (ftnlen)1)) {
|
||||
info = 3;
|
||||
} else if (*n < 0) {
|
||||
info = 4;
|
||||
} else if (*k < 0) {
|
||||
info = 5;
|
||||
} else if (*lda < *k + 1) {
|
||||
info = 7;
|
||||
} else if (*incx == 0) {
|
||||
info = 9;
|
||||
}
|
||||
if (info != 0) {
|
||||
xerbla_("DTBMV ", &info, (ftnlen)6);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Quick return if possible. */
|
||||
|
||||
if (*n == 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
nounit = lsame_(diag, "N", (ftnlen)1, (ftnlen)1);
|
||||
|
||||
/* Set up the start point in X if the increment is not unity. This */
|
||||
/* will be ( N - 1 )*INCX too small for descending loops. */
|
||||
|
||||
if (*incx <= 0) {
|
||||
kx = 1 - (*n - 1) * *incx;
|
||||
} else if (*incx != 1) {
|
||||
kx = 1;
|
||||
}
|
||||
|
||||
/* Start the operations. In this version the elements of A are */
|
||||
/* accessed sequentially with one pass through A. */
|
||||
|
||||
if (lsame_(trans, "N", (ftnlen)1, (ftnlen)1)) {
|
||||
|
||||
/* Form x := A*x. */
|
||||
|
||||
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
|
||||
kplus1 = *k + 1;
|
||||
if (*incx == 1) {
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
if (x[j] != 0.) {
|
||||
temp = x[j];
|
||||
l = kplus1 - j;
|
||||
/* Computing MAX */
|
||||
i__2 = 1, i__3 = j - *k;
|
||||
i__4 = j - 1;
|
||||
for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
|
||||
x[i__] += temp * a[l + i__ + j * a_dim1];
|
||||
/* L10: */
|
||||
}
|
||||
if (nounit) {
|
||||
x[j] *= a[kplus1 + j * a_dim1];
|
||||
}
|
||||
}
|
||||
/* L20: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
if (x[jx] != 0.) {
|
||||
temp = x[jx];
|
||||
ix = kx;
|
||||
l = kplus1 - j;
|
||||
/* Computing MAX */
|
||||
i__4 = 1, i__2 = j - *k;
|
||||
i__3 = j - 1;
|
||||
for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
|
||||
x[ix] += temp * a[l + i__ + j * a_dim1];
|
||||
ix += *incx;
|
||||
/* L30: */
|
||||
}
|
||||
if (nounit) {
|
||||
x[jx] *= a[kplus1 + j * a_dim1];
|
||||
}
|
||||
}
|
||||
jx += *incx;
|
||||
if (j > *k) {
|
||||
kx += *incx;
|
||||
}
|
||||
/* L40: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if (*incx == 1) {
|
||||
for (j = *n; j >= 1; --j) {
|
||||
if (x[j] != 0.) {
|
||||
temp = x[j];
|
||||
l = 1 - j;
|
||||
/* Computing MIN */
|
||||
i__1 = *n, i__3 = j + *k;
|
||||
i__4 = j + 1;
|
||||
for (i__ = min(i__1,i__3); i__ >= i__4; --i__) {
|
||||
x[i__] += temp * a[l + i__ + j * a_dim1];
|
||||
/* L50: */
|
||||
}
|
||||
if (nounit) {
|
||||
x[j] *= a[j * a_dim1 + 1];
|
||||
}
|
||||
}
|
||||
/* L60: */
|
||||
}
|
||||
} else {
|
||||
kx += (*n - 1) * *incx;
|
||||
jx = kx;
|
||||
for (j = *n; j >= 1; --j) {
|
||||
if (x[jx] != 0.) {
|
||||
temp = x[jx];
|
||||
ix = kx;
|
||||
l = 1 - j;
|
||||
/* Computing MIN */
|
||||
i__4 = *n, i__1 = j + *k;
|
||||
i__3 = j + 1;
|
||||
for (i__ = min(i__4,i__1); i__ >= i__3; --i__) {
|
||||
x[ix] += temp * a[l + i__ + j * a_dim1];
|
||||
ix -= *incx;
|
||||
/* L70: */
|
||||
}
|
||||
if (nounit) {
|
||||
x[jx] *= a[j * a_dim1 + 1];
|
||||
}
|
||||
}
|
||||
jx -= *incx;
|
||||
if (*n - j >= *k) {
|
||||
kx -= *incx;
|
||||
}
|
||||
/* L80: */
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
||||
/* Form x := A'*x. */
|
||||
|
||||
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
|
||||
kplus1 = *k + 1;
|
||||
if (*incx == 1) {
|
||||
for (j = *n; j >= 1; --j) {
|
||||
temp = x[j];
|
||||
l = kplus1 - j;
|
||||
if (nounit) {
|
||||
temp *= a[kplus1 + j * a_dim1];
|
||||
}
|
||||
/* Computing MAX */
|
||||
i__4 = 1, i__1 = j - *k;
|
||||
i__3 = max(i__4,i__1);
|
||||
for (i__ = j - 1; i__ >= i__3; --i__) {
|
||||
temp += a[l + i__ + j * a_dim1] * x[i__];
|
||||
/* L90: */
|
||||
}
|
||||
x[j] = temp;
|
||||
/* L100: */
|
||||
}
|
||||
} else {
|
||||
kx += (*n - 1) * *incx;
|
||||
jx = kx;
|
||||
for (j = *n; j >= 1; --j) {
|
||||
temp = x[jx];
|
||||
kx -= *incx;
|
||||
ix = kx;
|
||||
l = kplus1 - j;
|
||||
if (nounit) {
|
||||
temp *= a[kplus1 + j * a_dim1];
|
||||
}
|
||||
/* Computing MAX */
|
||||
i__4 = 1, i__1 = j - *k;
|
||||
i__3 = max(i__4,i__1);
|
||||
for (i__ = j - 1; i__ >= i__3; --i__) {
|
||||
temp += a[l + i__ + j * a_dim1] * x[ix];
|
||||
ix -= *incx;
|
||||
/* L110: */
|
||||
}
|
||||
x[jx] = temp;
|
||||
jx -= *incx;
|
||||
/* L120: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if (*incx == 1) {
|
||||
i__3 = *n;
|
||||
for (j = 1; j <= i__3; ++j) {
|
||||
temp = x[j];
|
||||
l = 1 - j;
|
||||
if (nounit) {
|
||||
temp *= a[j * a_dim1 + 1];
|
||||
}
|
||||
/* Computing MIN */
|
||||
i__1 = *n, i__2 = j + *k;
|
||||
i__4 = min(i__1,i__2);
|
||||
for (i__ = j + 1; i__ <= i__4; ++i__) {
|
||||
temp += a[l + i__ + j * a_dim1] * x[i__];
|
||||
/* L130: */
|
||||
}
|
||||
x[j] = temp;
|
||||
/* L140: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
i__3 = *n;
|
||||
for (j = 1; j <= i__3; ++j) {
|
||||
temp = x[jx];
|
||||
kx += *incx;
|
||||
ix = kx;
|
||||
l = 1 - j;
|
||||
if (nounit) {
|
||||
temp *= a[j * a_dim1 + 1];
|
||||
}
|
||||
/* Computing MIN */
|
||||
i__1 = *n, i__2 = j + *k;
|
||||
i__4 = min(i__1,i__2);
|
||||
for (i__ = j + 1; i__ <= i__4; ++i__) {
|
||||
temp += a[l + i__ + j * a_dim1] * x[ix];
|
||||
ix += *incx;
|
||||
/* L150: */
|
||||
}
|
||||
x[jx] = temp;
|
||||
jx += *incx;
|
||||
/* L160: */
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
/* End of DTBMV . */
|
||||
|
||||
} /* dtbmv_ */
|
||||
|
||||
117
cs440-acg/ext/eigen/blas/f2c/lsame.c
Normal file
117
cs440-acg/ext/eigen/blas/f2c/lsame.c
Normal file
@@ -0,0 +1,117 @@
|
||||
/* lsame.f -- translated by f2c (version 20100827).
|
||||
You must link the resulting object file with libf2c:
|
||||
on Microsoft Windows system, link with libf2c.lib;
|
||||
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
||||
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
||||
-- in that order, at the end of the command line, as in
|
||||
cc *.o -lf2c -lm
|
||||
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
||||
|
||||
http://www.netlib.org/f2c/libf2c.zip
|
||||
*/
|
||||
|
||||
#include "datatypes.h"
|
||||
|
||||
logical lsame_(char *ca, char *cb, ftnlen ca_len, ftnlen cb_len)
|
||||
{
|
||||
/* System generated locals */
|
||||
logical ret_val;
|
||||
|
||||
/* Local variables */
|
||||
integer inta, intb, zcode;
|
||||
|
||||
|
||||
/* -- LAPACK auxiliary routine (version 3.1) -- */
|
||||
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
||||
/* November 2006 */
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
|
||||
/* LSAME returns .TRUE. if CA is the same letter as CB regardless of */
|
||||
/* case. */
|
||||
|
||||
/* Arguments */
|
||||
/* ========= */
|
||||
|
||||
/* CA (input) CHARACTER*1 */
|
||||
|
||||
/* CB (input) CHARACTER*1 */
|
||||
/* CA and CB specify the single characters to be compared. */
|
||||
|
||||
/* ===================================================================== */
|
||||
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
|
||||
/* Test if the characters are equal */
|
||||
|
||||
ret_val = *(unsigned char *)ca == *(unsigned char *)cb;
|
||||
if (ret_val) {
|
||||
return ret_val;
|
||||
}
|
||||
|
||||
/* Now test for equivalence if both characters are alphabetic. */
|
||||
|
||||
zcode = 'Z';
|
||||
|
||||
/* Use 'Z' rather than 'A' so that ASCII can be detected on Prime */
|
||||
/* machines, on which ICHAR returns a value with bit 8 set. */
|
||||
/* ICHAR('A') on Prime machines returns 193 which is the same as */
|
||||
/* ICHAR('A') on an EBCDIC machine. */
|
||||
|
||||
inta = *(unsigned char *)ca;
|
||||
intb = *(unsigned char *)cb;
|
||||
|
||||
if (zcode == 90 || zcode == 122) {
|
||||
|
||||
/* ASCII is assumed - ZCODE is the ASCII code of either lower or */
|
||||
/* upper case 'Z'. */
|
||||
|
||||
if (inta >= 97 && inta <= 122) {
|
||||
inta += -32;
|
||||
}
|
||||
if (intb >= 97 && intb <= 122) {
|
||||
intb += -32;
|
||||
}
|
||||
|
||||
} else if (zcode == 233 || zcode == 169) {
|
||||
|
||||
/* EBCDIC is assumed - ZCODE is the EBCDIC code of either lower or */
|
||||
/* upper case 'Z'. */
|
||||
|
||||
if ((inta >= 129 && inta <= 137) || (inta >= 145 && inta <= 153) ||
|
||||
(inta >= 162 && inta <= 169)) {
|
||||
inta += 64;
|
||||
}
|
||||
if ((intb >= 129 && intb <= 137) || (intb >= 145 && intb <= 153) ||
|
||||
(intb >= 162 && intb <= 169)) {
|
||||
intb += 64;
|
||||
}
|
||||
|
||||
} else if (zcode == 218 || zcode == 250) {
|
||||
|
||||
/* ASCII is assumed, on Prime machines - ZCODE is the ASCII code */
|
||||
/* plus 128 of either lower or upper case 'Z'. */
|
||||
|
||||
if (inta >= 225 && inta <= 250) {
|
||||
inta += -32;
|
||||
}
|
||||
if (intb >= 225 && intb <= 250) {
|
||||
intb += -32;
|
||||
}
|
||||
}
|
||||
ret_val = inta == intb;
|
||||
|
||||
/* RETURN */
|
||||
|
||||
/* End of LSAME */
|
||||
|
||||
return ret_val;
|
||||
} /* lsame_ */
|
||||
|
||||
6
cs440-acg/ext/eigen/blas/f2c/r_cnjg.c
Normal file
6
cs440-acg/ext/eigen/blas/f2c/r_cnjg.c
Normal file
@@ -0,0 +1,6 @@
|
||||
#include "datatypes.h"
|
||||
|
||||
void r_cnjg(complex *r, complex *z) {
|
||||
r->r = z->r;
|
||||
r->i = -(z->i);
|
||||
}
|
||||
216
cs440-acg/ext/eigen/blas/f2c/srotm.c
Normal file
216
cs440-acg/ext/eigen/blas/f2c/srotm.c
Normal file
@@ -0,0 +1,216 @@
|
||||
/* srotm.f -- translated by f2c (version 20100827).
|
||||
You must link the resulting object file with libf2c:
|
||||
on Microsoft Windows system, link with libf2c.lib;
|
||||
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
||||
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
||||
-- in that order, at the end of the command line, as in
|
||||
cc *.o -lf2c -lm
|
||||
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
||||
|
||||
http://www.netlib.org/f2c/libf2c.zip
|
||||
*/
|
||||
|
||||
#include "datatypes.h"
|
||||
|
||||
/* Subroutine */ int srotm_(integer *n, real *sx, integer *incx, real *sy,
|
||||
integer *incy, real *sparam)
|
||||
{
|
||||
/* Initialized data */
|
||||
|
||||
static real zero = 0.f;
|
||||
static real two = 2.f;
|
||||
|
||||
/* System generated locals */
|
||||
integer i__1, i__2;
|
||||
|
||||
/* Local variables */
|
||||
integer i__;
|
||||
real w, z__;
|
||||
integer kx, ky;
|
||||
real sh11, sh12, sh21, sh22, sflag;
|
||||
integer nsteps;
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
|
||||
/* APPLY THE MODIFIED GIVENS TRANSFORMATION, H, TO THE 2 BY N MATRIX */
|
||||
|
||||
/* (SX**T) , WHERE **T INDICATES TRANSPOSE. THE ELEMENTS OF SX ARE IN */
|
||||
/* (DX**T) */
|
||||
|
||||
/* SX(LX+I*INCX), I = 0 TO N-1, WHERE LX = 1 IF INCX .GE. 0, ELSE */
|
||||
/* LX = (-INCX)*N, AND SIMILARLY FOR SY USING USING LY AND INCY. */
|
||||
/* WITH SPARAM(1)=SFLAG, H HAS ONE OF THE FOLLOWING FORMS.. */
|
||||
|
||||
/* SFLAG=-1.E0 SFLAG=0.E0 SFLAG=1.E0 SFLAG=-2.E0 */
|
||||
|
||||
/* (SH11 SH12) (1.E0 SH12) (SH11 1.E0) (1.E0 0.E0) */
|
||||
/* H=( ) ( ) ( ) ( ) */
|
||||
/* (SH21 SH22), (SH21 1.E0), (-1.E0 SH22), (0.E0 1.E0). */
|
||||
/* SEE SROTMG FOR A DESCRIPTION OF DATA STORAGE IN SPARAM. */
|
||||
|
||||
|
||||
/* Arguments */
|
||||
/* ========= */
|
||||
|
||||
/* N (input) INTEGER */
|
||||
/* number of elements in input vector(s) */
|
||||
|
||||
/* SX (input/output) REAL array, dimension N */
|
||||
/* double precision vector with N elements */
|
||||
|
||||
/* INCX (input) INTEGER */
|
||||
/* storage spacing between elements of SX */
|
||||
|
||||
/* SY (input/output) REAL array, dimension N */
|
||||
/* double precision vector with N elements */
|
||||
|
||||
/* INCY (input) INTEGER */
|
||||
/* storage spacing between elements of SY */
|
||||
|
||||
/* SPARAM (input/output) REAL array, dimension 5 */
|
||||
/* SPARAM(1)=SFLAG */
|
||||
/* SPARAM(2)=SH11 */
|
||||
/* SPARAM(3)=SH21 */
|
||||
/* SPARAM(4)=SH12 */
|
||||
/* SPARAM(5)=SH22 */
|
||||
|
||||
/* ===================================================================== */
|
||||
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. Data statements .. */
|
||||
/* Parameter adjustments */
|
||||
--sparam;
|
||||
--sy;
|
||||
--sx;
|
||||
|
||||
/* Function Body */
|
||||
/* .. */
|
||||
|
||||
sflag = sparam[1];
|
||||
if (*n <= 0 || sflag + two == zero) {
|
||||
goto L140;
|
||||
}
|
||||
if (! (*incx == *incy && *incx > 0)) {
|
||||
goto L70;
|
||||
}
|
||||
|
||||
nsteps = *n * *incx;
|
||||
if (sflag < 0.f) {
|
||||
goto L50;
|
||||
} else if (sflag == 0) {
|
||||
goto L10;
|
||||
} else {
|
||||
goto L30;
|
||||
}
|
||||
L10:
|
||||
sh12 = sparam[4];
|
||||
sh21 = sparam[3];
|
||||
i__1 = nsteps;
|
||||
i__2 = *incx;
|
||||
for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
|
||||
w = sx[i__];
|
||||
z__ = sy[i__];
|
||||
sx[i__] = w + z__ * sh12;
|
||||
sy[i__] = w * sh21 + z__;
|
||||
/* L20: */
|
||||
}
|
||||
goto L140;
|
||||
L30:
|
||||
sh11 = sparam[2];
|
||||
sh22 = sparam[5];
|
||||
i__2 = nsteps;
|
||||
i__1 = *incx;
|
||||
for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {
|
||||
w = sx[i__];
|
||||
z__ = sy[i__];
|
||||
sx[i__] = w * sh11 + z__;
|
||||
sy[i__] = -w + sh22 * z__;
|
||||
/* L40: */
|
||||
}
|
||||
goto L140;
|
||||
L50:
|
||||
sh11 = sparam[2];
|
||||
sh12 = sparam[4];
|
||||
sh21 = sparam[3];
|
||||
sh22 = sparam[5];
|
||||
i__1 = nsteps;
|
||||
i__2 = *incx;
|
||||
for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
|
||||
w = sx[i__];
|
||||
z__ = sy[i__];
|
||||
sx[i__] = w * sh11 + z__ * sh12;
|
||||
sy[i__] = w * sh21 + z__ * sh22;
|
||||
/* L60: */
|
||||
}
|
||||
goto L140;
|
||||
L70:
|
||||
kx = 1;
|
||||
ky = 1;
|
||||
if (*incx < 0) {
|
||||
kx = (1 - *n) * *incx + 1;
|
||||
}
|
||||
if (*incy < 0) {
|
||||
ky = (1 - *n) * *incy + 1;
|
||||
}
|
||||
|
||||
if (sflag < 0.f) {
|
||||
goto L120;
|
||||
} else if (sflag == 0) {
|
||||
goto L80;
|
||||
} else {
|
||||
goto L100;
|
||||
}
|
||||
L80:
|
||||
sh12 = sparam[4];
|
||||
sh21 = sparam[3];
|
||||
i__2 = *n;
|
||||
for (i__ = 1; i__ <= i__2; ++i__) {
|
||||
w = sx[kx];
|
||||
z__ = sy[ky];
|
||||
sx[kx] = w + z__ * sh12;
|
||||
sy[ky] = w * sh21 + z__;
|
||||
kx += *incx;
|
||||
ky += *incy;
|
||||
/* L90: */
|
||||
}
|
||||
goto L140;
|
||||
L100:
|
||||
sh11 = sparam[2];
|
||||
sh22 = sparam[5];
|
||||
i__2 = *n;
|
||||
for (i__ = 1; i__ <= i__2; ++i__) {
|
||||
w = sx[kx];
|
||||
z__ = sy[ky];
|
||||
sx[kx] = w * sh11 + z__;
|
||||
sy[ky] = -w + sh22 * z__;
|
||||
kx += *incx;
|
||||
ky += *incy;
|
||||
/* L110: */
|
||||
}
|
||||
goto L140;
|
||||
L120:
|
||||
sh11 = sparam[2];
|
||||
sh12 = sparam[4];
|
||||
sh21 = sparam[3];
|
||||
sh22 = sparam[5];
|
||||
i__2 = *n;
|
||||
for (i__ = 1; i__ <= i__2; ++i__) {
|
||||
w = sx[kx];
|
||||
z__ = sy[ky];
|
||||
sx[kx] = w * sh11 + z__ * sh12;
|
||||
sy[ky] = w * sh21 + z__ * sh22;
|
||||
kx += *incx;
|
||||
ky += *incy;
|
||||
/* L130: */
|
||||
}
|
||||
L140:
|
||||
return 0;
|
||||
} /* srotm_ */
|
||||
|
||||
295
cs440-acg/ext/eigen/blas/f2c/srotmg.c
Normal file
295
cs440-acg/ext/eigen/blas/f2c/srotmg.c
Normal file
@@ -0,0 +1,295 @@
|
||||
/* srotmg.f -- translated by f2c (version 20100827).
|
||||
You must link the resulting object file with libf2c:
|
||||
on Microsoft Windows system, link with libf2c.lib;
|
||||
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
||||
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
||||
-- in that order, at the end of the command line, as in
|
||||
cc *.o -lf2c -lm
|
||||
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
||||
|
||||
http://www.netlib.org/f2c/libf2c.zip
|
||||
*/
|
||||
|
||||
#include "datatypes.h"
|
||||
|
||||
/* Subroutine */ int srotmg_(real *sd1, real *sd2, real *sx1, real *sy1, real
|
||||
*sparam)
|
||||
{
|
||||
/* Initialized data */
|
||||
|
||||
static real zero = 0.f;
|
||||
static real one = 1.f;
|
||||
static real two = 2.f;
|
||||
static real gam = 4096.f;
|
||||
static real gamsq = 16777200.f;
|
||||
static real rgamsq = 5.96046e-8f;
|
||||
|
||||
/* Format strings */
|
||||
static char fmt_120[] = "";
|
||||
static char fmt_150[] = "";
|
||||
static char fmt_180[] = "";
|
||||
static char fmt_210[] = "";
|
||||
|
||||
/* System generated locals */
|
||||
real r__1;
|
||||
|
||||
/* Local variables */
|
||||
real su, sp1, sp2, sq1, sq2, sh11, sh12, sh21, sh22;
|
||||
integer igo;
|
||||
real sflag, stemp;
|
||||
|
||||
/* Assigned format variables */
|
||||
static char *igo_fmt;
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
|
||||
/* CONSTRUCT THE MODIFIED GIVENS TRANSFORMATION MATRIX H WHICH ZEROS */
|
||||
/* THE SECOND COMPONENT OF THE 2-VECTOR (SQRT(SD1)*SX1,SQRT(SD2)* */
|
||||
/* SY2)**T. */
|
||||
/* WITH SPARAM(1)=SFLAG, H HAS ONE OF THE FOLLOWING FORMS.. */
|
||||
|
||||
/* SFLAG=-1.E0 SFLAG=0.E0 SFLAG=1.E0 SFLAG=-2.E0 */
|
||||
|
||||
/* (SH11 SH12) (1.E0 SH12) (SH11 1.E0) (1.E0 0.E0) */
|
||||
/* H=( ) ( ) ( ) ( ) */
|
||||
/* (SH21 SH22), (SH21 1.E0), (-1.E0 SH22), (0.E0 1.E0). */
|
||||
/* LOCATIONS 2-4 OF SPARAM CONTAIN SH11,SH21,SH12, AND SH22 */
|
||||
/* RESPECTIVELY. (VALUES OF 1.E0, -1.E0, OR 0.E0 IMPLIED BY THE */
|
||||
/* VALUE OF SPARAM(1) ARE NOT STORED IN SPARAM.) */
|
||||
|
||||
/* THE VALUES OF GAMSQ AND RGAMSQ SET IN THE DATA STATEMENT MAY BE */
|
||||
/* INEXACT. THIS IS OK AS THEY ARE ONLY USED FOR TESTING THE SIZE */
|
||||
/* OF SD1 AND SD2. ALL ACTUAL SCALING OF DATA IS DONE USING GAM. */
|
||||
|
||||
|
||||
/* Arguments */
|
||||
/* ========= */
|
||||
|
||||
|
||||
/* SD1 (input/output) REAL */
|
||||
|
||||
/* SD2 (input/output) REAL */
|
||||
|
||||
/* SX1 (input/output) REAL */
|
||||
|
||||
/* SY1 (input) REAL */
|
||||
|
||||
|
||||
/* SPARAM (input/output) REAL array, dimension 5 */
|
||||
/* SPARAM(1)=SFLAG */
|
||||
/* SPARAM(2)=SH11 */
|
||||
/* SPARAM(3)=SH21 */
|
||||
/* SPARAM(4)=SH12 */
|
||||
/* SPARAM(5)=SH22 */
|
||||
|
||||
/* ===================================================================== */
|
||||
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
/* .. Data statements .. */
|
||||
|
||||
/* Parameter adjustments */
|
||||
--sparam;
|
||||
|
||||
/* Function Body */
|
||||
/* .. */
|
||||
if (! (*sd1 < zero)) {
|
||||
goto L10;
|
||||
}
|
||||
/* GO ZERO-H-D-AND-SX1.. */
|
||||
goto L60;
|
||||
L10:
|
||||
/* CASE-SD1-NONNEGATIVE */
|
||||
sp2 = *sd2 * *sy1;
|
||||
if (! (sp2 == zero)) {
|
||||
goto L20;
|
||||
}
|
||||
sflag = -two;
|
||||
goto L260;
|
||||
/* REGULAR-CASE.. */
|
||||
L20:
|
||||
sp1 = *sd1 * *sx1;
|
||||
sq2 = sp2 * *sy1;
|
||||
sq1 = sp1 * *sx1;
|
||||
|
||||
if (! (dabs(sq1) > dabs(sq2))) {
|
||||
goto L40;
|
||||
}
|
||||
sh21 = -(*sy1) / *sx1;
|
||||
sh12 = sp2 / sp1;
|
||||
|
||||
su = one - sh12 * sh21;
|
||||
|
||||
if (! (su <= zero)) {
|
||||
goto L30;
|
||||
}
|
||||
/* GO ZERO-H-D-AND-SX1.. */
|
||||
goto L60;
|
||||
L30:
|
||||
sflag = zero;
|
||||
*sd1 /= su;
|
||||
*sd2 /= su;
|
||||
*sx1 *= su;
|
||||
/* GO SCALE-CHECK.. */
|
||||
goto L100;
|
||||
L40:
|
||||
if (! (sq2 < zero)) {
|
||||
goto L50;
|
||||
}
|
||||
/* GO ZERO-H-D-AND-SX1.. */
|
||||
goto L60;
|
||||
L50:
|
||||
sflag = one;
|
||||
sh11 = sp1 / sp2;
|
||||
sh22 = *sx1 / *sy1;
|
||||
su = one + sh11 * sh22;
|
||||
stemp = *sd2 / su;
|
||||
*sd2 = *sd1 / su;
|
||||
*sd1 = stemp;
|
||||
*sx1 = *sy1 * su;
|
||||
/* GO SCALE-CHECK */
|
||||
goto L100;
|
||||
/* PROCEDURE..ZERO-H-D-AND-SX1.. */
|
||||
L60:
|
||||
sflag = -one;
|
||||
sh11 = zero;
|
||||
sh12 = zero;
|
||||
sh21 = zero;
|
||||
sh22 = zero;
|
||||
|
||||
*sd1 = zero;
|
||||
*sd2 = zero;
|
||||
*sx1 = zero;
|
||||
/* RETURN.. */
|
||||
goto L220;
|
||||
/* PROCEDURE..FIX-H.. */
|
||||
L70:
|
||||
if (! (sflag >= zero)) {
|
||||
goto L90;
|
||||
}
|
||||
|
||||
if (! (sflag == zero)) {
|
||||
goto L80;
|
||||
}
|
||||
sh11 = one;
|
||||
sh22 = one;
|
||||
sflag = -one;
|
||||
goto L90;
|
||||
L80:
|
||||
sh21 = -one;
|
||||
sh12 = one;
|
||||
sflag = -one;
|
||||
L90:
|
||||
switch (igo) {
|
||||
case 0: goto L120;
|
||||
case 1: goto L150;
|
||||
case 2: goto L180;
|
||||
case 3: goto L210;
|
||||
}
|
||||
/* PROCEDURE..SCALE-CHECK */
|
||||
L100:
|
||||
L110:
|
||||
if (! (*sd1 <= rgamsq)) {
|
||||
goto L130;
|
||||
}
|
||||
if (*sd1 == zero) {
|
||||
goto L160;
|
||||
}
|
||||
igo = 0;
|
||||
igo_fmt = fmt_120;
|
||||
/* FIX-H.. */
|
||||
goto L70;
|
||||
L120:
|
||||
/* Computing 2nd power */
|
||||
r__1 = gam;
|
||||
*sd1 *= r__1 * r__1;
|
||||
*sx1 /= gam;
|
||||
sh11 /= gam;
|
||||
sh12 /= gam;
|
||||
goto L110;
|
||||
L130:
|
||||
L140:
|
||||
if (! (*sd1 >= gamsq)) {
|
||||
goto L160;
|
||||
}
|
||||
igo = 1;
|
||||
igo_fmt = fmt_150;
|
||||
/* FIX-H.. */
|
||||
goto L70;
|
||||
L150:
|
||||
/* Computing 2nd power */
|
||||
r__1 = gam;
|
||||
*sd1 /= r__1 * r__1;
|
||||
*sx1 *= gam;
|
||||
sh11 *= gam;
|
||||
sh12 *= gam;
|
||||
goto L140;
|
||||
L160:
|
||||
L170:
|
||||
if (! (dabs(*sd2) <= rgamsq)) {
|
||||
goto L190;
|
||||
}
|
||||
if (*sd2 == zero) {
|
||||
goto L220;
|
||||
}
|
||||
igo = 2;
|
||||
igo_fmt = fmt_180;
|
||||
/* FIX-H.. */
|
||||
goto L70;
|
||||
L180:
|
||||
/* Computing 2nd power */
|
||||
r__1 = gam;
|
||||
*sd2 *= r__1 * r__1;
|
||||
sh21 /= gam;
|
||||
sh22 /= gam;
|
||||
goto L170;
|
||||
L190:
|
||||
L200:
|
||||
if (! (dabs(*sd2) >= gamsq)) {
|
||||
goto L220;
|
||||
}
|
||||
igo = 3;
|
||||
igo_fmt = fmt_210;
|
||||
/* FIX-H.. */
|
||||
goto L70;
|
||||
L210:
|
||||
/* Computing 2nd power */
|
||||
r__1 = gam;
|
||||
*sd2 /= r__1 * r__1;
|
||||
sh21 *= gam;
|
||||
sh22 *= gam;
|
||||
goto L200;
|
||||
L220:
|
||||
if (sflag < 0.f) {
|
||||
goto L250;
|
||||
} else if (sflag == 0) {
|
||||
goto L230;
|
||||
} else {
|
||||
goto L240;
|
||||
}
|
||||
L230:
|
||||
sparam[3] = sh21;
|
||||
sparam[4] = sh12;
|
||||
goto L260;
|
||||
L240:
|
||||
sparam[2] = sh11;
|
||||
sparam[5] = sh22;
|
||||
goto L260;
|
||||
L250:
|
||||
sparam[2] = sh11;
|
||||
sparam[3] = sh21;
|
||||
sparam[4] = sh12;
|
||||
sparam[5] = sh22;
|
||||
L260:
|
||||
sparam[1] = sflag;
|
||||
return 0;
|
||||
} /* srotmg_ */
|
||||
|
||||
368
cs440-acg/ext/eigen/blas/f2c/ssbmv.c
Normal file
368
cs440-acg/ext/eigen/blas/f2c/ssbmv.c
Normal file
@@ -0,0 +1,368 @@
|
||||
/* ssbmv.f -- translated by f2c (version 20100827).
|
||||
You must link the resulting object file with libf2c:
|
||||
on Microsoft Windows system, link with libf2c.lib;
|
||||
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
||||
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
||||
-- in that order, at the end of the command line, as in
|
||||
cc *.o -lf2c -lm
|
||||
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
||||
|
||||
http://www.netlib.org/f2c/libf2c.zip
|
||||
*/
|
||||
|
||||
#include "datatypes.h"
|
||||
|
||||
/* Subroutine */ int ssbmv_(char *uplo, integer *n, integer *k, real *alpha,
|
||||
real *a, integer *lda, real *x, integer *incx, real *beta, real *y,
|
||||
integer *incy, ftnlen uplo_len)
|
||||
{
|
||||
/* System generated locals */
|
||||
integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
|
||||
|
||||
/* Local variables */
|
||||
integer i__, j, l, ix, iy, jx, jy, kx, ky, info;
|
||||
real temp1, temp2;
|
||||
extern logical lsame_(char *, char *, ftnlen, ftnlen);
|
||||
integer kplus1;
|
||||
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
|
||||
/* SSBMV performs the matrix-vector operation */
|
||||
|
||||
/* y := alpha*A*x + beta*y, */
|
||||
|
||||
/* where alpha and beta are scalars, x and y are n element vectors and */
|
||||
/* A is an n by n symmetric band matrix, with k super-diagonals. */
|
||||
|
||||
/* Arguments */
|
||||
/* ========== */
|
||||
|
||||
/* UPLO - CHARACTER*1. */
|
||||
/* On entry, UPLO specifies whether the upper or lower */
|
||||
/* triangular part of the band matrix A is being supplied as */
|
||||
/* follows: */
|
||||
|
||||
/* UPLO = 'U' or 'u' The upper triangular part of A is */
|
||||
/* being supplied. */
|
||||
|
||||
/* UPLO = 'L' or 'l' The lower triangular part of A is */
|
||||
/* being supplied. */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* N - INTEGER. */
|
||||
/* On entry, N specifies the order of the matrix A. */
|
||||
/* N must be at least zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* K - INTEGER. */
|
||||
/* On entry, K specifies the number of super-diagonals of the */
|
||||
/* matrix A. K must satisfy 0 .le. K. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* ALPHA - REAL . */
|
||||
/* On entry, ALPHA specifies the scalar alpha. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* A - REAL array of DIMENSION ( LDA, n ). */
|
||||
/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the upper triangular */
|
||||
/* band part of the symmetric matrix, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row */
|
||||
/* ( k + 1 ) of the array, the first super-diagonal starting at */
|
||||
/* position 2 in row k, and so on. The top left k by k triangle */
|
||||
/* of the array A is not referenced. */
|
||||
/* The following program segment will transfer the upper */
|
||||
/* triangular part of a symmetric band matrix from conventional */
|
||||
/* full matrix storage to band storage: */
|
||||
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = K + 1 - J */
|
||||
/* DO 10, I = MAX( 1, J - K ), J */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
|
||||
/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the lower triangular */
|
||||
/* band part of the symmetric matrix, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row 1 of */
|
||||
/* the array, the first sub-diagonal starting at position 1 in */
|
||||
/* row 2, and so on. The bottom right k by k triangle of the */
|
||||
/* array A is not referenced. */
|
||||
/* The following program segment will transfer the lower */
|
||||
/* triangular part of a symmetric band matrix from conventional */
|
||||
/* full matrix storage to band storage: */
|
||||
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = 1 - J */
|
||||
/* DO 10, I = J, MIN( N, J + K ) */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* LDA - INTEGER. */
|
||||
/* On entry, LDA specifies the first dimension of A as declared */
|
||||
/* in the calling (sub) program. LDA must be at least */
|
||||
/* ( k + 1 ). */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* X - REAL array of DIMENSION at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
|
||||
/* Before entry, the incremented array X must contain the */
|
||||
/* vector x. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* INCX - INTEGER. */
|
||||
/* On entry, INCX specifies the increment for the elements of */
|
||||
/* X. INCX must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* BETA - REAL . */
|
||||
/* On entry, BETA specifies the scalar beta. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* Y - REAL array of DIMENSION at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCY ) ). */
|
||||
/* Before entry, the incremented array Y must contain the */
|
||||
/* vector y. On exit, Y is overwritten by the updated vector y. */
|
||||
|
||||
/* INCY - INTEGER. */
|
||||
/* On entry, INCY specifies the increment for the elements of */
|
||||
/* Y. INCY must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* Further Details */
|
||||
/* =============== */
|
||||
|
||||
/* Level 2 Blas routine. */
|
||||
|
||||
/* -- Written on 22-October-1986. */
|
||||
/* Jack Dongarra, Argonne National Lab. */
|
||||
/* Jeremy Du Croz, Nag Central Office. */
|
||||
/* Sven Hammarling, Nag Central Office. */
|
||||
/* Richard Hanson, Sandia National Labs. */
|
||||
|
||||
/* ===================================================================== */
|
||||
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
|
||||
/* Test the input parameters. */
|
||||
|
||||
/* Parameter adjustments */
|
||||
a_dim1 = *lda;
|
||||
a_offset = 1 + a_dim1;
|
||||
a -= a_offset;
|
||||
--x;
|
||||
--y;
|
||||
|
||||
/* Function Body */
|
||||
info = 0;
|
||||
if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
|
||||
ftnlen)1, (ftnlen)1)) {
|
||||
info = 1;
|
||||
} else if (*n < 0) {
|
||||
info = 2;
|
||||
} else if (*k < 0) {
|
||||
info = 3;
|
||||
} else if (*lda < *k + 1) {
|
||||
info = 6;
|
||||
} else if (*incx == 0) {
|
||||
info = 8;
|
||||
} else if (*incy == 0) {
|
||||
info = 11;
|
||||
}
|
||||
if (info != 0) {
|
||||
xerbla_("SSBMV ", &info, (ftnlen)6);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Quick return if possible. */
|
||||
|
||||
if (*n == 0 || (*alpha == 0.f && *beta == 1.f)) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Set up the start points in X and Y. */
|
||||
|
||||
if (*incx > 0) {
|
||||
kx = 1;
|
||||
} else {
|
||||
kx = 1 - (*n - 1) * *incx;
|
||||
}
|
||||
if (*incy > 0) {
|
||||
ky = 1;
|
||||
} else {
|
||||
ky = 1 - (*n - 1) * *incy;
|
||||
}
|
||||
|
||||
/* Start the operations. In this version the elements of the array A */
|
||||
/* are accessed sequentially with one pass through A. */
|
||||
|
||||
/* First form y := beta*y. */
|
||||
|
||||
if (*beta != 1.f) {
|
||||
if (*incy == 1) {
|
||||
if (*beta == 0.f) {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
y[i__] = 0.f;
|
||||
/* L10: */
|
||||
}
|
||||
} else {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
y[i__] = *beta * y[i__];
|
||||
/* L20: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
iy = ky;
|
||||
if (*beta == 0.f) {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
y[iy] = 0.f;
|
||||
iy += *incy;
|
||||
/* L30: */
|
||||
}
|
||||
} else {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
y[iy] = *beta * y[iy];
|
||||
iy += *incy;
|
||||
/* L40: */
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (*alpha == 0.f) {
|
||||
return 0;
|
||||
}
|
||||
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
|
||||
|
||||
/* Form y when upper triangle of A is stored. */
|
||||
|
||||
kplus1 = *k + 1;
|
||||
if (*incx == 1 && *incy == 1) {
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
temp1 = *alpha * x[j];
|
||||
temp2 = 0.f;
|
||||
l = kplus1 - j;
|
||||
/* Computing MAX */
|
||||
i__2 = 1, i__3 = j - *k;
|
||||
i__4 = j - 1;
|
||||
for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
|
||||
y[i__] += temp1 * a[l + i__ + j * a_dim1];
|
||||
temp2 += a[l + i__ + j * a_dim1] * x[i__];
|
||||
/* L50: */
|
||||
}
|
||||
y[j] = y[j] + temp1 * a[kplus1 + j * a_dim1] + *alpha * temp2;
|
||||
/* L60: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
jy = ky;
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
temp1 = *alpha * x[jx];
|
||||
temp2 = 0.f;
|
||||
ix = kx;
|
||||
iy = ky;
|
||||
l = kplus1 - j;
|
||||
/* Computing MAX */
|
||||
i__4 = 1, i__2 = j - *k;
|
||||
i__3 = j - 1;
|
||||
for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
|
||||
y[iy] += temp1 * a[l + i__ + j * a_dim1];
|
||||
temp2 += a[l + i__ + j * a_dim1] * x[ix];
|
||||
ix += *incx;
|
||||
iy += *incy;
|
||||
/* L70: */
|
||||
}
|
||||
y[jy] = y[jy] + temp1 * a[kplus1 + j * a_dim1] + *alpha *
|
||||
temp2;
|
||||
jx += *incx;
|
||||
jy += *incy;
|
||||
if (j > *k) {
|
||||
kx += *incx;
|
||||
ky += *incy;
|
||||
}
|
||||
/* L80: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
||||
/* Form y when lower triangle of A is stored. */
|
||||
|
||||
if (*incx == 1 && *incy == 1) {
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
temp1 = *alpha * x[j];
|
||||
temp2 = 0.f;
|
||||
y[j] += temp1 * a[j * a_dim1 + 1];
|
||||
l = 1 - j;
|
||||
/* Computing MIN */
|
||||
i__4 = *n, i__2 = j + *k;
|
||||
i__3 = min(i__4,i__2);
|
||||
for (i__ = j + 1; i__ <= i__3; ++i__) {
|
||||
y[i__] += temp1 * a[l + i__ + j * a_dim1];
|
||||
temp2 += a[l + i__ + j * a_dim1] * x[i__];
|
||||
/* L90: */
|
||||
}
|
||||
y[j] += *alpha * temp2;
|
||||
/* L100: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
jy = ky;
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
temp1 = *alpha * x[jx];
|
||||
temp2 = 0.f;
|
||||
y[jy] += temp1 * a[j * a_dim1 + 1];
|
||||
l = 1 - j;
|
||||
ix = jx;
|
||||
iy = jy;
|
||||
/* Computing MIN */
|
||||
i__4 = *n, i__2 = j + *k;
|
||||
i__3 = min(i__4,i__2);
|
||||
for (i__ = j + 1; i__ <= i__3; ++i__) {
|
||||
ix += *incx;
|
||||
iy += *incy;
|
||||
y[iy] += temp1 * a[l + i__ + j * a_dim1];
|
||||
temp2 += a[l + i__ + j * a_dim1] * x[ix];
|
||||
/* L110: */
|
||||
}
|
||||
y[jy] += *alpha * temp2;
|
||||
jx += *incx;
|
||||
jy += *incy;
|
||||
/* L120: */
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
/* End of SSBMV . */
|
||||
|
||||
} /* ssbmv_ */
|
||||
|
||||
316
cs440-acg/ext/eigen/blas/f2c/sspmv.c
Normal file
316
cs440-acg/ext/eigen/blas/f2c/sspmv.c
Normal file
@@ -0,0 +1,316 @@
|
||||
/* sspmv.f -- translated by f2c (version 20100827).
|
||||
You must link the resulting object file with libf2c:
|
||||
on Microsoft Windows system, link with libf2c.lib;
|
||||
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
||||
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
||||
-- in that order, at the end of the command line, as in
|
||||
cc *.o -lf2c -lm
|
||||
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
||||
|
||||
http://www.netlib.org/f2c/libf2c.zip
|
||||
*/
|
||||
|
||||
#include "datatypes.h"
|
||||
|
||||
/* Subroutine */ int sspmv_(char *uplo, integer *n, real *alpha, real *ap,
|
||||
real *x, integer *incx, real *beta, real *y, integer *incy, ftnlen
|
||||
uplo_len)
|
||||
{
|
||||
/* System generated locals */
|
||||
integer i__1, i__2;
|
||||
|
||||
/* Local variables */
|
||||
integer i__, j, k, kk, ix, iy, jx, jy, kx, ky, info;
|
||||
real temp1, temp2;
|
||||
extern logical lsame_(char *, char *, ftnlen, ftnlen);
|
||||
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
|
||||
/* SSPMV performs the matrix-vector operation */
|
||||
|
||||
/* y := alpha*A*x + beta*y, */
|
||||
|
||||
/* where alpha and beta are scalars, x and y are n element vectors and */
|
||||
/* A is an n by n symmetric matrix, supplied in packed form. */
|
||||
|
||||
/* Arguments */
|
||||
/* ========== */
|
||||
|
||||
/* UPLO - CHARACTER*1. */
|
||||
/* On entry, UPLO specifies whether the upper or lower */
|
||||
/* triangular part of the matrix A is supplied in the packed */
|
||||
/* array AP as follows: */
|
||||
|
||||
/* UPLO = 'U' or 'u' The upper triangular part of A is */
|
||||
/* supplied in AP. */
|
||||
|
||||
/* UPLO = 'L' or 'l' The lower triangular part of A is */
|
||||
/* supplied in AP. */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* N - INTEGER. */
|
||||
/* On entry, N specifies the order of the matrix A. */
|
||||
/* N must be at least zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* ALPHA - REAL . */
|
||||
/* On entry, ALPHA specifies the scalar alpha. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* AP - REAL array of DIMENSION at least */
|
||||
/* ( ( n*( n + 1 ) )/2 ). */
|
||||
/* Before entry with UPLO = 'U' or 'u', the array AP must */
|
||||
/* contain the upper triangular part of the symmetric matrix */
|
||||
/* packed sequentially, column by column, so that AP( 1 ) */
|
||||
/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */
|
||||
/* and a( 2, 2 ) respectively, and so on. */
|
||||
/* Before entry with UPLO = 'L' or 'l', the array AP must */
|
||||
/* contain the lower triangular part of the symmetric matrix */
|
||||
/* packed sequentially, column by column, so that AP( 1 ) */
|
||||
/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */
|
||||
/* and a( 3, 1 ) respectively, and so on. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* X - REAL array of dimension at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
|
||||
/* Before entry, the incremented array X must contain the n */
|
||||
/* element vector x. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* INCX - INTEGER. */
|
||||
/* On entry, INCX specifies the increment for the elements of */
|
||||
/* X. INCX must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* BETA - REAL . */
|
||||
/* On entry, BETA specifies the scalar beta. When BETA is */
|
||||
/* supplied as zero then Y need not be set on input. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* Y - REAL array of dimension at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCY ) ). */
|
||||
/* Before entry, the incremented array Y must contain the n */
|
||||
/* element vector y. On exit, Y is overwritten by the updated */
|
||||
/* vector y. */
|
||||
|
||||
/* INCY - INTEGER. */
|
||||
/* On entry, INCY specifies the increment for the elements of */
|
||||
/* Y. INCY must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* Further Details */
|
||||
/* =============== */
|
||||
|
||||
/* Level 2 Blas routine. */
|
||||
|
||||
/* -- Written on 22-October-1986. */
|
||||
/* Jack Dongarra, Argonne National Lab. */
|
||||
/* Jeremy Du Croz, Nag Central Office. */
|
||||
/* Sven Hammarling, Nag Central Office. */
|
||||
/* Richard Hanson, Sandia National Labs. */
|
||||
|
||||
/* ===================================================================== */
|
||||
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
|
||||
/* Test the input parameters. */
|
||||
|
||||
/* Parameter adjustments */
|
||||
--y;
|
||||
--x;
|
||||
--ap;
|
||||
|
||||
/* Function Body */
|
||||
info = 0;
|
||||
if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
|
||||
ftnlen)1, (ftnlen)1)) {
|
||||
info = 1;
|
||||
} else if (*n < 0) {
|
||||
info = 2;
|
||||
} else if (*incx == 0) {
|
||||
info = 6;
|
||||
} else if (*incy == 0) {
|
||||
info = 9;
|
||||
}
|
||||
if (info != 0) {
|
||||
xerbla_("SSPMV ", &info, (ftnlen)6);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Quick return if possible. */
|
||||
|
||||
if (*n == 0 || (*alpha == 0.f && *beta == 1.f)) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Set up the start points in X and Y. */
|
||||
|
||||
if (*incx > 0) {
|
||||
kx = 1;
|
||||
} else {
|
||||
kx = 1 - (*n - 1) * *incx;
|
||||
}
|
||||
if (*incy > 0) {
|
||||
ky = 1;
|
||||
} else {
|
||||
ky = 1 - (*n - 1) * *incy;
|
||||
}
|
||||
|
||||
/* Start the operations. In this version the elements of the array AP */
|
||||
/* are accessed sequentially with one pass through AP. */
|
||||
|
||||
/* First form y := beta*y. */
|
||||
|
||||
if (*beta != 1.f) {
|
||||
if (*incy == 1) {
|
||||
if (*beta == 0.f) {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
y[i__] = 0.f;
|
||||
/* L10: */
|
||||
}
|
||||
} else {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
y[i__] = *beta * y[i__];
|
||||
/* L20: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
iy = ky;
|
||||
if (*beta == 0.f) {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
y[iy] = 0.f;
|
||||
iy += *incy;
|
||||
/* L30: */
|
||||
}
|
||||
} else {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
y[iy] = *beta * y[iy];
|
||||
iy += *incy;
|
||||
/* L40: */
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (*alpha == 0.f) {
|
||||
return 0;
|
||||
}
|
||||
kk = 1;
|
||||
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
|
||||
|
||||
/* Form y when AP contains the upper triangle. */
|
||||
|
||||
if (*incx == 1 && *incy == 1) {
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
temp1 = *alpha * x[j];
|
||||
temp2 = 0.f;
|
||||
k = kk;
|
||||
i__2 = j - 1;
|
||||
for (i__ = 1; i__ <= i__2; ++i__) {
|
||||
y[i__] += temp1 * ap[k];
|
||||
temp2 += ap[k] * x[i__];
|
||||
++k;
|
||||
/* L50: */
|
||||
}
|
||||
y[j] = y[j] + temp1 * ap[kk + j - 1] + *alpha * temp2;
|
||||
kk += j;
|
||||
/* L60: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
jy = ky;
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
temp1 = *alpha * x[jx];
|
||||
temp2 = 0.f;
|
||||
ix = kx;
|
||||
iy = ky;
|
||||
i__2 = kk + j - 2;
|
||||
for (k = kk; k <= i__2; ++k) {
|
||||
y[iy] += temp1 * ap[k];
|
||||
temp2 += ap[k] * x[ix];
|
||||
ix += *incx;
|
||||
iy += *incy;
|
||||
/* L70: */
|
||||
}
|
||||
y[jy] = y[jy] + temp1 * ap[kk + j - 1] + *alpha * temp2;
|
||||
jx += *incx;
|
||||
jy += *incy;
|
||||
kk += j;
|
||||
/* L80: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
||||
/* Form y when AP contains the lower triangle. */
|
||||
|
||||
if (*incx == 1 && *incy == 1) {
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
temp1 = *alpha * x[j];
|
||||
temp2 = 0.f;
|
||||
y[j] += temp1 * ap[kk];
|
||||
k = kk + 1;
|
||||
i__2 = *n;
|
||||
for (i__ = j + 1; i__ <= i__2; ++i__) {
|
||||
y[i__] += temp1 * ap[k];
|
||||
temp2 += ap[k] * x[i__];
|
||||
++k;
|
||||
/* L90: */
|
||||
}
|
||||
y[j] += *alpha * temp2;
|
||||
kk += *n - j + 1;
|
||||
/* L100: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
jy = ky;
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
temp1 = *alpha * x[jx];
|
||||
temp2 = 0.f;
|
||||
y[jy] += temp1 * ap[kk];
|
||||
ix = jx;
|
||||
iy = jy;
|
||||
i__2 = kk + *n - j;
|
||||
for (k = kk + 1; k <= i__2; ++k) {
|
||||
ix += *incx;
|
||||
iy += *incy;
|
||||
y[iy] += temp1 * ap[k];
|
||||
temp2 += ap[k] * x[ix];
|
||||
/* L110: */
|
||||
}
|
||||
y[jy] += *alpha * temp2;
|
||||
jx += *incx;
|
||||
jy += *incy;
|
||||
kk += *n - j + 1;
|
||||
/* L120: */
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
/* End of SSPMV . */
|
||||
|
||||
} /* sspmv_ */
|
||||
|
||||
428
cs440-acg/ext/eigen/blas/f2c/stbmv.c
Normal file
428
cs440-acg/ext/eigen/blas/f2c/stbmv.c
Normal file
@@ -0,0 +1,428 @@
|
||||
/* stbmv.f -- translated by f2c (version 20100827).
|
||||
You must link the resulting object file with libf2c:
|
||||
on Microsoft Windows system, link with libf2c.lib;
|
||||
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
||||
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
||||
-- in that order, at the end of the command line, as in
|
||||
cc *.o -lf2c -lm
|
||||
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
||||
|
||||
http://www.netlib.org/f2c/libf2c.zip
|
||||
*/
|
||||
|
||||
#include "datatypes.h"
|
||||
|
||||
/* Subroutine */ int stbmv_(char *uplo, char *trans, char *diag, integer *n,
|
||||
integer *k, real *a, integer *lda, real *x, integer *incx, ftnlen
|
||||
uplo_len, ftnlen trans_len, ftnlen diag_len)
|
||||
{
|
||||
/* System generated locals */
|
||||
integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
|
||||
|
||||
/* Local variables */
|
||||
integer i__, j, l, ix, jx, kx, info;
|
||||
real temp;
|
||||
extern logical lsame_(char *, char *, ftnlen, ftnlen);
|
||||
integer kplus1;
|
||||
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
||||
logical nounit;
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
|
||||
/* STBMV performs one of the matrix-vector operations */
|
||||
|
||||
/* x := A*x, or x := A'*x, */
|
||||
|
||||
/* where x is an n element vector and A is an n by n unit, or non-unit, */
|
||||
/* upper or lower triangular band matrix, with ( k + 1 ) diagonals. */
|
||||
|
||||
/* Arguments */
|
||||
/* ========== */
|
||||
|
||||
/* UPLO - CHARACTER*1. */
|
||||
/* On entry, UPLO specifies whether the matrix is an upper or */
|
||||
/* lower triangular matrix as follows: */
|
||||
|
||||
/* UPLO = 'U' or 'u' A is an upper triangular matrix. */
|
||||
|
||||
/* UPLO = 'L' or 'l' A is a lower triangular matrix. */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* TRANS - CHARACTER*1. */
|
||||
/* On entry, TRANS specifies the operation to be performed as */
|
||||
/* follows: */
|
||||
|
||||
/* TRANS = 'N' or 'n' x := A*x. */
|
||||
|
||||
/* TRANS = 'T' or 't' x := A'*x. */
|
||||
|
||||
/* TRANS = 'C' or 'c' x := A'*x. */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* DIAG - CHARACTER*1. */
|
||||
/* On entry, DIAG specifies whether or not A is unit */
|
||||
/* triangular as follows: */
|
||||
|
||||
/* DIAG = 'U' or 'u' A is assumed to be unit triangular. */
|
||||
|
||||
/* DIAG = 'N' or 'n' A is not assumed to be unit */
|
||||
/* triangular. */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* N - INTEGER. */
|
||||
/* On entry, N specifies the order of the matrix A. */
|
||||
/* N must be at least zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* K - INTEGER. */
|
||||
/* On entry with UPLO = 'U' or 'u', K specifies the number of */
|
||||
/* super-diagonals of the matrix A. */
|
||||
/* On entry with UPLO = 'L' or 'l', K specifies the number of */
|
||||
/* sub-diagonals of the matrix A. */
|
||||
/* K must satisfy 0 .le. K. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* A - REAL array of DIMENSION ( LDA, n ). */
|
||||
/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the upper triangular */
|
||||
/* band part of the matrix of coefficients, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row */
|
||||
/* ( k + 1 ) of the array, the first super-diagonal starting at */
|
||||
/* position 2 in row k, and so on. The top left k by k triangle */
|
||||
/* of the array A is not referenced. */
|
||||
/* The following program segment will transfer an upper */
|
||||
/* triangular band matrix from conventional full matrix storage */
|
||||
/* to band storage: */
|
||||
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = K + 1 - J */
|
||||
/* DO 10, I = MAX( 1, J - K ), J */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
|
||||
/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the lower triangular */
|
||||
/* band part of the matrix of coefficients, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row 1 of */
|
||||
/* the array, the first sub-diagonal starting at position 1 in */
|
||||
/* row 2, and so on. The bottom right k by k triangle of the */
|
||||
/* array A is not referenced. */
|
||||
/* The following program segment will transfer a lower */
|
||||
/* triangular band matrix from conventional full matrix storage */
|
||||
/* to band storage: */
|
||||
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = 1 - J */
|
||||
/* DO 10, I = J, MIN( N, J + K ) */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
|
||||
/* Note that when DIAG = 'U' or 'u' the elements of the array A */
|
||||
/* corresponding to the diagonal elements of the matrix are not */
|
||||
/* referenced, but are assumed to be unity. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* LDA - INTEGER. */
|
||||
/* On entry, LDA specifies the first dimension of A as declared */
|
||||
/* in the calling (sub) program. LDA must be at least */
|
||||
/* ( k + 1 ). */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* X - REAL array of dimension at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
|
||||
/* Before entry, the incremented array X must contain the n */
|
||||
/* element vector x. On exit, X is overwritten with the */
|
||||
/* tranformed vector x. */
|
||||
|
||||
/* INCX - INTEGER. */
|
||||
/* On entry, INCX specifies the increment for the elements of */
|
||||
/* X. INCX must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* Further Details */
|
||||
/* =============== */
|
||||
|
||||
/* Level 2 Blas routine. */
|
||||
|
||||
/* -- Written on 22-October-1986. */
|
||||
/* Jack Dongarra, Argonne National Lab. */
|
||||
/* Jeremy Du Croz, Nag Central Office. */
|
||||
/* Sven Hammarling, Nag Central Office. */
|
||||
/* Richard Hanson, Sandia National Labs. */
|
||||
|
||||
/* ===================================================================== */
|
||||
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
|
||||
/* Test the input parameters. */
|
||||
|
||||
/* Parameter adjustments */
|
||||
a_dim1 = *lda;
|
||||
a_offset = 1 + a_dim1;
|
||||
a -= a_offset;
|
||||
--x;
|
||||
|
||||
/* Function Body */
|
||||
info = 0;
|
||||
if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
|
||||
ftnlen)1, (ftnlen)1)) {
|
||||
info = 1;
|
||||
} else if (! lsame_(trans, "N", (ftnlen)1, (ftnlen)1) && ! lsame_(trans,
|
||||
"T", (ftnlen)1, (ftnlen)1) && ! lsame_(trans, "C", (ftnlen)1, (
|
||||
ftnlen)1)) {
|
||||
info = 2;
|
||||
} else if (! lsame_(diag, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(diag,
|
||||
"N", (ftnlen)1, (ftnlen)1)) {
|
||||
info = 3;
|
||||
} else if (*n < 0) {
|
||||
info = 4;
|
||||
} else if (*k < 0) {
|
||||
info = 5;
|
||||
} else if (*lda < *k + 1) {
|
||||
info = 7;
|
||||
} else if (*incx == 0) {
|
||||
info = 9;
|
||||
}
|
||||
if (info != 0) {
|
||||
xerbla_("STBMV ", &info, (ftnlen)6);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Quick return if possible. */
|
||||
|
||||
if (*n == 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
nounit = lsame_(diag, "N", (ftnlen)1, (ftnlen)1);
|
||||
|
||||
/* Set up the start point in X if the increment is not unity. This */
|
||||
/* will be ( N - 1 )*INCX too small for descending loops. */
|
||||
|
||||
if (*incx <= 0) {
|
||||
kx = 1 - (*n - 1) * *incx;
|
||||
} else if (*incx != 1) {
|
||||
kx = 1;
|
||||
}
|
||||
|
||||
/* Start the operations. In this version the elements of A are */
|
||||
/* accessed sequentially with one pass through A. */
|
||||
|
||||
if (lsame_(trans, "N", (ftnlen)1, (ftnlen)1)) {
|
||||
|
||||
/* Form x := A*x. */
|
||||
|
||||
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
|
||||
kplus1 = *k + 1;
|
||||
if (*incx == 1) {
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
if (x[j] != 0.f) {
|
||||
temp = x[j];
|
||||
l = kplus1 - j;
|
||||
/* Computing MAX */
|
||||
i__2 = 1, i__3 = j - *k;
|
||||
i__4 = j - 1;
|
||||
for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
|
||||
x[i__] += temp * a[l + i__ + j * a_dim1];
|
||||
/* L10: */
|
||||
}
|
||||
if (nounit) {
|
||||
x[j] *= a[kplus1 + j * a_dim1];
|
||||
}
|
||||
}
|
||||
/* L20: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
if (x[jx] != 0.f) {
|
||||
temp = x[jx];
|
||||
ix = kx;
|
||||
l = kplus1 - j;
|
||||
/* Computing MAX */
|
||||
i__4 = 1, i__2 = j - *k;
|
||||
i__3 = j - 1;
|
||||
for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
|
||||
x[ix] += temp * a[l + i__ + j * a_dim1];
|
||||
ix += *incx;
|
||||
/* L30: */
|
||||
}
|
||||
if (nounit) {
|
||||
x[jx] *= a[kplus1 + j * a_dim1];
|
||||
}
|
||||
}
|
||||
jx += *incx;
|
||||
if (j > *k) {
|
||||
kx += *incx;
|
||||
}
|
||||
/* L40: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if (*incx == 1) {
|
||||
for (j = *n; j >= 1; --j) {
|
||||
if (x[j] != 0.f) {
|
||||
temp = x[j];
|
||||
l = 1 - j;
|
||||
/* Computing MIN */
|
||||
i__1 = *n, i__3 = j + *k;
|
||||
i__4 = j + 1;
|
||||
for (i__ = min(i__1,i__3); i__ >= i__4; --i__) {
|
||||
x[i__] += temp * a[l + i__ + j * a_dim1];
|
||||
/* L50: */
|
||||
}
|
||||
if (nounit) {
|
||||
x[j] *= a[j * a_dim1 + 1];
|
||||
}
|
||||
}
|
||||
/* L60: */
|
||||
}
|
||||
} else {
|
||||
kx += (*n - 1) * *incx;
|
||||
jx = kx;
|
||||
for (j = *n; j >= 1; --j) {
|
||||
if (x[jx] != 0.f) {
|
||||
temp = x[jx];
|
||||
ix = kx;
|
||||
l = 1 - j;
|
||||
/* Computing MIN */
|
||||
i__4 = *n, i__1 = j + *k;
|
||||
i__3 = j + 1;
|
||||
for (i__ = min(i__4,i__1); i__ >= i__3; --i__) {
|
||||
x[ix] += temp * a[l + i__ + j * a_dim1];
|
||||
ix -= *incx;
|
||||
/* L70: */
|
||||
}
|
||||
if (nounit) {
|
||||
x[jx] *= a[j * a_dim1 + 1];
|
||||
}
|
||||
}
|
||||
jx -= *incx;
|
||||
if (*n - j >= *k) {
|
||||
kx -= *incx;
|
||||
}
|
||||
/* L80: */
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
||||
/* Form x := A'*x. */
|
||||
|
||||
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
|
||||
kplus1 = *k + 1;
|
||||
if (*incx == 1) {
|
||||
for (j = *n; j >= 1; --j) {
|
||||
temp = x[j];
|
||||
l = kplus1 - j;
|
||||
if (nounit) {
|
||||
temp *= a[kplus1 + j * a_dim1];
|
||||
}
|
||||
/* Computing MAX */
|
||||
i__4 = 1, i__1 = j - *k;
|
||||
i__3 = max(i__4,i__1);
|
||||
for (i__ = j - 1; i__ >= i__3; --i__) {
|
||||
temp += a[l + i__ + j * a_dim1] * x[i__];
|
||||
/* L90: */
|
||||
}
|
||||
x[j] = temp;
|
||||
/* L100: */
|
||||
}
|
||||
} else {
|
||||
kx += (*n - 1) * *incx;
|
||||
jx = kx;
|
||||
for (j = *n; j >= 1; --j) {
|
||||
temp = x[jx];
|
||||
kx -= *incx;
|
||||
ix = kx;
|
||||
l = kplus1 - j;
|
||||
if (nounit) {
|
||||
temp *= a[kplus1 + j * a_dim1];
|
||||
}
|
||||
/* Computing MAX */
|
||||
i__4 = 1, i__1 = j - *k;
|
||||
i__3 = max(i__4,i__1);
|
||||
for (i__ = j - 1; i__ >= i__3; --i__) {
|
||||
temp += a[l + i__ + j * a_dim1] * x[ix];
|
||||
ix -= *incx;
|
||||
/* L110: */
|
||||
}
|
||||
x[jx] = temp;
|
||||
jx -= *incx;
|
||||
/* L120: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if (*incx == 1) {
|
||||
i__3 = *n;
|
||||
for (j = 1; j <= i__3; ++j) {
|
||||
temp = x[j];
|
||||
l = 1 - j;
|
||||
if (nounit) {
|
||||
temp *= a[j * a_dim1 + 1];
|
||||
}
|
||||
/* Computing MIN */
|
||||
i__1 = *n, i__2 = j + *k;
|
||||
i__4 = min(i__1,i__2);
|
||||
for (i__ = j + 1; i__ <= i__4; ++i__) {
|
||||
temp += a[l + i__ + j * a_dim1] * x[i__];
|
||||
/* L130: */
|
||||
}
|
||||
x[j] = temp;
|
||||
/* L140: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
i__3 = *n;
|
||||
for (j = 1; j <= i__3; ++j) {
|
||||
temp = x[jx];
|
||||
kx += *incx;
|
||||
ix = kx;
|
||||
l = 1 - j;
|
||||
if (nounit) {
|
||||
temp *= a[j * a_dim1 + 1];
|
||||
}
|
||||
/* Computing MIN */
|
||||
i__1 = *n, i__2 = j + *k;
|
||||
i__4 = min(i__1,i__2);
|
||||
for (i__ = j + 1; i__ <= i__4; ++i__) {
|
||||
temp += a[l + i__ + j * a_dim1] * x[ix];
|
||||
ix += *incx;
|
||||
/* L150: */
|
||||
}
|
||||
x[jx] = temp;
|
||||
jx += *incx;
|
||||
/* L160: */
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
/* End of STBMV . */
|
||||
|
||||
} /* stbmv_ */
|
||||
|
||||
488
cs440-acg/ext/eigen/blas/f2c/zhbmv.c
Normal file
488
cs440-acg/ext/eigen/blas/f2c/zhbmv.c
Normal file
@@ -0,0 +1,488 @@
|
||||
/* zhbmv.f -- translated by f2c (version 20100827).
|
||||
You must link the resulting object file with libf2c:
|
||||
on Microsoft Windows system, link with libf2c.lib;
|
||||
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
||||
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
||||
-- in that order, at the end of the command line, as in
|
||||
cc *.o -lf2c -lm
|
||||
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
||||
|
||||
http://www.netlib.org/f2c/libf2c.zip
|
||||
*/
|
||||
|
||||
#include "datatypes.h"
|
||||
|
||||
/* Subroutine */ int zhbmv_(char *uplo, integer *n, integer *k, doublecomplex
|
||||
*alpha, doublecomplex *a, integer *lda, doublecomplex *x, integer *
|
||||
incx, doublecomplex *beta, doublecomplex *y, integer *incy, ftnlen
|
||||
uplo_len)
|
||||
{
|
||||
/* System generated locals */
|
||||
integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
|
||||
doublereal d__1;
|
||||
doublecomplex z__1, z__2, z__3, z__4;
|
||||
|
||||
/* Builtin functions */
|
||||
void d_cnjg(doublecomplex *, doublecomplex *);
|
||||
|
||||
/* Local variables */
|
||||
integer i__, j, l, ix, iy, jx, jy, kx, ky, info;
|
||||
doublecomplex temp1, temp2;
|
||||
extern logical lsame_(char *, char *, ftnlen, ftnlen);
|
||||
integer kplus1;
|
||||
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
|
||||
/* ZHBMV performs the matrix-vector operation */
|
||||
|
||||
/* y := alpha*A*x + beta*y, */
|
||||
|
||||
/* where alpha and beta are scalars, x and y are n element vectors and */
|
||||
/* A is an n by n hermitian band matrix, with k super-diagonals. */
|
||||
|
||||
/* Arguments */
|
||||
/* ========== */
|
||||
|
||||
/* UPLO - CHARACTER*1. */
|
||||
/* On entry, UPLO specifies whether the upper or lower */
|
||||
/* triangular part of the band matrix A is being supplied as */
|
||||
/* follows: */
|
||||
|
||||
/* UPLO = 'U' or 'u' The upper triangular part of A is */
|
||||
/* being supplied. */
|
||||
|
||||
/* UPLO = 'L' or 'l' The lower triangular part of A is */
|
||||
/* being supplied. */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* N - INTEGER. */
|
||||
/* On entry, N specifies the order of the matrix A. */
|
||||
/* N must be at least zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* K - INTEGER. */
|
||||
/* On entry, K specifies the number of super-diagonals of the */
|
||||
/* matrix A. K must satisfy 0 .le. K. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* ALPHA - COMPLEX*16 . */
|
||||
/* On entry, ALPHA specifies the scalar alpha. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* A - COMPLEX*16 array of DIMENSION ( LDA, n ). */
|
||||
/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the upper triangular */
|
||||
/* band part of the hermitian matrix, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row */
|
||||
/* ( k + 1 ) of the array, the first super-diagonal starting at */
|
||||
/* position 2 in row k, and so on. The top left k by k triangle */
|
||||
/* of the array A is not referenced. */
|
||||
/* The following program segment will transfer the upper */
|
||||
/* triangular part of a hermitian band matrix from conventional */
|
||||
/* full matrix storage to band storage: */
|
||||
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = K + 1 - J */
|
||||
/* DO 10, I = MAX( 1, J - K ), J */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
|
||||
/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the lower triangular */
|
||||
/* band part of the hermitian matrix, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row 1 of */
|
||||
/* the array, the first sub-diagonal starting at position 1 in */
|
||||
/* row 2, and so on. The bottom right k by k triangle of the */
|
||||
/* array A is not referenced. */
|
||||
/* The following program segment will transfer the lower */
|
||||
/* triangular part of a hermitian band matrix from conventional */
|
||||
/* full matrix storage to band storage: */
|
||||
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = 1 - J */
|
||||
/* DO 10, I = J, MIN( N, J + K ) */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
|
||||
/* Note that the imaginary parts of the diagonal elements need */
|
||||
/* not be set and are assumed to be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* LDA - INTEGER. */
|
||||
/* On entry, LDA specifies the first dimension of A as declared */
|
||||
/* in the calling (sub) program. LDA must be at least */
|
||||
/* ( k + 1 ). */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* X - COMPLEX*16 array of DIMENSION at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
|
||||
/* Before entry, the incremented array X must contain the */
|
||||
/* vector x. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* INCX - INTEGER. */
|
||||
/* On entry, INCX specifies the increment for the elements of */
|
||||
/* X. INCX must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* BETA - COMPLEX*16 . */
|
||||
/* On entry, BETA specifies the scalar beta. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* Y - COMPLEX*16 array of DIMENSION at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCY ) ). */
|
||||
/* Before entry, the incremented array Y must contain the */
|
||||
/* vector y. On exit, Y is overwritten by the updated vector y. */
|
||||
|
||||
/* INCY - INTEGER. */
|
||||
/* On entry, INCY specifies the increment for the elements of */
|
||||
/* Y. INCY must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* Further Details */
|
||||
/* =============== */
|
||||
|
||||
/* Level 2 Blas routine. */
|
||||
|
||||
/* -- Written on 22-October-1986. */
|
||||
/* Jack Dongarra, Argonne National Lab. */
|
||||
/* Jeremy Du Croz, Nag Central Office. */
|
||||
/* Sven Hammarling, Nag Central Office. */
|
||||
/* Richard Hanson, Sandia National Labs. */
|
||||
|
||||
/* ===================================================================== */
|
||||
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
|
||||
/* Test the input parameters. */
|
||||
|
||||
/* Parameter adjustments */
|
||||
a_dim1 = *lda;
|
||||
a_offset = 1 + a_dim1;
|
||||
a -= a_offset;
|
||||
--x;
|
||||
--y;
|
||||
|
||||
/* Function Body */
|
||||
info = 0;
|
||||
if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
|
||||
ftnlen)1, (ftnlen)1)) {
|
||||
info = 1;
|
||||
} else if (*n < 0) {
|
||||
info = 2;
|
||||
} else if (*k < 0) {
|
||||
info = 3;
|
||||
} else if (*lda < *k + 1) {
|
||||
info = 6;
|
||||
} else if (*incx == 0) {
|
||||
info = 8;
|
||||
} else if (*incy == 0) {
|
||||
info = 11;
|
||||
}
|
||||
if (info != 0) {
|
||||
xerbla_("ZHBMV ", &info, (ftnlen)6);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Quick return if possible. */
|
||||
|
||||
if (*n == 0 || (alpha->r == 0. && alpha->i == 0. && (beta->r == 1. &&
|
||||
beta->i == 0.))) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Set up the start points in X and Y. */
|
||||
|
||||
if (*incx > 0) {
|
||||
kx = 1;
|
||||
} else {
|
||||
kx = 1 - (*n - 1) * *incx;
|
||||
}
|
||||
if (*incy > 0) {
|
||||
ky = 1;
|
||||
} else {
|
||||
ky = 1 - (*n - 1) * *incy;
|
||||
}
|
||||
|
||||
/* Start the operations. In this version the elements of the array A */
|
||||
/* are accessed sequentially with one pass through A. */
|
||||
|
||||
/* First form y := beta*y. */
|
||||
|
||||
if (beta->r != 1. || beta->i != 0.) {
|
||||
if (*incy == 1) {
|
||||
if (beta->r == 0. && beta->i == 0.) {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
i__2 = i__;
|
||||
y[i__2].r = 0., y[i__2].i = 0.;
|
||||
/* L10: */
|
||||
}
|
||||
} else {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
i__2 = i__;
|
||||
i__3 = i__;
|
||||
z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
|
||||
z__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
|
||||
.r;
|
||||
y[i__2].r = z__1.r, y[i__2].i = z__1.i;
|
||||
/* L20: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
iy = ky;
|
||||
if (beta->r == 0. && beta->i == 0.) {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
i__2 = iy;
|
||||
y[i__2].r = 0., y[i__2].i = 0.;
|
||||
iy += *incy;
|
||||
/* L30: */
|
||||
}
|
||||
} else {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
i__2 = iy;
|
||||
i__3 = iy;
|
||||
z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
|
||||
z__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
|
||||
.r;
|
||||
y[i__2].r = z__1.r, y[i__2].i = z__1.i;
|
||||
iy += *incy;
|
||||
/* L40: */
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (alpha->r == 0. && alpha->i == 0.) {
|
||||
return 0;
|
||||
}
|
||||
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
|
||||
|
||||
/* Form y when upper triangle of A is stored. */
|
||||
|
||||
kplus1 = *k + 1;
|
||||
if (*incx == 1 && *incy == 1) {
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
i__2 = j;
|
||||
z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
|
||||
alpha->r * x[i__2].i + alpha->i * x[i__2].r;
|
||||
temp1.r = z__1.r, temp1.i = z__1.i;
|
||||
temp2.r = 0., temp2.i = 0.;
|
||||
l = kplus1 - j;
|
||||
/* Computing MAX */
|
||||
i__2 = 1, i__3 = j - *k;
|
||||
i__4 = j - 1;
|
||||
for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
|
||||
i__2 = i__;
|
||||
i__3 = i__;
|
||||
i__5 = l + i__ + j * a_dim1;
|
||||
z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
|
||||
z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
|
||||
.r;
|
||||
z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
|
||||
y[i__2].r = z__1.r, y[i__2].i = z__1.i;
|
||||
d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
|
||||
i__2 = i__;
|
||||
z__2.r = z__3.r * x[i__2].r - z__3.i * x[i__2].i, z__2.i =
|
||||
z__3.r * x[i__2].i + z__3.i * x[i__2].r;
|
||||
z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
|
||||
temp2.r = z__1.r, temp2.i = z__1.i;
|
||||
/* L50: */
|
||||
}
|
||||
i__4 = j;
|
||||
i__2 = j;
|
||||
i__3 = kplus1 + j * a_dim1;
|
||||
d__1 = a[i__3].r;
|
||||
z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i;
|
||||
z__2.r = y[i__2].r + z__3.r, z__2.i = y[i__2].i + z__3.i;
|
||||
z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i =
|
||||
alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
|
||||
y[i__4].r = z__1.r, y[i__4].i = z__1.i;
|
||||
/* L60: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
jy = ky;
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
i__4 = jx;
|
||||
z__1.r = alpha->r * x[i__4].r - alpha->i * x[i__4].i, z__1.i =
|
||||
alpha->r * x[i__4].i + alpha->i * x[i__4].r;
|
||||
temp1.r = z__1.r, temp1.i = z__1.i;
|
||||
temp2.r = 0., temp2.i = 0.;
|
||||
ix = kx;
|
||||
iy = ky;
|
||||
l = kplus1 - j;
|
||||
/* Computing MAX */
|
||||
i__4 = 1, i__2 = j - *k;
|
||||
i__3 = j - 1;
|
||||
for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
|
||||
i__4 = iy;
|
||||
i__2 = iy;
|
||||
i__5 = l + i__ + j * a_dim1;
|
||||
z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
|
||||
z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
|
||||
.r;
|
||||
z__1.r = y[i__2].r + z__2.r, z__1.i = y[i__2].i + z__2.i;
|
||||
y[i__4].r = z__1.r, y[i__4].i = z__1.i;
|
||||
d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
|
||||
i__4 = ix;
|
||||
z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i, z__2.i =
|
||||
z__3.r * x[i__4].i + z__3.i * x[i__4].r;
|
||||
z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
|
||||
temp2.r = z__1.r, temp2.i = z__1.i;
|
||||
ix += *incx;
|
||||
iy += *incy;
|
||||
/* L70: */
|
||||
}
|
||||
i__3 = jy;
|
||||
i__4 = jy;
|
||||
i__2 = kplus1 + j * a_dim1;
|
||||
d__1 = a[i__2].r;
|
||||
z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i;
|
||||
z__2.r = y[i__4].r + z__3.r, z__2.i = y[i__4].i + z__3.i;
|
||||
z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i =
|
||||
alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
|
||||
y[i__3].r = z__1.r, y[i__3].i = z__1.i;
|
||||
jx += *incx;
|
||||
jy += *incy;
|
||||
if (j > *k) {
|
||||
kx += *incx;
|
||||
ky += *incy;
|
||||
}
|
||||
/* L80: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
||||
/* Form y when lower triangle of A is stored. */
|
||||
|
||||
if (*incx == 1 && *incy == 1) {
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
i__3 = j;
|
||||
z__1.r = alpha->r * x[i__3].r - alpha->i * x[i__3].i, z__1.i =
|
||||
alpha->r * x[i__3].i + alpha->i * x[i__3].r;
|
||||
temp1.r = z__1.r, temp1.i = z__1.i;
|
||||
temp2.r = 0., temp2.i = 0.;
|
||||
i__3 = j;
|
||||
i__4 = j;
|
||||
i__2 = j * a_dim1 + 1;
|
||||
d__1 = a[i__2].r;
|
||||
z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i;
|
||||
z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
|
||||
y[i__3].r = z__1.r, y[i__3].i = z__1.i;
|
||||
l = 1 - j;
|
||||
/* Computing MIN */
|
||||
i__4 = *n, i__2 = j + *k;
|
||||
i__3 = min(i__4,i__2);
|
||||
for (i__ = j + 1; i__ <= i__3; ++i__) {
|
||||
i__4 = i__;
|
||||
i__2 = i__;
|
||||
i__5 = l + i__ + j * a_dim1;
|
||||
z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
|
||||
z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
|
||||
.r;
|
||||
z__1.r = y[i__2].r + z__2.r, z__1.i = y[i__2].i + z__2.i;
|
||||
y[i__4].r = z__1.r, y[i__4].i = z__1.i;
|
||||
d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
|
||||
i__4 = i__;
|
||||
z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i, z__2.i =
|
||||
z__3.r * x[i__4].i + z__3.i * x[i__4].r;
|
||||
z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
|
||||
temp2.r = z__1.r, temp2.i = z__1.i;
|
||||
/* L90: */
|
||||
}
|
||||
i__3 = j;
|
||||
i__4 = j;
|
||||
z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i =
|
||||
alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
|
||||
y[i__3].r = z__1.r, y[i__3].i = z__1.i;
|
||||
/* L100: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
jy = ky;
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
i__3 = jx;
|
||||
z__1.r = alpha->r * x[i__3].r - alpha->i * x[i__3].i, z__1.i =
|
||||
alpha->r * x[i__3].i + alpha->i * x[i__3].r;
|
||||
temp1.r = z__1.r, temp1.i = z__1.i;
|
||||
temp2.r = 0., temp2.i = 0.;
|
||||
i__3 = jy;
|
||||
i__4 = jy;
|
||||
i__2 = j * a_dim1 + 1;
|
||||
d__1 = a[i__2].r;
|
||||
z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i;
|
||||
z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
|
||||
y[i__3].r = z__1.r, y[i__3].i = z__1.i;
|
||||
l = 1 - j;
|
||||
ix = jx;
|
||||
iy = jy;
|
||||
/* Computing MIN */
|
||||
i__4 = *n, i__2 = j + *k;
|
||||
i__3 = min(i__4,i__2);
|
||||
for (i__ = j + 1; i__ <= i__3; ++i__) {
|
||||
ix += *incx;
|
||||
iy += *incy;
|
||||
i__4 = iy;
|
||||
i__2 = iy;
|
||||
i__5 = l + i__ + j * a_dim1;
|
||||
z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
|
||||
z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
|
||||
.r;
|
||||
z__1.r = y[i__2].r + z__2.r, z__1.i = y[i__2].i + z__2.i;
|
||||
y[i__4].r = z__1.r, y[i__4].i = z__1.i;
|
||||
d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
|
||||
i__4 = ix;
|
||||
z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i, z__2.i =
|
||||
z__3.r * x[i__4].i + z__3.i * x[i__4].r;
|
||||
z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
|
||||
temp2.r = z__1.r, temp2.i = z__1.i;
|
||||
/* L110: */
|
||||
}
|
||||
i__3 = jy;
|
||||
i__4 = jy;
|
||||
z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i =
|
||||
alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
|
||||
y[i__3].r = z__1.r, y[i__3].i = z__1.i;
|
||||
jx += *incx;
|
||||
jy += *incy;
|
||||
/* L120: */
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
/* End of ZHBMV . */
|
||||
|
||||
} /* zhbmv_ */
|
||||
|
||||
438
cs440-acg/ext/eigen/blas/f2c/zhpmv.c
Normal file
438
cs440-acg/ext/eigen/blas/f2c/zhpmv.c
Normal file
@@ -0,0 +1,438 @@
|
||||
/* zhpmv.f -- translated by f2c (version 20100827).
|
||||
You must link the resulting object file with libf2c:
|
||||
on Microsoft Windows system, link with libf2c.lib;
|
||||
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
||||
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
||||
-- in that order, at the end of the command line, as in
|
||||
cc *.o -lf2c -lm
|
||||
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
||||
|
||||
http://www.netlib.org/f2c/libf2c.zip
|
||||
*/
|
||||
|
||||
#include "datatypes.h"
|
||||
|
||||
/* Subroutine */ int zhpmv_(char *uplo, integer *n, doublecomplex *alpha,
|
||||
doublecomplex *ap, doublecomplex *x, integer *incx, doublecomplex *
|
||||
beta, doublecomplex *y, integer *incy, ftnlen uplo_len)
|
||||
{
|
||||
/* System generated locals */
|
||||
integer i__1, i__2, i__3, i__4, i__5;
|
||||
doublereal d__1;
|
||||
doublecomplex z__1, z__2, z__3, z__4;
|
||||
|
||||
/* Builtin functions */
|
||||
void d_cnjg(doublecomplex *, doublecomplex *);
|
||||
|
||||
/* Local variables */
|
||||
integer i__, j, k, kk, ix, iy, jx, jy, kx, ky, info;
|
||||
doublecomplex temp1, temp2;
|
||||
extern logical lsame_(char *, char *, ftnlen, ftnlen);
|
||||
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
|
||||
/* ZHPMV performs the matrix-vector operation */
|
||||
|
||||
/* y := alpha*A*x + beta*y, */
|
||||
|
||||
/* where alpha and beta are scalars, x and y are n element vectors and */
|
||||
/* A is an n by n hermitian matrix, supplied in packed form. */
|
||||
|
||||
/* Arguments */
|
||||
/* ========== */
|
||||
|
||||
/* UPLO - CHARACTER*1. */
|
||||
/* On entry, UPLO specifies whether the upper or lower */
|
||||
/* triangular part of the matrix A is supplied in the packed */
|
||||
/* array AP as follows: */
|
||||
|
||||
/* UPLO = 'U' or 'u' The upper triangular part of A is */
|
||||
/* supplied in AP. */
|
||||
|
||||
/* UPLO = 'L' or 'l' The lower triangular part of A is */
|
||||
/* supplied in AP. */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* N - INTEGER. */
|
||||
/* On entry, N specifies the order of the matrix A. */
|
||||
/* N must be at least zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* ALPHA - COMPLEX*16 . */
|
||||
/* On entry, ALPHA specifies the scalar alpha. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* AP - COMPLEX*16 array of DIMENSION at least */
|
||||
/* ( ( n*( n + 1 ) )/2 ). */
|
||||
/* Before entry with UPLO = 'U' or 'u', the array AP must */
|
||||
/* contain the upper triangular part of the hermitian matrix */
|
||||
/* packed sequentially, column by column, so that AP( 1 ) */
|
||||
/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */
|
||||
/* and a( 2, 2 ) respectively, and so on. */
|
||||
/* Before entry with UPLO = 'L' or 'l', the array AP must */
|
||||
/* contain the lower triangular part of the hermitian matrix */
|
||||
/* packed sequentially, column by column, so that AP( 1 ) */
|
||||
/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */
|
||||
/* and a( 3, 1 ) respectively, and so on. */
|
||||
/* Note that the imaginary parts of the diagonal elements need */
|
||||
/* not be set and are assumed to be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* X - COMPLEX*16 array of dimension at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
|
||||
/* Before entry, the incremented array X must contain the n */
|
||||
/* element vector x. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* INCX - INTEGER. */
|
||||
/* On entry, INCX specifies the increment for the elements of */
|
||||
/* X. INCX must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* BETA - COMPLEX*16 . */
|
||||
/* On entry, BETA specifies the scalar beta. When BETA is */
|
||||
/* supplied as zero then Y need not be set on input. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* Y - COMPLEX*16 array of dimension at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCY ) ). */
|
||||
/* Before entry, the incremented array Y must contain the n */
|
||||
/* element vector y. On exit, Y is overwritten by the updated */
|
||||
/* vector y. */
|
||||
|
||||
/* INCY - INTEGER. */
|
||||
/* On entry, INCY specifies the increment for the elements of */
|
||||
/* Y. INCY must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* Further Details */
|
||||
/* =============== */
|
||||
|
||||
/* Level 2 Blas routine. */
|
||||
|
||||
/* -- Written on 22-October-1986. */
|
||||
/* Jack Dongarra, Argonne National Lab. */
|
||||
/* Jeremy Du Croz, Nag Central Office. */
|
||||
/* Sven Hammarling, Nag Central Office. */
|
||||
/* Richard Hanson, Sandia National Labs. */
|
||||
|
||||
/* ===================================================================== */
|
||||
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
|
||||
/* Test the input parameters. */
|
||||
|
||||
/* Parameter adjustments */
|
||||
--y;
|
||||
--x;
|
||||
--ap;
|
||||
|
||||
/* Function Body */
|
||||
info = 0;
|
||||
if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
|
||||
ftnlen)1, (ftnlen)1)) {
|
||||
info = 1;
|
||||
} else if (*n < 0) {
|
||||
info = 2;
|
||||
} else if (*incx == 0) {
|
||||
info = 6;
|
||||
} else if (*incy == 0) {
|
||||
info = 9;
|
||||
}
|
||||
if (info != 0) {
|
||||
xerbla_("ZHPMV ", &info, (ftnlen)6);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Quick return if possible. */
|
||||
|
||||
if (*n == 0 || (alpha->r == 0. && alpha->i == 0. && (beta->r == 1. &&
|
||||
beta->i == 0.))) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Set up the start points in X and Y. */
|
||||
|
||||
if (*incx > 0) {
|
||||
kx = 1;
|
||||
} else {
|
||||
kx = 1 - (*n - 1) * *incx;
|
||||
}
|
||||
if (*incy > 0) {
|
||||
ky = 1;
|
||||
} else {
|
||||
ky = 1 - (*n - 1) * *incy;
|
||||
}
|
||||
|
||||
/* Start the operations. In this version the elements of the array AP */
|
||||
/* are accessed sequentially with one pass through AP. */
|
||||
|
||||
/* First form y := beta*y. */
|
||||
|
||||
if (beta->r != 1. || beta->i != 0.) {
|
||||
if (*incy == 1) {
|
||||
if (beta->r == 0. && beta->i == 0.) {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
i__2 = i__;
|
||||
y[i__2].r = 0., y[i__2].i = 0.;
|
||||
/* L10: */
|
||||
}
|
||||
} else {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
i__2 = i__;
|
||||
i__3 = i__;
|
||||
z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
|
||||
z__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
|
||||
.r;
|
||||
y[i__2].r = z__1.r, y[i__2].i = z__1.i;
|
||||
/* L20: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
iy = ky;
|
||||
if (beta->r == 0. && beta->i == 0.) {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
i__2 = iy;
|
||||
y[i__2].r = 0., y[i__2].i = 0.;
|
||||
iy += *incy;
|
||||
/* L30: */
|
||||
}
|
||||
} else {
|
||||
i__1 = *n;
|
||||
for (i__ = 1; i__ <= i__1; ++i__) {
|
||||
i__2 = iy;
|
||||
i__3 = iy;
|
||||
z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
|
||||
z__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
|
||||
.r;
|
||||
y[i__2].r = z__1.r, y[i__2].i = z__1.i;
|
||||
iy += *incy;
|
||||
/* L40: */
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (alpha->r == 0. && alpha->i == 0.) {
|
||||
return 0;
|
||||
}
|
||||
kk = 1;
|
||||
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
|
||||
|
||||
/* Form y when AP contains the upper triangle. */
|
||||
|
||||
if (*incx == 1 && *incy == 1) {
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
i__2 = j;
|
||||
z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
|
||||
alpha->r * x[i__2].i + alpha->i * x[i__2].r;
|
||||
temp1.r = z__1.r, temp1.i = z__1.i;
|
||||
temp2.r = 0., temp2.i = 0.;
|
||||
k = kk;
|
||||
i__2 = j - 1;
|
||||
for (i__ = 1; i__ <= i__2; ++i__) {
|
||||
i__3 = i__;
|
||||
i__4 = i__;
|
||||
i__5 = k;
|
||||
z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
|
||||
z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
|
||||
.r;
|
||||
z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
|
||||
y[i__3].r = z__1.r, y[i__3].i = z__1.i;
|
||||
d_cnjg(&z__3, &ap[k]);
|
||||
i__3 = i__;
|
||||
z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i =
|
||||
z__3.r * x[i__3].i + z__3.i * x[i__3].r;
|
||||
z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
|
||||
temp2.r = z__1.r, temp2.i = z__1.i;
|
||||
++k;
|
||||
/* L50: */
|
||||
}
|
||||
i__2 = j;
|
||||
i__3 = j;
|
||||
i__4 = kk + j - 1;
|
||||
d__1 = ap[i__4].r;
|
||||
z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i;
|
||||
z__2.r = y[i__3].r + z__3.r, z__2.i = y[i__3].i + z__3.i;
|
||||
z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i =
|
||||
alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
|
||||
y[i__2].r = z__1.r, y[i__2].i = z__1.i;
|
||||
kk += j;
|
||||
/* L60: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
jy = ky;
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
i__2 = jx;
|
||||
z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
|
||||
alpha->r * x[i__2].i + alpha->i * x[i__2].r;
|
||||
temp1.r = z__1.r, temp1.i = z__1.i;
|
||||
temp2.r = 0., temp2.i = 0.;
|
||||
ix = kx;
|
||||
iy = ky;
|
||||
i__2 = kk + j - 2;
|
||||
for (k = kk; k <= i__2; ++k) {
|
||||
i__3 = iy;
|
||||
i__4 = iy;
|
||||
i__5 = k;
|
||||
z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
|
||||
z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
|
||||
.r;
|
||||
z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
|
||||
y[i__3].r = z__1.r, y[i__3].i = z__1.i;
|
||||
d_cnjg(&z__3, &ap[k]);
|
||||
i__3 = ix;
|
||||
z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i =
|
||||
z__3.r * x[i__3].i + z__3.i * x[i__3].r;
|
||||
z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
|
||||
temp2.r = z__1.r, temp2.i = z__1.i;
|
||||
ix += *incx;
|
||||
iy += *incy;
|
||||
/* L70: */
|
||||
}
|
||||
i__2 = jy;
|
||||
i__3 = jy;
|
||||
i__4 = kk + j - 1;
|
||||
d__1 = ap[i__4].r;
|
||||
z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i;
|
||||
z__2.r = y[i__3].r + z__3.r, z__2.i = y[i__3].i + z__3.i;
|
||||
z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i =
|
||||
alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
|
||||
y[i__2].r = z__1.r, y[i__2].i = z__1.i;
|
||||
jx += *incx;
|
||||
jy += *incy;
|
||||
kk += j;
|
||||
/* L80: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
||||
/* Form y when AP contains the lower triangle. */
|
||||
|
||||
if (*incx == 1 && *incy == 1) {
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
i__2 = j;
|
||||
z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
|
||||
alpha->r * x[i__2].i + alpha->i * x[i__2].r;
|
||||
temp1.r = z__1.r, temp1.i = z__1.i;
|
||||
temp2.r = 0., temp2.i = 0.;
|
||||
i__2 = j;
|
||||
i__3 = j;
|
||||
i__4 = kk;
|
||||
d__1 = ap[i__4].r;
|
||||
z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i;
|
||||
z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
|
||||
y[i__2].r = z__1.r, y[i__2].i = z__1.i;
|
||||
k = kk + 1;
|
||||
i__2 = *n;
|
||||
for (i__ = j + 1; i__ <= i__2; ++i__) {
|
||||
i__3 = i__;
|
||||
i__4 = i__;
|
||||
i__5 = k;
|
||||
z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
|
||||
z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
|
||||
.r;
|
||||
z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
|
||||
y[i__3].r = z__1.r, y[i__3].i = z__1.i;
|
||||
d_cnjg(&z__3, &ap[k]);
|
||||
i__3 = i__;
|
||||
z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i =
|
||||
z__3.r * x[i__3].i + z__3.i * x[i__3].r;
|
||||
z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
|
||||
temp2.r = z__1.r, temp2.i = z__1.i;
|
||||
++k;
|
||||
/* L90: */
|
||||
}
|
||||
i__2 = j;
|
||||
i__3 = j;
|
||||
z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i =
|
||||
alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
|
||||
y[i__2].r = z__1.r, y[i__2].i = z__1.i;
|
||||
kk += *n - j + 1;
|
||||
/* L100: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
jy = ky;
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
i__2 = jx;
|
||||
z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
|
||||
alpha->r * x[i__2].i + alpha->i * x[i__2].r;
|
||||
temp1.r = z__1.r, temp1.i = z__1.i;
|
||||
temp2.r = 0., temp2.i = 0.;
|
||||
i__2 = jy;
|
||||
i__3 = jy;
|
||||
i__4 = kk;
|
||||
d__1 = ap[i__4].r;
|
||||
z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i;
|
||||
z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
|
||||
y[i__2].r = z__1.r, y[i__2].i = z__1.i;
|
||||
ix = jx;
|
||||
iy = jy;
|
||||
i__2 = kk + *n - j;
|
||||
for (k = kk + 1; k <= i__2; ++k) {
|
||||
ix += *incx;
|
||||
iy += *incy;
|
||||
i__3 = iy;
|
||||
i__4 = iy;
|
||||
i__5 = k;
|
||||
z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
|
||||
z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
|
||||
.r;
|
||||
z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
|
||||
y[i__3].r = z__1.r, y[i__3].i = z__1.i;
|
||||
d_cnjg(&z__3, &ap[k]);
|
||||
i__3 = ix;
|
||||
z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i =
|
||||
z__3.r * x[i__3].i + z__3.i * x[i__3].r;
|
||||
z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
|
||||
temp2.r = z__1.r, temp2.i = z__1.i;
|
||||
/* L110: */
|
||||
}
|
||||
i__2 = jy;
|
||||
i__3 = jy;
|
||||
z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i =
|
||||
alpha->r * temp2.i + alpha->i * temp2.r;
|
||||
z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
|
||||
y[i__2].r = z__1.r, y[i__2].i = z__1.i;
|
||||
jx += *incx;
|
||||
jy += *incy;
|
||||
kk += *n - j + 1;
|
||||
/* L120: */
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
/* End of ZHPMV . */
|
||||
|
||||
} /* zhpmv_ */
|
||||
|
||||
647
cs440-acg/ext/eigen/blas/f2c/ztbmv.c
Normal file
647
cs440-acg/ext/eigen/blas/f2c/ztbmv.c
Normal file
@@ -0,0 +1,647 @@
|
||||
/* ztbmv.f -- translated by f2c (version 20100827).
|
||||
You must link the resulting object file with libf2c:
|
||||
on Microsoft Windows system, link with libf2c.lib;
|
||||
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
||||
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
||||
-- in that order, at the end of the command line, as in
|
||||
cc *.o -lf2c -lm
|
||||
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
||||
|
||||
http://www.netlib.org/f2c/libf2c.zip
|
||||
*/
|
||||
|
||||
#include "datatypes.h"
|
||||
|
||||
/* Subroutine */ int ztbmv_(char *uplo, char *trans, char *diag, integer *n,
|
||||
integer *k, doublecomplex *a, integer *lda, doublecomplex *x, integer
|
||||
*incx, ftnlen uplo_len, ftnlen trans_len, ftnlen diag_len)
|
||||
{
|
||||
/* System generated locals */
|
||||
integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
|
||||
doublecomplex z__1, z__2, z__3;
|
||||
|
||||
/* Builtin functions */
|
||||
void d_cnjg(doublecomplex *, doublecomplex *);
|
||||
|
||||
/* Local variables */
|
||||
integer i__, j, l, ix, jx, kx, info;
|
||||
doublecomplex temp;
|
||||
extern logical lsame_(char *, char *, ftnlen, ftnlen);
|
||||
integer kplus1;
|
||||
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
||||
logical noconj, nounit;
|
||||
|
||||
/* .. Scalar Arguments .. */
|
||||
/* .. */
|
||||
/* .. Array Arguments .. */
|
||||
/* .. */
|
||||
|
||||
/* Purpose */
|
||||
/* ======= */
|
||||
|
||||
/* ZTBMV performs one of the matrix-vector operations */
|
||||
|
||||
/* x := A*x, or x := A'*x, or x := conjg( A' )*x, */
|
||||
|
||||
/* where x is an n element vector and A is an n by n unit, or non-unit, */
|
||||
/* upper or lower triangular band matrix, with ( k + 1 ) diagonals. */
|
||||
|
||||
/* Arguments */
|
||||
/* ========== */
|
||||
|
||||
/* UPLO - CHARACTER*1. */
|
||||
/* On entry, UPLO specifies whether the matrix is an upper or */
|
||||
/* lower triangular matrix as follows: */
|
||||
|
||||
/* UPLO = 'U' or 'u' A is an upper triangular matrix. */
|
||||
|
||||
/* UPLO = 'L' or 'l' A is a lower triangular matrix. */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* TRANS - CHARACTER*1. */
|
||||
/* On entry, TRANS specifies the operation to be performed as */
|
||||
/* follows: */
|
||||
|
||||
/* TRANS = 'N' or 'n' x := A*x. */
|
||||
|
||||
/* TRANS = 'T' or 't' x := A'*x. */
|
||||
|
||||
/* TRANS = 'C' or 'c' x := conjg( A' )*x. */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* DIAG - CHARACTER*1. */
|
||||
/* On entry, DIAG specifies whether or not A is unit */
|
||||
/* triangular as follows: */
|
||||
|
||||
/* DIAG = 'U' or 'u' A is assumed to be unit triangular. */
|
||||
|
||||
/* DIAG = 'N' or 'n' A is not assumed to be unit */
|
||||
/* triangular. */
|
||||
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* N - INTEGER. */
|
||||
/* On entry, N specifies the order of the matrix A. */
|
||||
/* N must be at least zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* K - INTEGER. */
|
||||
/* On entry with UPLO = 'U' or 'u', K specifies the number of */
|
||||
/* super-diagonals of the matrix A. */
|
||||
/* On entry with UPLO = 'L' or 'l', K specifies the number of */
|
||||
/* sub-diagonals of the matrix A. */
|
||||
/* K must satisfy 0 .le. K. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* A - COMPLEX*16 array of DIMENSION ( LDA, n ). */
|
||||
/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the upper triangular */
|
||||
/* band part of the matrix of coefficients, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row */
|
||||
/* ( k + 1 ) of the array, the first super-diagonal starting at */
|
||||
/* position 2 in row k, and so on. The top left k by k triangle */
|
||||
/* of the array A is not referenced. */
|
||||
/* The following program segment will transfer an upper */
|
||||
/* triangular band matrix from conventional full matrix storage */
|
||||
/* to band storage: */
|
||||
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = K + 1 - J */
|
||||
/* DO 10, I = MAX( 1, J - K ), J */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
|
||||
/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
|
||||
/* by n part of the array A must contain the lower triangular */
|
||||
/* band part of the matrix of coefficients, supplied column by */
|
||||
/* column, with the leading diagonal of the matrix in row 1 of */
|
||||
/* the array, the first sub-diagonal starting at position 1 in */
|
||||
/* row 2, and so on. The bottom right k by k triangle of the */
|
||||
/* array A is not referenced. */
|
||||
/* The following program segment will transfer a lower */
|
||||
/* triangular band matrix from conventional full matrix storage */
|
||||
/* to band storage: */
|
||||
|
||||
/* DO 20, J = 1, N */
|
||||
/* M = 1 - J */
|
||||
/* DO 10, I = J, MIN( N, J + K ) */
|
||||
/* A( M + I, J ) = matrix( I, J ) */
|
||||
/* 10 CONTINUE */
|
||||
/* 20 CONTINUE */
|
||||
|
||||
/* Note that when DIAG = 'U' or 'u' the elements of the array A */
|
||||
/* corresponding to the diagonal elements of the matrix are not */
|
||||
/* referenced, but are assumed to be unity. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* LDA - INTEGER. */
|
||||
/* On entry, LDA specifies the first dimension of A as declared */
|
||||
/* in the calling (sub) program. LDA must be at least */
|
||||
/* ( k + 1 ). */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* X - COMPLEX*16 array of dimension at least */
|
||||
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
|
||||
/* Before entry, the incremented array X must contain the n */
|
||||
/* element vector x. On exit, X is overwritten with the */
|
||||
/* tranformed vector x. */
|
||||
|
||||
/* INCX - INTEGER. */
|
||||
/* On entry, INCX specifies the increment for the elements of */
|
||||
/* X. INCX must not be zero. */
|
||||
/* Unchanged on exit. */
|
||||
|
||||
/* Further Details */
|
||||
/* =============== */
|
||||
|
||||
/* Level 2 Blas routine. */
|
||||
|
||||
/* -- Written on 22-October-1986. */
|
||||
/* Jack Dongarra, Argonne National Lab. */
|
||||
/* Jeremy Du Croz, Nag Central Office. */
|
||||
/* Sven Hammarling, Nag Central Office. */
|
||||
/* Richard Hanson, Sandia National Labs. */
|
||||
|
||||
/* ===================================================================== */
|
||||
|
||||
/* .. Parameters .. */
|
||||
/* .. */
|
||||
/* .. Local Scalars .. */
|
||||
/* .. */
|
||||
/* .. External Functions .. */
|
||||
/* .. */
|
||||
/* .. External Subroutines .. */
|
||||
/* .. */
|
||||
/* .. Intrinsic Functions .. */
|
||||
/* .. */
|
||||
|
||||
/* Test the input parameters. */
|
||||
|
||||
/* Parameter adjustments */
|
||||
a_dim1 = *lda;
|
||||
a_offset = 1 + a_dim1;
|
||||
a -= a_offset;
|
||||
--x;
|
||||
|
||||
/* Function Body */
|
||||
info = 0;
|
||||
if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
|
||||
ftnlen)1, (ftnlen)1)) {
|
||||
info = 1;
|
||||
} else if (! lsame_(trans, "N", (ftnlen)1, (ftnlen)1) && ! lsame_(trans,
|
||||
"T", (ftnlen)1, (ftnlen)1) && ! lsame_(trans, "C", (ftnlen)1, (
|
||||
ftnlen)1)) {
|
||||
info = 2;
|
||||
} else if (! lsame_(diag, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(diag,
|
||||
"N", (ftnlen)1, (ftnlen)1)) {
|
||||
info = 3;
|
||||
} else if (*n < 0) {
|
||||
info = 4;
|
||||
} else if (*k < 0) {
|
||||
info = 5;
|
||||
} else if (*lda < *k + 1) {
|
||||
info = 7;
|
||||
} else if (*incx == 0) {
|
||||
info = 9;
|
||||
}
|
||||
if (info != 0) {
|
||||
xerbla_("ZTBMV ", &info, (ftnlen)6);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Quick return if possible. */
|
||||
|
||||
if (*n == 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
noconj = lsame_(trans, "T", (ftnlen)1, (ftnlen)1);
|
||||
nounit = lsame_(diag, "N", (ftnlen)1, (ftnlen)1);
|
||||
|
||||
/* Set up the start point in X if the increment is not unity. This */
|
||||
/* will be ( N - 1 )*INCX too small for descending loops. */
|
||||
|
||||
if (*incx <= 0) {
|
||||
kx = 1 - (*n - 1) * *incx;
|
||||
} else if (*incx != 1) {
|
||||
kx = 1;
|
||||
}
|
||||
|
||||
/* Start the operations. In this version the elements of A are */
|
||||
/* accessed sequentially with one pass through A. */
|
||||
|
||||
if (lsame_(trans, "N", (ftnlen)1, (ftnlen)1)) {
|
||||
|
||||
/* Form x := A*x. */
|
||||
|
||||
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
|
||||
kplus1 = *k + 1;
|
||||
if (*incx == 1) {
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
i__2 = j;
|
||||
if (x[i__2].r != 0. || x[i__2].i != 0.) {
|
||||
i__2 = j;
|
||||
temp.r = x[i__2].r, temp.i = x[i__2].i;
|
||||
l = kplus1 - j;
|
||||
/* Computing MAX */
|
||||
i__2 = 1, i__3 = j - *k;
|
||||
i__4 = j - 1;
|
||||
for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
|
||||
i__2 = i__;
|
||||
i__3 = i__;
|
||||
i__5 = l + i__ + j * a_dim1;
|
||||
z__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
|
||||
z__2.i = temp.r * a[i__5].i + temp.i * a[
|
||||
i__5].r;
|
||||
z__1.r = x[i__3].r + z__2.r, z__1.i = x[i__3].i +
|
||||
z__2.i;
|
||||
x[i__2].r = z__1.r, x[i__2].i = z__1.i;
|
||||
/* L10: */
|
||||
}
|
||||
if (nounit) {
|
||||
i__4 = j;
|
||||
i__2 = j;
|
||||
i__3 = kplus1 + j * a_dim1;
|
||||
z__1.r = x[i__2].r * a[i__3].r - x[i__2].i * a[
|
||||
i__3].i, z__1.i = x[i__2].r * a[i__3].i +
|
||||
x[i__2].i * a[i__3].r;
|
||||
x[i__4].r = z__1.r, x[i__4].i = z__1.i;
|
||||
}
|
||||
}
|
||||
/* L20: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
i__1 = *n;
|
||||
for (j = 1; j <= i__1; ++j) {
|
||||
i__4 = jx;
|
||||
if (x[i__4].r != 0. || x[i__4].i != 0.) {
|
||||
i__4 = jx;
|
||||
temp.r = x[i__4].r, temp.i = x[i__4].i;
|
||||
ix = kx;
|
||||
l = kplus1 - j;
|
||||
/* Computing MAX */
|
||||
i__4 = 1, i__2 = j - *k;
|
||||
i__3 = j - 1;
|
||||
for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
|
||||
i__4 = ix;
|
||||
i__2 = ix;
|
||||
i__5 = l + i__ + j * a_dim1;
|
||||
z__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
|
||||
z__2.i = temp.r * a[i__5].i + temp.i * a[
|
||||
i__5].r;
|
||||
z__1.r = x[i__2].r + z__2.r, z__1.i = x[i__2].i +
|
||||
z__2.i;
|
||||
x[i__4].r = z__1.r, x[i__4].i = z__1.i;
|
||||
ix += *incx;
|
||||
/* L30: */
|
||||
}
|
||||
if (nounit) {
|
||||
i__3 = jx;
|
||||
i__4 = jx;
|
||||
i__2 = kplus1 + j * a_dim1;
|
||||
z__1.r = x[i__4].r * a[i__2].r - x[i__4].i * a[
|
||||
i__2].i, z__1.i = x[i__4].r * a[i__2].i +
|
||||
x[i__4].i * a[i__2].r;
|
||||
x[i__3].r = z__1.r, x[i__3].i = z__1.i;
|
||||
}
|
||||
}
|
||||
jx += *incx;
|
||||
if (j > *k) {
|
||||
kx += *incx;
|
||||
}
|
||||
/* L40: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if (*incx == 1) {
|
||||
for (j = *n; j >= 1; --j) {
|
||||
i__1 = j;
|
||||
if (x[i__1].r != 0. || x[i__1].i != 0.) {
|
||||
i__1 = j;
|
||||
temp.r = x[i__1].r, temp.i = x[i__1].i;
|
||||
l = 1 - j;
|
||||
/* Computing MIN */
|
||||
i__1 = *n, i__3 = j + *k;
|
||||
i__4 = j + 1;
|
||||
for (i__ = min(i__1,i__3); i__ >= i__4; --i__) {
|
||||
i__1 = i__;
|
||||
i__3 = i__;
|
||||
i__2 = l + i__ + j * a_dim1;
|
||||
z__2.r = temp.r * a[i__2].r - temp.i * a[i__2].i,
|
||||
z__2.i = temp.r * a[i__2].i + temp.i * a[
|
||||
i__2].r;
|
||||
z__1.r = x[i__3].r + z__2.r, z__1.i = x[i__3].i +
|
||||
z__2.i;
|
||||
x[i__1].r = z__1.r, x[i__1].i = z__1.i;
|
||||
/* L50: */
|
||||
}
|
||||
if (nounit) {
|
||||
i__4 = j;
|
||||
i__1 = j;
|
||||
i__3 = j * a_dim1 + 1;
|
||||
z__1.r = x[i__1].r * a[i__3].r - x[i__1].i * a[
|
||||
i__3].i, z__1.i = x[i__1].r * a[i__3].i +
|
||||
x[i__1].i * a[i__3].r;
|
||||
x[i__4].r = z__1.r, x[i__4].i = z__1.i;
|
||||
}
|
||||
}
|
||||
/* L60: */
|
||||
}
|
||||
} else {
|
||||
kx += (*n - 1) * *incx;
|
||||
jx = kx;
|
||||
for (j = *n; j >= 1; --j) {
|
||||
i__4 = jx;
|
||||
if (x[i__4].r != 0. || x[i__4].i != 0.) {
|
||||
i__4 = jx;
|
||||
temp.r = x[i__4].r, temp.i = x[i__4].i;
|
||||
ix = kx;
|
||||
l = 1 - j;
|
||||
/* Computing MIN */
|
||||
i__4 = *n, i__1 = j + *k;
|
||||
i__3 = j + 1;
|
||||
for (i__ = min(i__4,i__1); i__ >= i__3; --i__) {
|
||||
i__4 = ix;
|
||||
i__1 = ix;
|
||||
i__2 = l + i__ + j * a_dim1;
|
||||
z__2.r = temp.r * a[i__2].r - temp.i * a[i__2].i,
|
||||
z__2.i = temp.r * a[i__2].i + temp.i * a[
|
||||
i__2].r;
|
||||
z__1.r = x[i__1].r + z__2.r, z__1.i = x[i__1].i +
|
||||
z__2.i;
|
||||
x[i__4].r = z__1.r, x[i__4].i = z__1.i;
|
||||
ix -= *incx;
|
||||
/* L70: */
|
||||
}
|
||||
if (nounit) {
|
||||
i__3 = jx;
|
||||
i__4 = jx;
|
||||
i__1 = j * a_dim1 + 1;
|
||||
z__1.r = x[i__4].r * a[i__1].r - x[i__4].i * a[
|
||||
i__1].i, z__1.i = x[i__4].r * a[i__1].i +
|
||||
x[i__4].i * a[i__1].r;
|
||||
x[i__3].r = z__1.r, x[i__3].i = z__1.i;
|
||||
}
|
||||
}
|
||||
jx -= *incx;
|
||||
if (*n - j >= *k) {
|
||||
kx -= *incx;
|
||||
}
|
||||
/* L80: */
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
|
||||
/* Form x := A'*x or x := conjg( A' )*x. */
|
||||
|
||||
if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
|
||||
kplus1 = *k + 1;
|
||||
if (*incx == 1) {
|
||||
for (j = *n; j >= 1; --j) {
|
||||
i__3 = j;
|
||||
temp.r = x[i__3].r, temp.i = x[i__3].i;
|
||||
l = kplus1 - j;
|
||||
if (noconj) {
|
||||
if (nounit) {
|
||||
i__3 = kplus1 + j * a_dim1;
|
||||
z__1.r = temp.r * a[i__3].r - temp.i * a[i__3].i,
|
||||
z__1.i = temp.r * a[i__3].i + temp.i * a[
|
||||
i__3].r;
|
||||
temp.r = z__1.r, temp.i = z__1.i;
|
||||
}
|
||||
/* Computing MAX */
|
||||
i__4 = 1, i__1 = j - *k;
|
||||
i__3 = max(i__4,i__1);
|
||||
for (i__ = j - 1; i__ >= i__3; --i__) {
|
||||
i__4 = l + i__ + j * a_dim1;
|
||||
i__1 = i__;
|
||||
z__2.r = a[i__4].r * x[i__1].r - a[i__4].i * x[
|
||||
i__1].i, z__2.i = a[i__4].r * x[i__1].i +
|
||||
a[i__4].i * x[i__1].r;
|
||||
z__1.r = temp.r + z__2.r, z__1.i = temp.i +
|
||||
z__2.i;
|
||||
temp.r = z__1.r, temp.i = z__1.i;
|
||||
/* L90: */
|
||||
}
|
||||
} else {
|
||||
if (nounit) {
|
||||
d_cnjg(&z__2, &a[kplus1 + j * a_dim1]);
|
||||
z__1.r = temp.r * z__2.r - temp.i * z__2.i,
|
||||
z__1.i = temp.r * z__2.i + temp.i *
|
||||
z__2.r;
|
||||
temp.r = z__1.r, temp.i = z__1.i;
|
||||
}
|
||||
/* Computing MAX */
|
||||
i__4 = 1, i__1 = j - *k;
|
||||
i__3 = max(i__4,i__1);
|
||||
for (i__ = j - 1; i__ >= i__3; --i__) {
|
||||
d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
|
||||
i__4 = i__;
|
||||
z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i,
|
||||
z__2.i = z__3.r * x[i__4].i + z__3.i * x[
|
||||
i__4].r;
|
||||
z__1.r = temp.r + z__2.r, z__1.i = temp.i +
|
||||
z__2.i;
|
||||
temp.r = z__1.r, temp.i = z__1.i;
|
||||
/* L100: */
|
||||
}
|
||||
}
|
||||
i__3 = j;
|
||||
x[i__3].r = temp.r, x[i__3].i = temp.i;
|
||||
/* L110: */
|
||||
}
|
||||
} else {
|
||||
kx += (*n - 1) * *incx;
|
||||
jx = kx;
|
||||
for (j = *n; j >= 1; --j) {
|
||||
i__3 = jx;
|
||||
temp.r = x[i__3].r, temp.i = x[i__3].i;
|
||||
kx -= *incx;
|
||||
ix = kx;
|
||||
l = kplus1 - j;
|
||||
if (noconj) {
|
||||
if (nounit) {
|
||||
i__3 = kplus1 + j * a_dim1;
|
||||
z__1.r = temp.r * a[i__3].r - temp.i * a[i__3].i,
|
||||
z__1.i = temp.r * a[i__3].i + temp.i * a[
|
||||
i__3].r;
|
||||
temp.r = z__1.r, temp.i = z__1.i;
|
||||
}
|
||||
/* Computing MAX */
|
||||
i__4 = 1, i__1 = j - *k;
|
||||
i__3 = max(i__4,i__1);
|
||||
for (i__ = j - 1; i__ >= i__3; --i__) {
|
||||
i__4 = l + i__ + j * a_dim1;
|
||||
i__1 = ix;
|
||||
z__2.r = a[i__4].r * x[i__1].r - a[i__4].i * x[
|
||||
i__1].i, z__2.i = a[i__4].r * x[i__1].i +
|
||||
a[i__4].i * x[i__1].r;
|
||||
z__1.r = temp.r + z__2.r, z__1.i = temp.i +
|
||||
z__2.i;
|
||||
temp.r = z__1.r, temp.i = z__1.i;
|
||||
ix -= *incx;
|
||||
/* L120: */
|
||||
}
|
||||
} else {
|
||||
if (nounit) {
|
||||
d_cnjg(&z__2, &a[kplus1 + j * a_dim1]);
|
||||
z__1.r = temp.r * z__2.r - temp.i * z__2.i,
|
||||
z__1.i = temp.r * z__2.i + temp.i *
|
||||
z__2.r;
|
||||
temp.r = z__1.r, temp.i = z__1.i;
|
||||
}
|
||||
/* Computing MAX */
|
||||
i__4 = 1, i__1 = j - *k;
|
||||
i__3 = max(i__4,i__1);
|
||||
for (i__ = j - 1; i__ >= i__3; --i__) {
|
||||
d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
|
||||
i__4 = ix;
|
||||
z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i,
|
||||
z__2.i = z__3.r * x[i__4].i + z__3.i * x[
|
||||
i__4].r;
|
||||
z__1.r = temp.r + z__2.r, z__1.i = temp.i +
|
||||
z__2.i;
|
||||
temp.r = z__1.r, temp.i = z__1.i;
|
||||
ix -= *incx;
|
||||
/* L130: */
|
||||
}
|
||||
}
|
||||
i__3 = jx;
|
||||
x[i__3].r = temp.r, x[i__3].i = temp.i;
|
||||
jx -= *incx;
|
||||
/* L140: */
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if (*incx == 1) {
|
||||
i__3 = *n;
|
||||
for (j = 1; j <= i__3; ++j) {
|
||||
i__4 = j;
|
||||
temp.r = x[i__4].r, temp.i = x[i__4].i;
|
||||
l = 1 - j;
|
||||
if (noconj) {
|
||||
if (nounit) {
|
||||
i__4 = j * a_dim1 + 1;
|
||||
z__1.r = temp.r * a[i__4].r - temp.i * a[i__4].i,
|
||||
z__1.i = temp.r * a[i__4].i + temp.i * a[
|
||||
i__4].r;
|
||||
temp.r = z__1.r, temp.i = z__1.i;
|
||||
}
|
||||
/* Computing MIN */
|
||||
i__1 = *n, i__2 = j + *k;
|
||||
i__4 = min(i__1,i__2);
|
||||
for (i__ = j + 1; i__ <= i__4; ++i__) {
|
||||
i__1 = l + i__ + j * a_dim1;
|
||||
i__2 = i__;
|
||||
z__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[
|
||||
i__2].i, z__2.i = a[i__1].r * x[i__2].i +
|
||||
a[i__1].i * x[i__2].r;
|
||||
z__1.r = temp.r + z__2.r, z__1.i = temp.i +
|
||||
z__2.i;
|
||||
temp.r = z__1.r, temp.i = z__1.i;
|
||||
/* L150: */
|
||||
}
|
||||
} else {
|
||||
if (nounit) {
|
||||
d_cnjg(&z__2, &a[j * a_dim1 + 1]);
|
||||
z__1.r = temp.r * z__2.r - temp.i * z__2.i,
|
||||
z__1.i = temp.r * z__2.i + temp.i *
|
||||
z__2.r;
|
||||
temp.r = z__1.r, temp.i = z__1.i;
|
||||
}
|
||||
/* Computing MIN */
|
||||
i__1 = *n, i__2 = j + *k;
|
||||
i__4 = min(i__1,i__2);
|
||||
for (i__ = j + 1; i__ <= i__4; ++i__) {
|
||||
d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
|
||||
i__1 = i__;
|
||||
z__2.r = z__3.r * x[i__1].r - z__3.i * x[i__1].i,
|
||||
z__2.i = z__3.r * x[i__1].i + z__3.i * x[
|
||||
i__1].r;
|
||||
z__1.r = temp.r + z__2.r, z__1.i = temp.i +
|
||||
z__2.i;
|
||||
temp.r = z__1.r, temp.i = z__1.i;
|
||||
/* L160: */
|
||||
}
|
||||
}
|
||||
i__4 = j;
|
||||
x[i__4].r = temp.r, x[i__4].i = temp.i;
|
||||
/* L170: */
|
||||
}
|
||||
} else {
|
||||
jx = kx;
|
||||
i__3 = *n;
|
||||
for (j = 1; j <= i__3; ++j) {
|
||||
i__4 = jx;
|
||||
temp.r = x[i__4].r, temp.i = x[i__4].i;
|
||||
kx += *incx;
|
||||
ix = kx;
|
||||
l = 1 - j;
|
||||
if (noconj) {
|
||||
if (nounit) {
|
||||
i__4 = j * a_dim1 + 1;
|
||||
z__1.r = temp.r * a[i__4].r - temp.i * a[i__4].i,
|
||||
z__1.i = temp.r * a[i__4].i + temp.i * a[
|
||||
i__4].r;
|
||||
temp.r = z__1.r, temp.i = z__1.i;
|
||||
}
|
||||
/* Computing MIN */
|
||||
i__1 = *n, i__2 = j + *k;
|
||||
i__4 = min(i__1,i__2);
|
||||
for (i__ = j + 1; i__ <= i__4; ++i__) {
|
||||
i__1 = l + i__ + j * a_dim1;
|
||||
i__2 = ix;
|
||||
z__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[
|
||||
i__2].i, z__2.i = a[i__1].r * x[i__2].i +
|
||||
a[i__1].i * x[i__2].r;
|
||||
z__1.r = temp.r + z__2.r, z__1.i = temp.i +
|
||||
z__2.i;
|
||||
temp.r = z__1.r, temp.i = z__1.i;
|
||||
ix += *incx;
|
||||
/* L180: */
|
||||
}
|
||||
} else {
|
||||
if (nounit) {
|
||||
d_cnjg(&z__2, &a[j * a_dim1 + 1]);
|
||||
z__1.r = temp.r * z__2.r - temp.i * z__2.i,
|
||||
z__1.i = temp.r * z__2.i + temp.i *
|
||||
z__2.r;
|
||||
temp.r = z__1.r, temp.i = z__1.i;
|
||||
}
|
||||
/* Computing MIN */
|
||||
i__1 = *n, i__2 = j + *k;
|
||||
i__4 = min(i__1,i__2);
|
||||
for (i__ = j + 1; i__ <= i__4; ++i__) {
|
||||
d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
|
||||
i__1 = ix;
|
||||
z__2.r = z__3.r * x[i__1].r - z__3.i * x[i__1].i,
|
||||
z__2.i = z__3.r * x[i__1].i + z__3.i * x[
|
||||
i__1].r;
|
||||
z__1.r = temp.r + z__2.r, z__1.i = temp.i +
|
||||
z__2.i;
|
||||
temp.r = z__1.r, temp.i = z__1.i;
|
||||
ix += *incx;
|
||||
/* L190: */
|
||||
}
|
||||
}
|
||||
i__4 = jx;
|
||||
x[i__4].r = temp.r, x[i__4].i = temp.i;
|
||||
jx += *incx;
|
||||
/* L200: */
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
||||
/* End of ZTBMV . */
|
||||
|
||||
} /* ztbmv_ */
|
||||
|
||||
43
cs440-acg/ext/eigen/blas/fortran/complexdots.f
Normal file
43
cs440-acg/ext/eigen/blas/fortran/complexdots.f
Normal file
@@ -0,0 +1,43 @@
|
||||
COMPLEX FUNCTION CDOTC(N,CX,INCX,CY,INCY)
|
||||
INTEGER INCX,INCY,N
|
||||
COMPLEX CX(*),CY(*)
|
||||
COMPLEX RES
|
||||
EXTERNAL CDOTCW
|
||||
|
||||
CALL CDOTCW(N,CX,INCX,CY,INCY,RES)
|
||||
CDOTC = RES
|
||||
RETURN
|
||||
END
|
||||
|
||||
COMPLEX FUNCTION CDOTU(N,CX,INCX,CY,INCY)
|
||||
INTEGER INCX,INCY,N
|
||||
COMPLEX CX(*),CY(*)
|
||||
COMPLEX RES
|
||||
EXTERNAL CDOTUW
|
||||
|
||||
CALL CDOTUW(N,CX,INCX,CY,INCY,RES)
|
||||
CDOTU = RES
|
||||
RETURN
|
||||
END
|
||||
|
||||
DOUBLE COMPLEX FUNCTION ZDOTC(N,CX,INCX,CY,INCY)
|
||||
INTEGER INCX,INCY,N
|
||||
DOUBLE COMPLEX CX(*),CY(*)
|
||||
DOUBLE COMPLEX RES
|
||||
EXTERNAL ZDOTCW
|
||||
|
||||
CALL ZDOTCW(N,CX,INCX,CY,INCY,RES)
|
||||
ZDOTC = RES
|
||||
RETURN
|
||||
END
|
||||
|
||||
DOUBLE COMPLEX FUNCTION ZDOTU(N,CX,INCX,CY,INCY)
|
||||
INTEGER INCX,INCY,N
|
||||
DOUBLE COMPLEX CX(*),CY(*)
|
||||
DOUBLE COMPLEX RES
|
||||
EXTERNAL ZDOTUW
|
||||
|
||||
CALL ZDOTUW(N,CX,INCX,CY,INCY,RES)
|
||||
ZDOTU = RES
|
||||
RETURN
|
||||
END
|
||||
133
cs440-acg/ext/eigen/blas/level1_cplx_impl.h
Normal file
133
cs440-acg/ext/eigen/blas/level1_cplx_impl.h
Normal file
@@ -0,0 +1,133 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#include "common.h"
|
||||
|
||||
struct scalar_norm1_op {
|
||||
typedef RealScalar result_type;
|
||||
EIGEN_EMPTY_STRUCT_CTOR(scalar_norm1_op)
|
||||
inline RealScalar operator() (const Scalar& a) const { return numext::norm1(a); }
|
||||
};
|
||||
namespace Eigen {
|
||||
namespace internal {
|
||||
template<> struct functor_traits<scalar_norm1_op >
|
||||
{
|
||||
enum { Cost = 3 * NumTraits<Scalar>::AddCost, PacketAccess = 0 };
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
// computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum
|
||||
// res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n
|
||||
RealScalar EIGEN_CAT(EIGEN_CAT(REAL_SCALAR_SUFFIX,SCALAR_SUFFIX),asum_)(int *n, RealScalar *px, int *incx)
|
||||
{
|
||||
// std::cerr << "__asum " << *n << " " << *incx << "\n";
|
||||
Complex* x = reinterpret_cast<Complex*>(px);
|
||||
|
||||
if(*n<=0) return 0;
|
||||
|
||||
if(*incx==1) return make_vector(x,*n).unaryExpr<scalar_norm1_op>().sum();
|
||||
else return make_vector(x,*n,std::abs(*incx)).unaryExpr<scalar_norm1_op>().sum();
|
||||
}
|
||||
|
||||
// computes a dot product of a conjugated vector with another vector.
|
||||
int EIGEN_BLAS_FUNC(dotcw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar* pres)
|
||||
{
|
||||
// std::cerr << "_dotc " << *n << " " << *incx << " " << *incy << "\n";
|
||||
Scalar* res = reinterpret_cast<Scalar*>(pres);
|
||||
|
||||
if(*n<=0)
|
||||
{
|
||||
*res = Scalar(0);
|
||||
return 0;
|
||||
}
|
||||
|
||||
Scalar* x = reinterpret_cast<Scalar*>(px);
|
||||
Scalar* y = reinterpret_cast<Scalar*>(py);
|
||||
|
||||
if(*incx==1 && *incy==1) *res = (make_vector(x,*n).dot(make_vector(y,*n)));
|
||||
else if(*incx>0 && *incy>0) *res = (make_vector(x,*n,*incx).dot(make_vector(y,*n,*incy)));
|
||||
else if(*incx<0 && *incy>0) *res = (make_vector(x,*n,-*incx).reverse().dot(make_vector(y,*n,*incy)));
|
||||
else if(*incx>0 && *incy<0) *res = (make_vector(x,*n,*incx).dot(make_vector(y,*n,-*incy).reverse()));
|
||||
else if(*incx<0 && *incy<0) *res = (make_vector(x,*n,-*incx).reverse().dot(make_vector(y,*n,-*incy).reverse()));
|
||||
return 0;
|
||||
}
|
||||
|
||||
// computes a vector-vector dot product without complex conjugation.
|
||||
int EIGEN_BLAS_FUNC(dotuw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar* pres)
|
||||
{
|
||||
Scalar* res = reinterpret_cast<Scalar*>(pres);
|
||||
|
||||
if(*n<=0)
|
||||
{
|
||||
*res = Scalar(0);
|
||||
return 0;
|
||||
}
|
||||
|
||||
Scalar* x = reinterpret_cast<Scalar*>(px);
|
||||
Scalar* y = reinterpret_cast<Scalar*>(py);
|
||||
|
||||
if(*incx==1 && *incy==1) *res = (make_vector(x,*n).cwiseProduct(make_vector(y,*n))).sum();
|
||||
else if(*incx>0 && *incy>0) *res = (make_vector(x,*n,*incx).cwiseProduct(make_vector(y,*n,*incy))).sum();
|
||||
else if(*incx<0 && *incy>0) *res = (make_vector(x,*n,-*incx).reverse().cwiseProduct(make_vector(y,*n,*incy))).sum();
|
||||
else if(*incx>0 && *incy<0) *res = (make_vector(x,*n,*incx).cwiseProduct(make_vector(y,*n,-*incy).reverse())).sum();
|
||||
else if(*incx<0 && *incy<0) *res = (make_vector(x,*n,-*incx).reverse().cwiseProduct(make_vector(y,*n,-*incy).reverse())).sum();
|
||||
return 0;
|
||||
}
|
||||
|
||||
RealScalar EIGEN_CAT(EIGEN_CAT(REAL_SCALAR_SUFFIX,SCALAR_SUFFIX),nrm2_)(int *n, RealScalar *px, int *incx)
|
||||
{
|
||||
// std::cerr << "__nrm2 " << *n << " " << *incx << "\n";
|
||||
if(*n<=0) return 0;
|
||||
|
||||
Scalar* x = reinterpret_cast<Scalar*>(px);
|
||||
|
||||
if(*incx==1)
|
||||
return make_vector(x,*n).stableNorm();
|
||||
|
||||
return make_vector(x,*n,*incx).stableNorm();
|
||||
}
|
||||
|
||||
int EIGEN_CAT(EIGEN_CAT(SCALAR_SUFFIX,REAL_SCALAR_SUFFIX),rot_)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, RealScalar *ps)
|
||||
{
|
||||
if(*n<=0) return 0;
|
||||
|
||||
Scalar* x = reinterpret_cast<Scalar*>(px);
|
||||
Scalar* y = reinterpret_cast<Scalar*>(py);
|
||||
RealScalar c = *pc;
|
||||
RealScalar s = *ps;
|
||||
|
||||
StridedVectorType vx(make_vector(x,*n,std::abs(*incx)));
|
||||
StridedVectorType vy(make_vector(y,*n,std::abs(*incy)));
|
||||
|
||||
Reverse<StridedVectorType> rvx(vx);
|
||||
Reverse<StridedVectorType> rvy(vy);
|
||||
|
||||
// TODO implement mixed real-scalar rotations
|
||||
if(*incx<0 && *incy>0) internal::apply_rotation_in_the_plane(rvx, vy, JacobiRotation<Scalar>(c,s));
|
||||
else if(*incx>0 && *incy<0) internal::apply_rotation_in_the_plane(vx, rvy, JacobiRotation<Scalar>(c,s));
|
||||
else internal::apply_rotation_in_the_plane(vx, vy, JacobiRotation<Scalar>(c,s));
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int EIGEN_CAT(EIGEN_CAT(SCALAR_SUFFIX,REAL_SCALAR_SUFFIX),scal_)(int *n, RealScalar *palpha, RealScalar *px, int *incx)
|
||||
{
|
||||
if(*n<=0) return 0;
|
||||
|
||||
Scalar* x = reinterpret_cast<Scalar*>(px);
|
||||
RealScalar alpha = *palpha;
|
||||
|
||||
// std::cerr << "__scal " << *n << " " << alpha << " " << *incx << "\n";
|
||||
|
||||
if(*incx==1) make_vector(x,*n) *= alpha;
|
||||
else make_vector(x,*n,std::abs(*incx)) *= alpha;
|
||||
|
||||
return 0;
|
||||
}
|
||||
166
cs440-acg/ext/eigen/blas/level1_impl.h
Normal file
166
cs440-acg/ext/eigen/blas/level1_impl.h
Normal file
@@ -0,0 +1,166 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#include "common.h"
|
||||
|
||||
int EIGEN_BLAS_FUNC(axpy)(const int *n, const RealScalar *palpha, const RealScalar *px, const int *incx, RealScalar *py, const int *incy)
|
||||
{
|
||||
const Scalar* x = reinterpret_cast<const Scalar*>(px);
|
||||
Scalar* y = reinterpret_cast<Scalar*>(py);
|
||||
Scalar alpha = *reinterpret_cast<const Scalar*>(palpha);
|
||||
|
||||
if(*n<=0) return 0;
|
||||
|
||||
if(*incx==1 && *incy==1) make_vector(y,*n) += alpha * make_vector(x,*n);
|
||||
else if(*incx>0 && *incy>0) make_vector(y,*n,*incy) += alpha * make_vector(x,*n,*incx);
|
||||
else if(*incx>0 && *incy<0) make_vector(y,*n,-*incy).reverse() += alpha * make_vector(x,*n,*incx);
|
||||
else if(*incx<0 && *incy>0) make_vector(y,*n,*incy) += alpha * make_vector(x,*n,-*incx).reverse();
|
||||
else if(*incx<0 && *incy<0) make_vector(y,*n,-*incy).reverse() += alpha * make_vector(x,*n,-*incx).reverse();
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int EIGEN_BLAS_FUNC(copy)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
|
||||
{
|
||||
if(*n<=0) return 0;
|
||||
|
||||
Scalar* x = reinterpret_cast<Scalar*>(px);
|
||||
Scalar* y = reinterpret_cast<Scalar*>(py);
|
||||
|
||||
// be carefull, *incx==0 is allowed !!
|
||||
if(*incx==1 && *incy==1)
|
||||
make_vector(y,*n) = make_vector(x,*n);
|
||||
else
|
||||
{
|
||||
if(*incx<0) x = x - (*n-1)*(*incx);
|
||||
if(*incy<0) y = y - (*n-1)*(*incy);
|
||||
for(int i=0;i<*n;++i)
|
||||
{
|
||||
*y = *x;
|
||||
x += *incx;
|
||||
y += *incy;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int EIGEN_CAT(EIGEN_CAT(i,SCALAR_SUFFIX),amax_)(int *n, RealScalar *px, int *incx)
|
||||
{
|
||||
if(*n<=0) return 0;
|
||||
Scalar* x = reinterpret_cast<Scalar*>(px);
|
||||
|
||||
DenseIndex ret;
|
||||
if(*incx==1) make_vector(x,*n).cwiseAbs().maxCoeff(&ret);
|
||||
else make_vector(x,*n,std::abs(*incx)).cwiseAbs().maxCoeff(&ret);
|
||||
return int(ret)+1;
|
||||
}
|
||||
|
||||
int EIGEN_CAT(EIGEN_CAT(i,SCALAR_SUFFIX),amin_)(int *n, RealScalar *px, int *incx)
|
||||
{
|
||||
if(*n<=0) return 0;
|
||||
Scalar* x = reinterpret_cast<Scalar*>(px);
|
||||
|
||||
DenseIndex ret;
|
||||
if(*incx==1) make_vector(x,*n).cwiseAbs().minCoeff(&ret);
|
||||
else make_vector(x,*n,std::abs(*incx)).cwiseAbs().minCoeff(&ret);
|
||||
return int(ret)+1;
|
||||
}
|
||||
|
||||
int EIGEN_BLAS_FUNC(rotg)(RealScalar *pa, RealScalar *pb, RealScalar *pc, RealScalar *ps)
|
||||
{
|
||||
using std::sqrt;
|
||||
using std::abs;
|
||||
|
||||
Scalar& a = *reinterpret_cast<Scalar*>(pa);
|
||||
Scalar& b = *reinterpret_cast<Scalar*>(pb);
|
||||
RealScalar* c = pc;
|
||||
Scalar* s = reinterpret_cast<Scalar*>(ps);
|
||||
|
||||
#if !ISCOMPLEX
|
||||
Scalar r,z;
|
||||
Scalar aa = abs(a);
|
||||
Scalar ab = abs(b);
|
||||
if((aa+ab)==Scalar(0))
|
||||
{
|
||||
*c = 1;
|
||||
*s = 0;
|
||||
r = 0;
|
||||
z = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
r = sqrt(a*a + b*b);
|
||||
Scalar amax = aa>ab ? a : b;
|
||||
r = amax>0 ? r : -r;
|
||||
*c = a/r;
|
||||
*s = b/r;
|
||||
z = 1;
|
||||
if (aa > ab) z = *s;
|
||||
if (ab > aa && *c!=RealScalar(0))
|
||||
z = Scalar(1)/ *c;
|
||||
}
|
||||
*pa = r;
|
||||
*pb = z;
|
||||
#else
|
||||
Scalar alpha;
|
||||
RealScalar norm,scale;
|
||||
if(abs(a)==RealScalar(0))
|
||||
{
|
||||
*c = RealScalar(0);
|
||||
*s = Scalar(1);
|
||||
a = b;
|
||||
}
|
||||
else
|
||||
{
|
||||
scale = abs(a) + abs(b);
|
||||
norm = scale*sqrt((numext::abs2(a/scale)) + (numext::abs2(b/scale)));
|
||||
alpha = a/abs(a);
|
||||
*c = abs(a)/norm;
|
||||
*s = alpha*numext::conj(b)/norm;
|
||||
a = alpha*norm;
|
||||
}
|
||||
#endif
|
||||
|
||||
// JacobiRotation<Scalar> r;
|
||||
// r.makeGivens(a,b);
|
||||
// *c = r.c();
|
||||
// *s = r.s();
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int EIGEN_BLAS_FUNC(scal)(int *n, RealScalar *palpha, RealScalar *px, int *incx)
|
||||
{
|
||||
if(*n<=0) return 0;
|
||||
|
||||
Scalar* x = reinterpret_cast<Scalar*>(px);
|
||||
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
||||
|
||||
if(*incx==1) make_vector(x,*n) *= alpha;
|
||||
else make_vector(x,*n,std::abs(*incx)) *= alpha;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int EIGEN_BLAS_FUNC(swap)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
|
||||
{
|
||||
if(*n<=0) return 0;
|
||||
|
||||
Scalar* x = reinterpret_cast<Scalar*>(px);
|
||||
Scalar* y = reinterpret_cast<Scalar*>(py);
|
||||
|
||||
if(*incx==1 && *incy==1) make_vector(y,*n).swap(make_vector(x,*n));
|
||||
else if(*incx>0 && *incy>0) make_vector(y,*n,*incy).swap(make_vector(x,*n,*incx));
|
||||
else if(*incx>0 && *incy<0) make_vector(y,*n,-*incy).reverse().swap(make_vector(x,*n,*incx));
|
||||
else if(*incx<0 && *incy>0) make_vector(y,*n,*incy).swap(make_vector(x,*n,-*incx).reverse());
|
||||
else if(*incx<0 && *incy<0) make_vector(y,*n,-*incy).reverse().swap(make_vector(x,*n,-*incx).reverse());
|
||||
|
||||
return 1;
|
||||
}
|
||||
100
cs440-acg/ext/eigen/blas/level1_real_impl.h
Normal file
100
cs440-acg/ext/eigen/blas/level1_real_impl.h
Normal file
@@ -0,0 +1,100 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#include "common.h"
|
||||
|
||||
// computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum
|
||||
// res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n
|
||||
RealScalar EIGEN_BLAS_FUNC(asum)(int *n, RealScalar *px, int *incx)
|
||||
{
|
||||
// std::cerr << "_asum " << *n << " " << *incx << "\n";
|
||||
|
||||
Scalar* x = reinterpret_cast<Scalar*>(px);
|
||||
|
||||
if(*n<=0) return 0;
|
||||
|
||||
if(*incx==1) return make_vector(x,*n).cwiseAbs().sum();
|
||||
else return make_vector(x,*n,std::abs(*incx)).cwiseAbs().sum();
|
||||
}
|
||||
|
||||
// computes a vector-vector dot product.
|
||||
Scalar EIGEN_BLAS_FUNC(dot)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
|
||||
{
|
||||
// std::cerr << "_dot " << *n << " " << *incx << " " << *incy << "\n";
|
||||
|
||||
if(*n<=0) return 0;
|
||||
|
||||
Scalar* x = reinterpret_cast<Scalar*>(px);
|
||||
Scalar* y = reinterpret_cast<Scalar*>(py);
|
||||
|
||||
if(*incx==1 && *incy==1) return (make_vector(x,*n).cwiseProduct(make_vector(y,*n))).sum();
|
||||
else if(*incx>0 && *incy>0) return (make_vector(x,*n,*incx).cwiseProduct(make_vector(y,*n,*incy))).sum();
|
||||
else if(*incx<0 && *incy>0) return (make_vector(x,*n,-*incx).reverse().cwiseProduct(make_vector(y,*n,*incy))).sum();
|
||||
else if(*incx>0 && *incy<0) return (make_vector(x,*n,*incx).cwiseProduct(make_vector(y,*n,-*incy).reverse())).sum();
|
||||
else if(*incx<0 && *incy<0) return (make_vector(x,*n,-*incx).reverse().cwiseProduct(make_vector(y,*n,-*incy).reverse())).sum();
|
||||
else return 0;
|
||||
}
|
||||
|
||||
// computes the Euclidean norm of a vector.
|
||||
// FIXME
|
||||
Scalar EIGEN_BLAS_FUNC(nrm2)(int *n, RealScalar *px, int *incx)
|
||||
{
|
||||
// std::cerr << "_nrm2 " << *n << " " << *incx << "\n";
|
||||
if(*n<=0) return 0;
|
||||
|
||||
Scalar* x = reinterpret_cast<Scalar*>(px);
|
||||
|
||||
if(*incx==1) return make_vector(x,*n).stableNorm();
|
||||
else return make_vector(x,*n,std::abs(*incx)).stableNorm();
|
||||
}
|
||||
|
||||
int EIGEN_BLAS_FUNC(rot)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, RealScalar *ps)
|
||||
{
|
||||
// std::cerr << "_rot " << *n << " " << *incx << " " << *incy << "\n";
|
||||
if(*n<=0) return 0;
|
||||
|
||||
Scalar* x = reinterpret_cast<Scalar*>(px);
|
||||
Scalar* y = reinterpret_cast<Scalar*>(py);
|
||||
Scalar c = *reinterpret_cast<Scalar*>(pc);
|
||||
Scalar s = *reinterpret_cast<Scalar*>(ps);
|
||||
|
||||
StridedVectorType vx(make_vector(x,*n,std::abs(*incx)));
|
||||
StridedVectorType vy(make_vector(y,*n,std::abs(*incy)));
|
||||
|
||||
Reverse<StridedVectorType> rvx(vx);
|
||||
Reverse<StridedVectorType> rvy(vy);
|
||||
|
||||
if(*incx<0 && *incy>0) internal::apply_rotation_in_the_plane(rvx, vy, JacobiRotation<Scalar>(c,s));
|
||||
else if(*incx>0 && *incy<0) internal::apply_rotation_in_the_plane(vx, rvy, JacobiRotation<Scalar>(c,s));
|
||||
else internal::apply_rotation_in_the_plane(vx, vy, JacobiRotation<Scalar>(c,s));
|
||||
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
// performs rotation of points in the modified plane.
|
||||
int EIGEN_BLAS_FUNC(rotm)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *param)
|
||||
{
|
||||
Scalar* x = reinterpret_cast<Scalar*>(px);
|
||||
Scalar* y = reinterpret_cast<Scalar*>(py);
|
||||
|
||||
// TODO
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
// computes the modified parameters for a Givens rotation.
|
||||
int EIGEN_BLAS_FUNC(rotmg)(RealScalar *d1, RealScalar *d2, RealScalar *x1, RealScalar *x2, RealScalar *param)
|
||||
{
|
||||
// TODO
|
||||
|
||||
return 0;
|
||||
}
|
||||
*/
|
||||
360
cs440-acg/ext/eigen/blas/level2_cplx_impl.h
Normal file
360
cs440-acg/ext/eigen/blas/level2_cplx_impl.h
Normal file
@@ -0,0 +1,360 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#include "common.h"
|
||||
|
||||
/** ZHEMV performs the matrix-vector operation
|
||||
*
|
||||
* y := alpha*A*x + beta*y,
|
||||
*
|
||||
* where alpha and beta are scalars, x and y are n element vectors and
|
||||
* A is an n by n hermitian matrix.
|
||||
*/
|
||||
int EIGEN_BLAS_FUNC(hemv)(const char *uplo, const int *n, const RealScalar *palpha, const RealScalar *pa, const int *lda,
|
||||
const RealScalar *px, const int *incx, const RealScalar *pbeta, RealScalar *py, const int *incy)
|
||||
{
|
||||
typedef void (*functype)(int, const Scalar*, int, const Scalar*, Scalar*, Scalar);
|
||||
static const functype func[2] = {
|
||||
// array index: UP
|
||||
(internal::selfadjoint_matrix_vector_product<Scalar,int,ColMajor,Upper,false,false>::run),
|
||||
// array index: LO
|
||||
(internal::selfadjoint_matrix_vector_product<Scalar,int,ColMajor,Lower,false,false>::run),
|
||||
};
|
||||
|
||||
const Scalar* a = reinterpret_cast<const Scalar*>(pa);
|
||||
const Scalar* x = reinterpret_cast<const Scalar*>(px);
|
||||
Scalar* y = reinterpret_cast<Scalar*>(py);
|
||||
Scalar alpha = *reinterpret_cast<const Scalar*>(palpha);
|
||||
Scalar beta = *reinterpret_cast<const Scalar*>(pbeta);
|
||||
|
||||
// check arguments
|
||||
int info = 0;
|
||||
if(UPLO(*uplo)==INVALID) info = 1;
|
||||
else if(*n<0) info = 2;
|
||||
else if(*lda<std::max(1,*n)) info = 5;
|
||||
else if(*incx==0) info = 7;
|
||||
else if(*incy==0) info = 10;
|
||||
if(info)
|
||||
return xerbla_(SCALAR_SUFFIX_UP"HEMV ",&info,6);
|
||||
|
||||
if(*n==0)
|
||||
return 1;
|
||||
|
||||
const Scalar* actual_x = get_compact_vector(x,*n,*incx);
|
||||
Scalar* actual_y = get_compact_vector(y,*n,*incy);
|
||||
|
||||
if(beta!=Scalar(1))
|
||||
{
|
||||
if(beta==Scalar(0)) make_vector(actual_y, *n).setZero();
|
||||
else make_vector(actual_y, *n) *= beta;
|
||||
}
|
||||
|
||||
if(alpha!=Scalar(0))
|
||||
{
|
||||
int code = UPLO(*uplo);
|
||||
if(code>=2 || func[code]==0)
|
||||
return 0;
|
||||
|
||||
func[code](*n, a, *lda, actual_x, actual_y, alpha);
|
||||
}
|
||||
|
||||
if(actual_x!=x) delete[] actual_x;
|
||||
if(actual_y!=y) delete[] copy_back(actual_y,y,*n,*incy);
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
/** ZHBMV performs the matrix-vector operation
|
||||
*
|
||||
* y := alpha*A*x + beta*y,
|
||||
*
|
||||
* where alpha and beta are scalars, x and y are n element vectors and
|
||||
* A is an n by n hermitian band matrix, with k super-diagonals.
|
||||
*/
|
||||
// int EIGEN_BLAS_FUNC(hbmv)(char *uplo, int *n, int *k, RealScalar *alpha, RealScalar *a, int *lda,
|
||||
// RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
|
||||
// {
|
||||
// return 1;
|
||||
// }
|
||||
|
||||
/** ZHPMV performs the matrix-vector operation
|
||||
*
|
||||
* y := alpha*A*x + beta*y,
|
||||
*
|
||||
* where alpha and beta are scalars, x and y are n element vectors and
|
||||
* A is an n by n hermitian matrix, supplied in packed form.
|
||||
*/
|
||||
// int EIGEN_BLAS_FUNC(hpmv)(char *uplo, int *n, RealScalar *alpha, RealScalar *ap, RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
|
||||
// {
|
||||
// return 1;
|
||||
// }
|
||||
|
||||
/** ZHPR performs the hermitian rank 1 operation
|
||||
*
|
||||
* A := alpha*x*conjg( x' ) + A,
|
||||
*
|
||||
* where alpha is a real scalar, x is an n element vector and A is an
|
||||
* n by n hermitian matrix, supplied in packed form.
|
||||
*/
|
||||
int EIGEN_BLAS_FUNC(hpr)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pap)
|
||||
{
|
||||
typedef void (*functype)(int, Scalar*, const Scalar*, RealScalar);
|
||||
static const functype func[2] = {
|
||||
// array index: UP
|
||||
(internal::selfadjoint_packed_rank1_update<Scalar,int,ColMajor,Upper,false,Conj>::run),
|
||||
// array index: LO
|
||||
(internal::selfadjoint_packed_rank1_update<Scalar,int,ColMajor,Lower,false,Conj>::run),
|
||||
};
|
||||
|
||||
Scalar* x = reinterpret_cast<Scalar*>(px);
|
||||
Scalar* ap = reinterpret_cast<Scalar*>(pap);
|
||||
RealScalar alpha = *palpha;
|
||||
|
||||
int info = 0;
|
||||
if(UPLO(*uplo)==INVALID) info = 1;
|
||||
else if(*n<0) info = 2;
|
||||
else if(*incx==0) info = 5;
|
||||
if(info)
|
||||
return xerbla_(SCALAR_SUFFIX_UP"HPR ",&info,6);
|
||||
|
||||
if(alpha==Scalar(0))
|
||||
return 1;
|
||||
|
||||
Scalar* x_cpy = get_compact_vector(x, *n, *incx);
|
||||
|
||||
int code = UPLO(*uplo);
|
||||
if(code>=2 || func[code]==0)
|
||||
return 0;
|
||||
|
||||
func[code](*n, ap, x_cpy, alpha);
|
||||
|
||||
if(x_cpy!=x) delete[] x_cpy;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
/** ZHPR2 performs the hermitian rank 2 operation
|
||||
*
|
||||
* A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
|
||||
*
|
||||
* where alpha is a scalar, x and y are n element vectors and A is an
|
||||
* n by n hermitian matrix, supplied in packed form.
|
||||
*/
|
||||
int EIGEN_BLAS_FUNC(hpr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pap)
|
||||
{
|
||||
typedef void (*functype)(int, Scalar*, const Scalar*, const Scalar*, Scalar);
|
||||
static const functype func[2] = {
|
||||
// array index: UP
|
||||
(internal::packed_rank2_update_selector<Scalar,int,Upper>::run),
|
||||
// array index: LO
|
||||
(internal::packed_rank2_update_selector<Scalar,int,Lower>::run),
|
||||
};
|
||||
|
||||
Scalar* x = reinterpret_cast<Scalar*>(px);
|
||||
Scalar* y = reinterpret_cast<Scalar*>(py);
|
||||
Scalar* ap = reinterpret_cast<Scalar*>(pap);
|
||||
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
||||
|
||||
int info = 0;
|
||||
if(UPLO(*uplo)==INVALID) info = 1;
|
||||
else if(*n<0) info = 2;
|
||||
else if(*incx==0) info = 5;
|
||||
else if(*incy==0) info = 7;
|
||||
if(info)
|
||||
return xerbla_(SCALAR_SUFFIX_UP"HPR2 ",&info,6);
|
||||
|
||||
if(alpha==Scalar(0))
|
||||
return 1;
|
||||
|
||||
Scalar* x_cpy = get_compact_vector(x, *n, *incx);
|
||||
Scalar* y_cpy = get_compact_vector(y, *n, *incy);
|
||||
|
||||
int code = UPLO(*uplo);
|
||||
if(code>=2 || func[code]==0)
|
||||
return 0;
|
||||
|
||||
func[code](*n, ap, x_cpy, y_cpy, alpha);
|
||||
|
||||
if(x_cpy!=x) delete[] x_cpy;
|
||||
if(y_cpy!=y) delete[] y_cpy;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
/** ZHER performs the hermitian rank 1 operation
|
||||
*
|
||||
* A := alpha*x*conjg( x' ) + A,
|
||||
*
|
||||
* where alpha is a real scalar, x is an n element vector and A is an
|
||||
* n by n hermitian matrix.
|
||||
*/
|
||||
int EIGEN_BLAS_FUNC(her)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pa, int *lda)
|
||||
{
|
||||
typedef void (*functype)(int, Scalar*, int, const Scalar*, const Scalar*, const Scalar&);
|
||||
static const functype func[2] = {
|
||||
// array index: UP
|
||||
(selfadjoint_rank1_update<Scalar,int,ColMajor,Upper,false,Conj>::run),
|
||||
// array index: LO
|
||||
(selfadjoint_rank1_update<Scalar,int,ColMajor,Lower,false,Conj>::run),
|
||||
};
|
||||
|
||||
Scalar* x = reinterpret_cast<Scalar*>(px);
|
||||
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
||||
RealScalar alpha = *reinterpret_cast<RealScalar*>(palpha);
|
||||
|
||||
int info = 0;
|
||||
if(UPLO(*uplo)==INVALID) info = 1;
|
||||
else if(*n<0) info = 2;
|
||||
else if(*incx==0) info = 5;
|
||||
else if(*lda<std::max(1,*n)) info = 7;
|
||||
if(info)
|
||||
return xerbla_(SCALAR_SUFFIX_UP"HER ",&info,6);
|
||||
|
||||
if(alpha==RealScalar(0))
|
||||
return 1;
|
||||
|
||||
Scalar* x_cpy = get_compact_vector(x, *n, *incx);
|
||||
|
||||
int code = UPLO(*uplo);
|
||||
if(code>=2 || func[code]==0)
|
||||
return 0;
|
||||
|
||||
func[code](*n, a, *lda, x_cpy, x_cpy, alpha);
|
||||
|
||||
matrix(a,*n,*n,*lda).diagonal().imag().setZero();
|
||||
|
||||
if(x_cpy!=x) delete[] x_cpy;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
/** ZHER2 performs the hermitian rank 2 operation
|
||||
*
|
||||
* A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
|
||||
*
|
||||
* where alpha is a scalar, x and y are n element vectors and A is an n
|
||||
* by n hermitian matrix.
|
||||
*/
|
||||
int EIGEN_BLAS_FUNC(her2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda)
|
||||
{
|
||||
typedef void (*functype)(int, Scalar*, int, const Scalar*, const Scalar*, Scalar);
|
||||
static const functype func[2] = {
|
||||
// array index: UP
|
||||
(internal::rank2_update_selector<Scalar,int,Upper>::run),
|
||||
// array index: LO
|
||||
(internal::rank2_update_selector<Scalar,int,Lower>::run),
|
||||
};
|
||||
|
||||
Scalar* x = reinterpret_cast<Scalar*>(px);
|
||||
Scalar* y = reinterpret_cast<Scalar*>(py);
|
||||
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
||||
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
||||
|
||||
int info = 0;
|
||||
if(UPLO(*uplo)==INVALID) info = 1;
|
||||
else if(*n<0) info = 2;
|
||||
else if(*incx==0) info = 5;
|
||||
else if(*incy==0) info = 7;
|
||||
else if(*lda<std::max(1,*n)) info = 9;
|
||||
if(info)
|
||||
return xerbla_(SCALAR_SUFFIX_UP"HER2 ",&info,6);
|
||||
|
||||
if(alpha==Scalar(0))
|
||||
return 1;
|
||||
|
||||
Scalar* x_cpy = get_compact_vector(x, *n, *incx);
|
||||
Scalar* y_cpy = get_compact_vector(y, *n, *incy);
|
||||
|
||||
int code = UPLO(*uplo);
|
||||
if(code>=2 || func[code]==0)
|
||||
return 0;
|
||||
|
||||
func[code](*n, a, *lda, x_cpy, y_cpy, alpha);
|
||||
|
||||
matrix(a,*n,*n,*lda).diagonal().imag().setZero();
|
||||
|
||||
if(x_cpy!=x) delete[] x_cpy;
|
||||
if(y_cpy!=y) delete[] y_cpy;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
/** ZGERU performs the rank 1 operation
|
||||
*
|
||||
* A := alpha*x*y' + A,
|
||||
*
|
||||
* where alpha is a scalar, x is an m element vector, y is an n element
|
||||
* vector and A is an m by n matrix.
|
||||
*/
|
||||
int EIGEN_BLAS_FUNC(geru)(int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda)
|
||||
{
|
||||
Scalar* x = reinterpret_cast<Scalar*>(px);
|
||||
Scalar* y = reinterpret_cast<Scalar*>(py);
|
||||
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
||||
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
||||
|
||||
int info = 0;
|
||||
if(*m<0) info = 1;
|
||||
else if(*n<0) info = 2;
|
||||
else if(*incx==0) info = 5;
|
||||
else if(*incy==0) info = 7;
|
||||
else if(*lda<std::max(1,*m)) info = 9;
|
||||
if(info)
|
||||
return xerbla_(SCALAR_SUFFIX_UP"GERU ",&info,6);
|
||||
|
||||
if(alpha==Scalar(0))
|
||||
return 1;
|
||||
|
||||
Scalar* x_cpy = get_compact_vector(x,*m,*incx);
|
||||
Scalar* y_cpy = get_compact_vector(y,*n,*incy);
|
||||
|
||||
internal::general_rank1_update<Scalar,int,ColMajor,false,false>::run(*m, *n, a, *lda, x_cpy, y_cpy, alpha);
|
||||
|
||||
if(x_cpy!=x) delete[] x_cpy;
|
||||
if(y_cpy!=y) delete[] y_cpy;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
/** ZGERC performs the rank 1 operation
|
||||
*
|
||||
* A := alpha*x*conjg( y' ) + A,
|
||||
*
|
||||
* where alpha is a scalar, x is an m element vector, y is an n element
|
||||
* vector and A is an m by n matrix.
|
||||
*/
|
||||
int EIGEN_BLAS_FUNC(gerc)(int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda)
|
||||
{
|
||||
Scalar* x = reinterpret_cast<Scalar*>(px);
|
||||
Scalar* y = reinterpret_cast<Scalar*>(py);
|
||||
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
||||
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
||||
|
||||
int info = 0;
|
||||
if(*m<0) info = 1;
|
||||
else if(*n<0) info = 2;
|
||||
else if(*incx==0) info = 5;
|
||||
else if(*incy==0) info = 7;
|
||||
else if(*lda<std::max(1,*m)) info = 9;
|
||||
if(info)
|
||||
return xerbla_(SCALAR_SUFFIX_UP"GERC ",&info,6);
|
||||
|
||||
if(alpha==Scalar(0))
|
||||
return 1;
|
||||
|
||||
Scalar* x_cpy = get_compact_vector(x,*m,*incx);
|
||||
Scalar* y_cpy = get_compact_vector(y,*n,*incy);
|
||||
|
||||
internal::general_rank1_update<Scalar,int,ColMajor,false,Conj>::run(*m, *n, a, *lda, x_cpy, y_cpy, alpha);
|
||||
|
||||
if(x_cpy!=x) delete[] x_cpy;
|
||||
if(y_cpy!=y) delete[] y_cpy;
|
||||
|
||||
return 1;
|
||||
}
|
||||
553
cs440-acg/ext/eigen/blas/level2_impl.h
Normal file
553
cs440-acg/ext/eigen/blas/level2_impl.h
Normal file
@@ -0,0 +1,553 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#include "common.h"
|
||||
|
||||
template<typename Index, typename Scalar, int StorageOrder, bool ConjugateLhs, bool ConjugateRhs>
|
||||
struct general_matrix_vector_product_wrapper
|
||||
{
|
||||
static void run(Index rows, Index cols,const Scalar *lhs, Index lhsStride, const Scalar *rhs, Index rhsIncr, Scalar* res, Index resIncr, Scalar alpha)
|
||||
{
|
||||
typedef internal::const_blas_data_mapper<Scalar,Index,StorageOrder> LhsMapper;
|
||||
typedef internal::const_blas_data_mapper<Scalar,Index,RowMajor> RhsMapper;
|
||||
|
||||
internal::general_matrix_vector_product
|
||||
<Index,Scalar,LhsMapper,StorageOrder,ConjugateLhs,Scalar,RhsMapper,ConjugateRhs>::run(
|
||||
rows, cols, LhsMapper(lhs, lhsStride), RhsMapper(rhs, rhsIncr), res, resIncr, alpha);
|
||||
}
|
||||
};
|
||||
|
||||
int EIGEN_BLAS_FUNC(gemv)(const char *opa, const int *m, const int *n, const RealScalar *palpha,
|
||||
const RealScalar *pa, const int *lda, const RealScalar *pb, const int *incb, const RealScalar *pbeta, RealScalar *pc, const int *incc)
|
||||
{
|
||||
typedef void (*functype)(int, int, const Scalar *, int, const Scalar *, int , Scalar *, int, Scalar);
|
||||
static const functype func[4] = {
|
||||
// array index: NOTR
|
||||
(general_matrix_vector_product_wrapper<int,Scalar,ColMajor,false,false>::run),
|
||||
// array index: TR
|
||||
(general_matrix_vector_product_wrapper<int,Scalar,RowMajor,false,false>::run),
|
||||
// array index: ADJ
|
||||
(general_matrix_vector_product_wrapper<int,Scalar,RowMajor,Conj ,false>::run),
|
||||
0
|
||||
};
|
||||
|
||||
const Scalar* a = reinterpret_cast<const Scalar*>(pa);
|
||||
const Scalar* b = reinterpret_cast<const Scalar*>(pb);
|
||||
Scalar* c = reinterpret_cast<Scalar*>(pc);
|
||||
Scalar alpha = *reinterpret_cast<const Scalar*>(palpha);
|
||||
Scalar beta = *reinterpret_cast<const Scalar*>(pbeta);
|
||||
|
||||
// check arguments
|
||||
int info = 0;
|
||||
if(OP(*opa)==INVALID) info = 1;
|
||||
else if(*m<0) info = 2;
|
||||
else if(*n<0) info = 3;
|
||||
else if(*lda<std::max(1,*m)) info = 6;
|
||||
else if(*incb==0) info = 8;
|
||||
else if(*incc==0) info = 11;
|
||||
if(info)
|
||||
return xerbla_(SCALAR_SUFFIX_UP"GEMV ",&info,6);
|
||||
|
||||
if(*m==0 || *n==0 || (alpha==Scalar(0) && beta==Scalar(1)))
|
||||
return 0;
|
||||
|
||||
int actual_m = *m;
|
||||
int actual_n = *n;
|
||||
int code = OP(*opa);
|
||||
if(code!=NOTR)
|
||||
std::swap(actual_m,actual_n);
|
||||
|
||||
const Scalar* actual_b = get_compact_vector(b,actual_n,*incb);
|
||||
Scalar* actual_c = get_compact_vector(c,actual_m,*incc);
|
||||
|
||||
if(beta!=Scalar(1))
|
||||
{
|
||||
if(beta==Scalar(0)) make_vector(actual_c, actual_m).setZero();
|
||||
else make_vector(actual_c, actual_m) *= beta;
|
||||
}
|
||||
|
||||
if(code>=4 || func[code]==0)
|
||||
return 0;
|
||||
|
||||
func[code](actual_m, actual_n, a, *lda, actual_b, 1, actual_c, 1, alpha);
|
||||
|
||||
if(actual_b!=b) delete[] actual_b;
|
||||
if(actual_c!=c) delete[] copy_back(actual_c,c,actual_m,*incc);
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
int EIGEN_BLAS_FUNC(trsv)(const char *uplo, const char *opa, const char *diag, const int *n, const RealScalar *pa, const int *lda, RealScalar *pb, const int *incb)
|
||||
{
|
||||
typedef void (*functype)(int, const Scalar *, int, Scalar *);
|
||||
static const functype func[16] = {
|
||||
// array index: NOTR | (UP << 2) | (NUNIT << 3)
|
||||
(internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0, false,ColMajor>::run),
|
||||
// array index: TR | (UP << 2) | (NUNIT << 3)
|
||||
(internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0, false,RowMajor>::run),
|
||||
// array index: ADJ | (UP << 2) | (NUNIT << 3)
|
||||
(internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0, Conj, RowMajor>::run),
|
||||
0,
|
||||
// array index: NOTR | (LO << 2) | (NUNIT << 3)
|
||||
(internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0, false,ColMajor>::run),
|
||||
// array index: TR | (LO << 2) | (NUNIT << 3)
|
||||
(internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0, false,RowMajor>::run),
|
||||
// array index: ADJ | (LO << 2) | (NUNIT << 3)
|
||||
(internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0, Conj, RowMajor>::run),
|
||||
0,
|
||||
// array index: NOTR | (UP << 2) | (UNIT << 3)
|
||||
(internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,false,ColMajor>::run),
|
||||
// array index: TR | (UP << 2) | (UNIT << 3)
|
||||
(internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,false,RowMajor>::run),
|
||||
// array index: ADJ | (UP << 2) | (UNIT << 3)
|
||||
(internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,Conj, RowMajor>::run),
|
||||
0,
|
||||
// array index: NOTR | (LO << 2) | (UNIT << 3)
|
||||
(internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,false,ColMajor>::run),
|
||||
// array index: TR | (LO << 2) | (UNIT << 3)
|
||||
(internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,false,RowMajor>::run),
|
||||
// array index: ADJ | (LO << 2) | (UNIT << 3)
|
||||
(internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,Conj, RowMajor>::run),
|
||||
0
|
||||
};
|
||||
|
||||
const Scalar* a = reinterpret_cast<const Scalar*>(pa);
|
||||
Scalar* b = reinterpret_cast<Scalar*>(pb);
|
||||
|
||||
int info = 0;
|
||||
if(UPLO(*uplo)==INVALID) info = 1;
|
||||
else if(OP(*opa)==INVALID) info = 2;
|
||||
else if(DIAG(*diag)==INVALID) info = 3;
|
||||
else if(*n<0) info = 4;
|
||||
else if(*lda<std::max(1,*n)) info = 6;
|
||||
else if(*incb==0) info = 8;
|
||||
if(info)
|
||||
return xerbla_(SCALAR_SUFFIX_UP"TRSV ",&info,6);
|
||||
|
||||
Scalar* actual_b = get_compact_vector(b,*n,*incb);
|
||||
|
||||
int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3);
|
||||
func[code](*n, a, *lda, actual_b);
|
||||
|
||||
if(actual_b!=b) delete[] copy_back(actual_b,b,*n,*incb);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
int EIGEN_BLAS_FUNC(trmv)(const char *uplo, const char *opa, const char *diag, const int *n, const RealScalar *pa, const int *lda, RealScalar *pb, const int *incb)
|
||||
{
|
||||
typedef void (*functype)(int, int, const Scalar *, int, const Scalar *, int, Scalar *, int, const Scalar&);
|
||||
static const functype func[16] = {
|
||||
// array index: NOTR | (UP << 2) | (NUNIT << 3)
|
||||
(internal::triangular_matrix_vector_product<int,Upper|0, Scalar,false,Scalar,false,ColMajor>::run),
|
||||
// array index: TR | (UP << 2) | (NUNIT << 3)
|
||||
(internal::triangular_matrix_vector_product<int,Lower|0, Scalar,false,Scalar,false,RowMajor>::run),
|
||||
// array index: ADJ | (UP << 2) | (NUNIT << 3)
|
||||
(internal::triangular_matrix_vector_product<int,Lower|0, Scalar,Conj, Scalar,false,RowMajor>::run),
|
||||
0,
|
||||
// array index: NOTR | (LO << 2) | (NUNIT << 3)
|
||||
(internal::triangular_matrix_vector_product<int,Lower|0, Scalar,false,Scalar,false,ColMajor>::run),
|
||||
// array index: TR | (LO << 2) | (NUNIT << 3)
|
||||
(internal::triangular_matrix_vector_product<int,Upper|0, Scalar,false,Scalar,false,RowMajor>::run),
|
||||
// array index: ADJ | (LO << 2) | (NUNIT << 3)
|
||||
(internal::triangular_matrix_vector_product<int,Upper|0, Scalar,Conj, Scalar,false,RowMajor>::run),
|
||||
0,
|
||||
// array index: NOTR | (UP << 2) | (UNIT << 3)
|
||||
(internal::triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,false,Scalar,false,ColMajor>::run),
|
||||
// array index: TR | (UP << 2) | (UNIT << 3)
|
||||
(internal::triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,false,Scalar,false,RowMajor>::run),
|
||||
// array index: ADJ | (UP << 2) | (UNIT << 3)
|
||||
(internal::triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,Conj, Scalar,false,RowMajor>::run),
|
||||
0,
|
||||
// array index: NOTR | (LO << 2) | (UNIT << 3)
|
||||
(internal::triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,false,Scalar,false,ColMajor>::run),
|
||||
// array index: TR | (LO << 2) | (UNIT << 3)
|
||||
(internal::triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,false,Scalar,false,RowMajor>::run),
|
||||
// array index: ADJ | (LO << 2) | (UNIT << 3)
|
||||
(internal::triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,Conj, Scalar,false,RowMajor>::run),
|
||||
0
|
||||
};
|
||||
|
||||
const Scalar* a = reinterpret_cast<const Scalar*>(pa);
|
||||
Scalar* b = reinterpret_cast<Scalar*>(pb);
|
||||
|
||||
int info = 0;
|
||||
if(UPLO(*uplo)==INVALID) info = 1;
|
||||
else if(OP(*opa)==INVALID) info = 2;
|
||||
else if(DIAG(*diag)==INVALID) info = 3;
|
||||
else if(*n<0) info = 4;
|
||||
else if(*lda<std::max(1,*n)) info = 6;
|
||||
else if(*incb==0) info = 8;
|
||||
if(info)
|
||||
return xerbla_(SCALAR_SUFFIX_UP"TRMV ",&info,6);
|
||||
|
||||
if(*n==0)
|
||||
return 1;
|
||||
|
||||
Scalar* actual_b = get_compact_vector(b,*n,*incb);
|
||||
Matrix<Scalar,Dynamic,1> res(*n);
|
||||
res.setZero();
|
||||
|
||||
int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3);
|
||||
if(code>=16 || func[code]==0)
|
||||
return 0;
|
||||
|
||||
func[code](*n, *n, a, *lda, actual_b, 1, res.data(), 1, Scalar(1));
|
||||
|
||||
copy_back(res.data(),b,*n,*incb);
|
||||
if(actual_b!=b) delete[] actual_b;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
/** GBMV performs one of the matrix-vector operations
|
||||
*
|
||||
* y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y,
|
||||
*
|
||||
* where alpha and beta are scalars, x and y are vectors and A is an
|
||||
* m by n band matrix, with kl sub-diagonals and ku super-diagonals.
|
||||
*/
|
||||
int EIGEN_BLAS_FUNC(gbmv)(char *trans, int *m, int *n, int *kl, int *ku, RealScalar *palpha, RealScalar *pa, int *lda,
|
||||
RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy)
|
||||
{
|
||||
const Scalar* a = reinterpret_cast<const Scalar*>(pa);
|
||||
const Scalar* x = reinterpret_cast<const Scalar*>(px);
|
||||
Scalar* y = reinterpret_cast<Scalar*>(py);
|
||||
Scalar alpha = *reinterpret_cast<const Scalar*>(palpha);
|
||||
Scalar beta = *reinterpret_cast<const Scalar*>(pbeta);
|
||||
int coeff_rows = *kl+*ku+1;
|
||||
|
||||
int info = 0;
|
||||
if(OP(*trans)==INVALID) info = 1;
|
||||
else if(*m<0) info = 2;
|
||||
else if(*n<0) info = 3;
|
||||
else if(*kl<0) info = 4;
|
||||
else if(*ku<0) info = 5;
|
||||
else if(*lda<coeff_rows) info = 8;
|
||||
else if(*incx==0) info = 10;
|
||||
else if(*incy==0) info = 13;
|
||||
if(info)
|
||||
return xerbla_(SCALAR_SUFFIX_UP"GBMV ",&info,6);
|
||||
|
||||
if(*m==0 || *n==0 || (alpha==Scalar(0) && beta==Scalar(1)))
|
||||
return 0;
|
||||
|
||||
int actual_m = *m;
|
||||
int actual_n = *n;
|
||||
if(OP(*trans)!=NOTR)
|
||||
std::swap(actual_m,actual_n);
|
||||
|
||||
const Scalar* actual_x = get_compact_vector(x,actual_n,*incx);
|
||||
Scalar* actual_y = get_compact_vector(y,actual_m,*incy);
|
||||
|
||||
if(beta!=Scalar(1))
|
||||
{
|
||||
if(beta==Scalar(0)) make_vector(actual_y, actual_m).setZero();
|
||||
else make_vector(actual_y, actual_m) *= beta;
|
||||
}
|
||||
|
||||
ConstMatrixType mat_coeffs(a,coeff_rows,*n,*lda);
|
||||
|
||||
int nb = std::min(*n,(*m)+(*ku));
|
||||
for(int j=0; j<nb; ++j)
|
||||
{
|
||||
int start = std::max(0,j - *ku);
|
||||
int end = std::min((*m)-1,j + *kl);
|
||||
int len = end - start + 1;
|
||||
int offset = (*ku) - j + start;
|
||||
if(OP(*trans)==NOTR)
|
||||
make_vector(actual_y+start,len) += (alpha*actual_x[j]) * mat_coeffs.col(j).segment(offset,len);
|
||||
else if(OP(*trans)==TR)
|
||||
actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).transpose() * make_vector(actual_x+start,len) ).value();
|
||||
else
|
||||
actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).adjoint() * make_vector(actual_x+start,len) ).value();
|
||||
}
|
||||
|
||||
if(actual_x!=x) delete[] actual_x;
|
||||
if(actual_y!=y) delete[] copy_back(actual_y,y,actual_m,*incy);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
#if 0
|
||||
/** TBMV performs one of the matrix-vector operations
|
||||
*
|
||||
* x := A*x, or x := A'*x,
|
||||
*
|
||||
* where x is an n element vector and A is an n by n unit, or non-unit,
|
||||
* upper or lower triangular band matrix, with ( k + 1 ) diagonals.
|
||||
*/
|
||||
int EIGEN_BLAS_FUNC(tbmv)(char *uplo, char *opa, char *diag, int *n, int *k, RealScalar *pa, int *lda, RealScalar *px, int *incx)
|
||||
{
|
||||
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
||||
Scalar* x = reinterpret_cast<Scalar*>(px);
|
||||
int coeff_rows = *k + 1;
|
||||
|
||||
int info = 0;
|
||||
if(UPLO(*uplo)==INVALID) info = 1;
|
||||
else if(OP(*opa)==INVALID) info = 2;
|
||||
else if(DIAG(*diag)==INVALID) info = 3;
|
||||
else if(*n<0) info = 4;
|
||||
else if(*k<0) info = 5;
|
||||
else if(*lda<coeff_rows) info = 7;
|
||||
else if(*incx==0) info = 9;
|
||||
if(info)
|
||||
return xerbla_(SCALAR_SUFFIX_UP"TBMV ",&info,6);
|
||||
|
||||
if(*n==0)
|
||||
return 0;
|
||||
|
||||
int actual_n = *n;
|
||||
|
||||
Scalar* actual_x = get_compact_vector(x,actual_n,*incx);
|
||||
|
||||
MatrixType mat_coeffs(a,coeff_rows,*n,*lda);
|
||||
|
||||
int ku = UPLO(*uplo)==UPPER ? *k : 0;
|
||||
int kl = UPLO(*uplo)==LOWER ? *k : 0;
|
||||
|
||||
for(int j=0; j<*n; ++j)
|
||||
{
|
||||
int start = std::max(0,j - ku);
|
||||
int end = std::min((*m)-1,j + kl);
|
||||
int len = end - start + 1;
|
||||
int offset = (ku) - j + start;
|
||||
|
||||
if(OP(*trans)==NOTR)
|
||||
make_vector(actual_y+start,len) += (alpha*actual_x[j]) * mat_coeffs.col(j).segment(offset,len);
|
||||
else if(OP(*trans)==TR)
|
||||
actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).transpose() * make_vector(actual_x+start,len) ).value();
|
||||
else
|
||||
actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).adjoint() * make_vector(actual_x+start,len) ).value();
|
||||
}
|
||||
|
||||
if(actual_x!=x) delete[] actual_x;
|
||||
if(actual_y!=y) delete[] copy_back(actual_y,y,actual_m,*incy);
|
||||
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
/** DTBSV solves one of the systems of equations
|
||||
*
|
||||
* A*x = b, or A'*x = b,
|
||||
*
|
||||
* where b and x are n element vectors and A is an n by n unit, or
|
||||
* non-unit, upper or lower triangular band matrix, with ( k + 1 )
|
||||
* diagonals.
|
||||
*
|
||||
* No test for singularity or near-singularity is included in this
|
||||
* routine. Such tests must be performed before calling this routine.
|
||||
*/
|
||||
int EIGEN_BLAS_FUNC(tbsv)(char *uplo, char *op, char *diag, int *n, int *k, RealScalar *pa, int *lda, RealScalar *px, int *incx)
|
||||
{
|
||||
typedef void (*functype)(int, int, const Scalar *, int, Scalar *);
|
||||
static const functype func[16] = {
|
||||
// array index: NOTR | (UP << 2) | (NUNIT << 3)
|
||||
(internal::band_solve_triangular_selector<int,Upper|0, Scalar,false,Scalar,ColMajor>::run),
|
||||
// array index: TR | (UP << 2) | (NUNIT << 3)
|
||||
(internal::band_solve_triangular_selector<int,Lower|0, Scalar,false,Scalar,RowMajor>::run),
|
||||
// array index: ADJ | (UP << 2) | (NUNIT << 3)
|
||||
(internal::band_solve_triangular_selector<int,Lower|0, Scalar,Conj, Scalar,RowMajor>::run),
|
||||
0,
|
||||
// array index: NOTR | (LO << 2) | (NUNIT << 3)
|
||||
(internal::band_solve_triangular_selector<int,Lower|0, Scalar,false,Scalar,ColMajor>::run),
|
||||
// array index: TR | (LO << 2) | (NUNIT << 3)
|
||||
(internal::band_solve_triangular_selector<int,Upper|0, Scalar,false,Scalar,RowMajor>::run),
|
||||
// array index: ADJ | (LO << 2) | (NUNIT << 3)
|
||||
(internal::band_solve_triangular_selector<int,Upper|0, Scalar,Conj, Scalar,RowMajor>::run),
|
||||
0,
|
||||
// array index: NOTR | (UP << 2) | (UNIT << 3)
|
||||
(internal::band_solve_triangular_selector<int,Upper|UnitDiag,Scalar,false,Scalar,ColMajor>::run),
|
||||
// array index: TR | (UP << 2) | (UNIT << 3)
|
||||
(internal::band_solve_triangular_selector<int,Lower|UnitDiag,Scalar,false,Scalar,RowMajor>::run),
|
||||
// array index: ADJ | (UP << 2) | (UNIT << 3)
|
||||
(internal::band_solve_triangular_selector<int,Lower|UnitDiag,Scalar,Conj, Scalar,RowMajor>::run),
|
||||
0,
|
||||
// array index: NOTR | (LO << 2) | (UNIT << 3)
|
||||
(internal::band_solve_triangular_selector<int,Lower|UnitDiag,Scalar,false,Scalar,ColMajor>::run),
|
||||
// array index: TR | (LO << 2) | (UNIT << 3)
|
||||
(internal::band_solve_triangular_selector<int,Upper|UnitDiag,Scalar,false,Scalar,RowMajor>::run),
|
||||
// array index: ADJ | (LO << 2) | (UNIT << 3)
|
||||
(internal::band_solve_triangular_selector<int,Upper|UnitDiag,Scalar,Conj, Scalar,RowMajor>::run),
|
||||
0,
|
||||
};
|
||||
|
||||
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
||||
Scalar* x = reinterpret_cast<Scalar*>(px);
|
||||
int coeff_rows = *k+1;
|
||||
|
||||
int info = 0;
|
||||
if(UPLO(*uplo)==INVALID) info = 1;
|
||||
else if(OP(*op)==INVALID) info = 2;
|
||||
else if(DIAG(*diag)==INVALID) info = 3;
|
||||
else if(*n<0) info = 4;
|
||||
else if(*k<0) info = 5;
|
||||
else if(*lda<coeff_rows) info = 7;
|
||||
else if(*incx==0) info = 9;
|
||||
if(info)
|
||||
return xerbla_(SCALAR_SUFFIX_UP"TBSV ",&info,6);
|
||||
|
||||
if(*n==0 || (*k==0 && DIAG(*diag)==UNIT))
|
||||
return 0;
|
||||
|
||||
int actual_n = *n;
|
||||
|
||||
Scalar* actual_x = get_compact_vector(x,actual_n,*incx);
|
||||
|
||||
int code = OP(*op) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3);
|
||||
if(code>=16 || func[code]==0)
|
||||
return 0;
|
||||
|
||||
func[code](*n, *k, a, *lda, actual_x);
|
||||
|
||||
if(actual_x!=x) delete[] copy_back(actual_x,x,actual_n,*incx);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/** DTPMV performs one of the matrix-vector operations
|
||||
*
|
||||
* x := A*x, or x := A'*x,
|
||||
*
|
||||
* where x is an n element vector and A is an n by n unit, or non-unit,
|
||||
* upper or lower triangular matrix, supplied in packed form.
|
||||
*/
|
||||
int EIGEN_BLAS_FUNC(tpmv)(char *uplo, char *opa, char *diag, int *n, RealScalar *pap, RealScalar *px, int *incx)
|
||||
{
|
||||
typedef void (*functype)(int, const Scalar*, const Scalar*, Scalar*, Scalar);
|
||||
static const functype func[16] = {
|
||||
// array index: NOTR | (UP << 2) | (NUNIT << 3)
|
||||
(internal::packed_triangular_matrix_vector_product<int,Upper|0, Scalar,false,Scalar,false,ColMajor>::run),
|
||||
// array index: TR | (UP << 2) | (NUNIT << 3)
|
||||
(internal::packed_triangular_matrix_vector_product<int,Lower|0, Scalar,false,Scalar,false,RowMajor>::run),
|
||||
// array index: ADJ | (UP << 2) | (NUNIT << 3)
|
||||
(internal::packed_triangular_matrix_vector_product<int,Lower|0, Scalar,Conj, Scalar,false,RowMajor>::run),
|
||||
0,
|
||||
// array index: NOTR | (LO << 2) | (NUNIT << 3)
|
||||
(internal::packed_triangular_matrix_vector_product<int,Lower|0, Scalar,false,Scalar,false,ColMajor>::run),
|
||||
// array index: TR | (LO << 2) | (NUNIT << 3)
|
||||
(internal::packed_triangular_matrix_vector_product<int,Upper|0, Scalar,false,Scalar,false,RowMajor>::run),
|
||||
// array index: ADJ | (LO << 2) | (NUNIT << 3)
|
||||
(internal::packed_triangular_matrix_vector_product<int,Upper|0, Scalar,Conj, Scalar,false,RowMajor>::run),
|
||||
0,
|
||||
// array index: NOTR | (UP << 2) | (UNIT << 3)
|
||||
(internal::packed_triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,false,Scalar,false,ColMajor>::run),
|
||||
// array index: TR | (UP << 2) | (UNIT << 3)
|
||||
(internal::packed_triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,false,Scalar,false,RowMajor>::run),
|
||||
// array index: ADJ | (UP << 2) | (UNIT << 3)
|
||||
(internal::packed_triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,Conj, Scalar,false,RowMajor>::run),
|
||||
0,
|
||||
// array index: NOTR | (LO << 2) | (UNIT << 3)
|
||||
(internal::packed_triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,false,Scalar,false,ColMajor>::run),
|
||||
// array index: TR | (LO << 2) | (UNIT << 3)
|
||||
(internal::packed_triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,false,Scalar,false,RowMajor>::run),
|
||||
// array index: ADJ | (LO << 2) | (UNIT << 3)
|
||||
(internal::packed_triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,Conj, Scalar,false,RowMajor>::run),
|
||||
0
|
||||
};
|
||||
|
||||
Scalar* ap = reinterpret_cast<Scalar*>(pap);
|
||||
Scalar* x = reinterpret_cast<Scalar*>(px);
|
||||
|
||||
int info = 0;
|
||||
if(UPLO(*uplo)==INVALID) info = 1;
|
||||
else if(OP(*opa)==INVALID) info = 2;
|
||||
else if(DIAG(*diag)==INVALID) info = 3;
|
||||
else if(*n<0) info = 4;
|
||||
else if(*incx==0) info = 7;
|
||||
if(info)
|
||||
return xerbla_(SCALAR_SUFFIX_UP"TPMV ",&info,6);
|
||||
|
||||
if(*n==0)
|
||||
return 1;
|
||||
|
||||
Scalar* actual_x = get_compact_vector(x,*n,*incx);
|
||||
Matrix<Scalar,Dynamic,1> res(*n);
|
||||
res.setZero();
|
||||
|
||||
int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3);
|
||||
if(code>=16 || func[code]==0)
|
||||
return 0;
|
||||
|
||||
func[code](*n, ap, actual_x, res.data(), Scalar(1));
|
||||
|
||||
copy_back(res.data(),x,*n,*incx);
|
||||
if(actual_x!=x) delete[] actual_x;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
/** DTPSV solves one of the systems of equations
|
||||
*
|
||||
* A*x = b, or A'*x = b,
|
||||
*
|
||||
* where b and x are n element vectors and A is an n by n unit, or
|
||||
* non-unit, upper or lower triangular matrix, supplied in packed form.
|
||||
*
|
||||
* No test for singularity or near-singularity is included in this
|
||||
* routine. Such tests must be performed before calling this routine.
|
||||
*/
|
||||
int EIGEN_BLAS_FUNC(tpsv)(char *uplo, char *opa, char *diag, int *n, RealScalar *pap, RealScalar *px, int *incx)
|
||||
{
|
||||
typedef void (*functype)(int, const Scalar*, Scalar*);
|
||||
static const functype func[16] = {
|
||||
// array index: NOTR | (UP << 2) | (NUNIT << 3)
|
||||
(internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0, false,ColMajor>::run),
|
||||
// array index: TR | (UP << 2) | (NUNIT << 3)
|
||||
(internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0, false,RowMajor>::run),
|
||||
// array index: ADJ | (UP << 2) | (NUNIT << 3)
|
||||
(internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0, Conj, RowMajor>::run),
|
||||
0,
|
||||
// array index: NOTR | (LO << 2) | (NUNIT << 3)
|
||||
(internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0, false,ColMajor>::run),
|
||||
// array index: TR | (LO << 2) | (NUNIT << 3)
|
||||
(internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0, false,RowMajor>::run),
|
||||
// array index: ADJ | (LO << 2) | (NUNIT << 3)
|
||||
(internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0, Conj, RowMajor>::run),
|
||||
0,
|
||||
// array index: NOTR | (UP << 2) | (UNIT << 3)
|
||||
(internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,false,ColMajor>::run),
|
||||
// array index: TR | (UP << 2) | (UNIT << 3)
|
||||
(internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,false,RowMajor>::run),
|
||||
// array index: ADJ | (UP << 2) | (UNIT << 3)
|
||||
(internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,Conj, RowMajor>::run),
|
||||
0,
|
||||
// array index: NOTR | (LO << 2) | (UNIT << 3)
|
||||
(internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,false,ColMajor>::run),
|
||||
// array index: TR | (LO << 2) | (UNIT << 3)
|
||||
(internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,false,RowMajor>::run),
|
||||
// array index: ADJ | (LO << 2) | (UNIT << 3)
|
||||
(internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,Conj, RowMajor>::run),
|
||||
0
|
||||
};
|
||||
|
||||
Scalar* ap = reinterpret_cast<Scalar*>(pap);
|
||||
Scalar* x = reinterpret_cast<Scalar*>(px);
|
||||
|
||||
int info = 0;
|
||||
if(UPLO(*uplo)==INVALID) info = 1;
|
||||
else if(OP(*opa)==INVALID) info = 2;
|
||||
else if(DIAG(*diag)==INVALID) info = 3;
|
||||
else if(*n<0) info = 4;
|
||||
else if(*incx==0) info = 7;
|
||||
if(info)
|
||||
return xerbla_(SCALAR_SUFFIX_UP"TPSV ",&info,6);
|
||||
|
||||
Scalar* actual_x = get_compact_vector(x,*n,*incx);
|
||||
|
||||
int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3);
|
||||
func[code](*n, ap, actual_x);
|
||||
|
||||
if(actual_x!=x) delete[] copy_back(actual_x,x,*n,*incx);
|
||||
|
||||
return 1;
|
||||
}
|
||||
306
cs440-acg/ext/eigen/blas/level2_real_impl.h
Normal file
306
cs440-acg/ext/eigen/blas/level2_real_impl.h
Normal file
@@ -0,0 +1,306 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#include "common.h"
|
||||
|
||||
// y = alpha*A*x + beta*y
|
||||
int EIGEN_BLAS_FUNC(symv) (const char *uplo, const int *n, const RealScalar *palpha, const RealScalar *pa, const int *lda,
|
||||
const RealScalar *px, const int *incx, const RealScalar *pbeta, RealScalar *py, const int *incy)
|
||||
{
|
||||
typedef void (*functype)(int, const Scalar*, int, const Scalar*, Scalar*, Scalar);
|
||||
static const functype func[2] = {
|
||||
// array index: UP
|
||||
(internal::selfadjoint_matrix_vector_product<Scalar,int,ColMajor,Upper,false,false>::run),
|
||||
// array index: LO
|
||||
(internal::selfadjoint_matrix_vector_product<Scalar,int,ColMajor,Lower,false,false>::run),
|
||||
};
|
||||
|
||||
const Scalar* a = reinterpret_cast<const Scalar*>(pa);
|
||||
const Scalar* x = reinterpret_cast<const Scalar*>(px);
|
||||
Scalar* y = reinterpret_cast<Scalar*>(py);
|
||||
Scalar alpha = *reinterpret_cast<const Scalar*>(palpha);
|
||||
Scalar beta = *reinterpret_cast<const Scalar*>(pbeta);
|
||||
|
||||
// check arguments
|
||||
int info = 0;
|
||||
if(UPLO(*uplo)==INVALID) info = 1;
|
||||
else if(*n<0) info = 2;
|
||||
else if(*lda<std::max(1,*n)) info = 5;
|
||||
else if(*incx==0) info = 7;
|
||||
else if(*incy==0) info = 10;
|
||||
if(info)
|
||||
return xerbla_(SCALAR_SUFFIX_UP"SYMV ",&info,6);
|
||||
|
||||
if(*n==0)
|
||||
return 0;
|
||||
|
||||
const Scalar* actual_x = get_compact_vector(x,*n,*incx);
|
||||
Scalar* actual_y = get_compact_vector(y,*n,*incy);
|
||||
|
||||
if(beta!=Scalar(1))
|
||||
{
|
||||
if(beta==Scalar(0)) make_vector(actual_y, *n).setZero();
|
||||
else make_vector(actual_y, *n) *= beta;
|
||||
}
|
||||
|
||||
int code = UPLO(*uplo);
|
||||
if(code>=2 || func[code]==0)
|
||||
return 0;
|
||||
|
||||
func[code](*n, a, *lda, actual_x, actual_y, alpha);
|
||||
|
||||
if(actual_x!=x) delete[] actual_x;
|
||||
if(actual_y!=y) delete[] copy_back(actual_y,y,*n,*incy);
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
// C := alpha*x*x' + C
|
||||
int EIGEN_BLAS_FUNC(syr)(const char *uplo, const int *n, const RealScalar *palpha, const RealScalar *px, const int *incx, RealScalar *pc, const int *ldc)
|
||||
{
|
||||
|
||||
typedef void (*functype)(int, Scalar*, int, const Scalar*, const Scalar*, const Scalar&);
|
||||
static const functype func[2] = {
|
||||
// array index: UP
|
||||
(selfadjoint_rank1_update<Scalar,int,ColMajor,Upper,false,Conj>::run),
|
||||
// array index: LO
|
||||
(selfadjoint_rank1_update<Scalar,int,ColMajor,Lower,false,Conj>::run),
|
||||
};
|
||||
|
||||
const Scalar* x = reinterpret_cast<const Scalar*>(px);
|
||||
Scalar* c = reinterpret_cast<Scalar*>(pc);
|
||||
Scalar alpha = *reinterpret_cast<const Scalar*>(palpha);
|
||||
|
||||
int info = 0;
|
||||
if(UPLO(*uplo)==INVALID) info = 1;
|
||||
else if(*n<0) info = 2;
|
||||
else if(*incx==0) info = 5;
|
||||
else if(*ldc<std::max(1,*n)) info = 7;
|
||||
if(info)
|
||||
return xerbla_(SCALAR_SUFFIX_UP"SYR ",&info,6);
|
||||
|
||||
if(*n==0 || alpha==Scalar(0)) return 1;
|
||||
|
||||
// if the increment is not 1, let's copy it to a temporary vector to enable vectorization
|
||||
const Scalar* x_cpy = get_compact_vector(x,*n,*incx);
|
||||
|
||||
int code = UPLO(*uplo);
|
||||
if(code>=2 || func[code]==0)
|
||||
return 0;
|
||||
|
||||
func[code](*n, c, *ldc, x_cpy, x_cpy, alpha);
|
||||
|
||||
if(x_cpy!=x) delete[] x_cpy;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
// C := alpha*x*y' + alpha*y*x' + C
|
||||
int EIGEN_BLAS_FUNC(syr2)(const char *uplo, const int *n, const RealScalar *palpha, const RealScalar *px, const int *incx, const RealScalar *py, const int *incy, RealScalar *pc, const int *ldc)
|
||||
{
|
||||
typedef void (*functype)(int, Scalar*, int, const Scalar*, const Scalar*, Scalar);
|
||||
static const functype func[2] = {
|
||||
// array index: UP
|
||||
(internal::rank2_update_selector<Scalar,int,Upper>::run),
|
||||
// array index: LO
|
||||
(internal::rank2_update_selector<Scalar,int,Lower>::run),
|
||||
};
|
||||
|
||||
const Scalar* x = reinterpret_cast<const Scalar*>(px);
|
||||
const Scalar* y = reinterpret_cast<const Scalar*>(py);
|
||||
Scalar* c = reinterpret_cast<Scalar*>(pc);
|
||||
Scalar alpha = *reinterpret_cast<const Scalar*>(palpha);
|
||||
|
||||
int info = 0;
|
||||
if(UPLO(*uplo)==INVALID) info = 1;
|
||||
else if(*n<0) info = 2;
|
||||
else if(*incx==0) info = 5;
|
||||
else if(*incy==0) info = 7;
|
||||
else if(*ldc<std::max(1,*n)) info = 9;
|
||||
if(info)
|
||||
return xerbla_(SCALAR_SUFFIX_UP"SYR2 ",&info,6);
|
||||
|
||||
if(alpha==Scalar(0))
|
||||
return 1;
|
||||
|
||||
const Scalar* x_cpy = get_compact_vector(x,*n,*incx);
|
||||
const Scalar* y_cpy = get_compact_vector(y,*n,*incy);
|
||||
|
||||
int code = UPLO(*uplo);
|
||||
if(code>=2 || func[code]==0)
|
||||
return 0;
|
||||
|
||||
func[code](*n, c, *ldc, x_cpy, y_cpy, alpha);
|
||||
|
||||
if(x_cpy!=x) delete[] x_cpy;
|
||||
if(y_cpy!=y) delete[] y_cpy;
|
||||
|
||||
// int code = UPLO(*uplo);
|
||||
// if(code>=2 || func[code]==0)
|
||||
// return 0;
|
||||
|
||||
// func[code](*n, a, *inca, b, *incb, c, *ldc, alpha);
|
||||
return 1;
|
||||
}
|
||||
|
||||
/** DSBMV performs the matrix-vector operation
|
||||
*
|
||||
* y := alpha*A*x + beta*y,
|
||||
*
|
||||
* where alpha and beta are scalars, x and y are n element vectors and
|
||||
* A is an n by n symmetric band matrix, with k super-diagonals.
|
||||
*/
|
||||
// int EIGEN_BLAS_FUNC(sbmv)( char *uplo, int *n, int *k, RealScalar *alpha, RealScalar *a, int *lda,
|
||||
// RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
|
||||
// {
|
||||
// return 1;
|
||||
// }
|
||||
|
||||
|
||||
/** DSPMV performs the matrix-vector operation
|
||||
*
|
||||
* y := alpha*A*x + beta*y,
|
||||
*
|
||||
* where alpha and beta are scalars, x and y are n element vectors and
|
||||
* A is an n by n symmetric matrix, supplied in packed form.
|
||||
*
|
||||
*/
|
||||
// int EIGEN_BLAS_FUNC(spmv)(char *uplo, int *n, RealScalar *alpha, RealScalar *ap, RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
|
||||
// {
|
||||
// return 1;
|
||||
// }
|
||||
|
||||
/** DSPR performs the symmetric rank 1 operation
|
||||
*
|
||||
* A := alpha*x*x' + A,
|
||||
*
|
||||
* where alpha is a real scalar, x is an n element vector and A is an
|
||||
* n by n symmetric matrix, supplied in packed form.
|
||||
*/
|
||||
int EIGEN_BLAS_FUNC(spr)(char *uplo, int *n, Scalar *palpha, Scalar *px, int *incx, Scalar *pap)
|
||||
{
|
||||
typedef void (*functype)(int, Scalar*, const Scalar*, Scalar);
|
||||
static const functype func[2] = {
|
||||
// array index: UP
|
||||
(internal::selfadjoint_packed_rank1_update<Scalar,int,ColMajor,Upper,false,false>::run),
|
||||
// array index: LO
|
||||
(internal::selfadjoint_packed_rank1_update<Scalar,int,ColMajor,Lower,false,false>::run),
|
||||
};
|
||||
|
||||
Scalar* x = reinterpret_cast<Scalar*>(px);
|
||||
Scalar* ap = reinterpret_cast<Scalar*>(pap);
|
||||
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
||||
|
||||
int info = 0;
|
||||
if(UPLO(*uplo)==INVALID) info = 1;
|
||||
else if(*n<0) info = 2;
|
||||
else if(*incx==0) info = 5;
|
||||
if(info)
|
||||
return xerbla_(SCALAR_SUFFIX_UP"SPR ",&info,6);
|
||||
|
||||
if(alpha==Scalar(0))
|
||||
return 1;
|
||||
|
||||
Scalar* x_cpy = get_compact_vector(x, *n, *incx);
|
||||
|
||||
int code = UPLO(*uplo);
|
||||
if(code>=2 || func[code]==0)
|
||||
return 0;
|
||||
|
||||
func[code](*n, ap, x_cpy, alpha);
|
||||
|
||||
if(x_cpy!=x) delete[] x_cpy;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
/** DSPR2 performs the symmetric rank 2 operation
|
||||
*
|
||||
* A := alpha*x*y' + alpha*y*x' + A,
|
||||
*
|
||||
* where alpha is a scalar, x and y are n element vectors and A is an
|
||||
* n by n symmetric matrix, supplied in packed form.
|
||||
*/
|
||||
int EIGEN_BLAS_FUNC(spr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pap)
|
||||
{
|
||||
typedef void (*functype)(int, Scalar*, const Scalar*, const Scalar*, Scalar);
|
||||
static const functype func[2] = {
|
||||
// array index: UP
|
||||
(internal::packed_rank2_update_selector<Scalar,int,Upper>::run),
|
||||
// array index: LO
|
||||
(internal::packed_rank2_update_selector<Scalar,int,Lower>::run),
|
||||
};
|
||||
|
||||
Scalar* x = reinterpret_cast<Scalar*>(px);
|
||||
Scalar* y = reinterpret_cast<Scalar*>(py);
|
||||
Scalar* ap = reinterpret_cast<Scalar*>(pap);
|
||||
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
||||
|
||||
int info = 0;
|
||||
if(UPLO(*uplo)==INVALID) info = 1;
|
||||
else if(*n<0) info = 2;
|
||||
else if(*incx==0) info = 5;
|
||||
else if(*incy==0) info = 7;
|
||||
if(info)
|
||||
return xerbla_(SCALAR_SUFFIX_UP"SPR2 ",&info,6);
|
||||
|
||||
if(alpha==Scalar(0))
|
||||
return 1;
|
||||
|
||||
Scalar* x_cpy = get_compact_vector(x, *n, *incx);
|
||||
Scalar* y_cpy = get_compact_vector(y, *n, *incy);
|
||||
|
||||
int code = UPLO(*uplo);
|
||||
if(code>=2 || func[code]==0)
|
||||
return 0;
|
||||
|
||||
func[code](*n, ap, x_cpy, y_cpy, alpha);
|
||||
|
||||
if(x_cpy!=x) delete[] x_cpy;
|
||||
if(y_cpy!=y) delete[] y_cpy;
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
/** DGER performs the rank 1 operation
|
||||
*
|
||||
* A := alpha*x*y' + A,
|
||||
*
|
||||
* where alpha is a scalar, x is an m element vector, y is an n element
|
||||
* vector and A is an m by n matrix.
|
||||
*/
|
||||
int EIGEN_BLAS_FUNC(ger)(int *m, int *n, Scalar *palpha, Scalar *px, int *incx, Scalar *py, int *incy, Scalar *pa, int *lda)
|
||||
{
|
||||
Scalar* x = reinterpret_cast<Scalar*>(px);
|
||||
Scalar* y = reinterpret_cast<Scalar*>(py);
|
||||
Scalar* a = reinterpret_cast<Scalar*>(pa);
|
||||
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
|
||||
|
||||
int info = 0;
|
||||
if(*m<0) info = 1;
|
||||
else if(*n<0) info = 2;
|
||||
else if(*incx==0) info = 5;
|
||||
else if(*incy==0) info = 7;
|
||||
else if(*lda<std::max(1,*m)) info = 9;
|
||||
if(info)
|
||||
return xerbla_(SCALAR_SUFFIX_UP"GER ",&info,6);
|
||||
|
||||
if(alpha==Scalar(0))
|
||||
return 1;
|
||||
|
||||
Scalar* x_cpy = get_compact_vector(x,*m,*incx);
|
||||
Scalar* y_cpy = get_compact_vector(y,*n,*incy);
|
||||
|
||||
internal::general_rank1_update<Scalar,int,ColMajor,false,false>::run(*m, *n, a, *lda, x_cpy, y_cpy, alpha);
|
||||
|
||||
if(x_cpy!=x) delete[] x_cpy;
|
||||
if(y_cpy!=y) delete[] y_cpy;
|
||||
|
||||
return 1;
|
||||
}
|
||||
702
cs440-acg/ext/eigen/blas/level3_impl.h
Normal file
702
cs440-acg/ext/eigen/blas/level3_impl.h
Normal file
@@ -0,0 +1,702 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
#include <iostream>
|
||||
#include "common.h"
|
||||
|
||||
int EIGEN_BLAS_FUNC(gemm)(const char *opa, const char *opb, const int *m, const int *n, const int *k, const RealScalar *palpha,
|
||||
const RealScalar *pa, const int *lda, const RealScalar *pb, const int *ldb, const RealScalar *pbeta, RealScalar *pc, const int *ldc)
|
||||
{
|
||||
// std::cerr << "in gemm " << *opa << " " << *opb << " " << *m << " " << *n << " " << *k << " " << *lda << " " << *ldb << " " << *ldc << " " << *palpha << " " << *pbeta << "\n";
|
||||
typedef void (*functype)(DenseIndex, DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex, DenseIndex, Scalar, internal::level3_blocking<Scalar,Scalar>&, Eigen::internal::GemmParallelInfo<DenseIndex>*);
|
||||
static const functype func[12] = {
|
||||
// array index: NOTR | (NOTR << 2)
|
||||
(internal::general_matrix_matrix_product<DenseIndex,Scalar,ColMajor,false,Scalar,ColMajor,false,ColMajor,1>::run),
|
||||
// array index: TR | (NOTR << 2)
|
||||
(internal::general_matrix_matrix_product<DenseIndex,Scalar,RowMajor,false,Scalar,ColMajor,false,ColMajor,1>::run),
|
||||
// array index: ADJ | (NOTR << 2)
|
||||
(internal::general_matrix_matrix_product<DenseIndex,Scalar,RowMajor,Conj, Scalar,ColMajor,false,ColMajor,1>::run),
|
||||
0,
|
||||
// array index: NOTR | (TR << 2)
|
||||
(internal::general_matrix_matrix_product<DenseIndex,Scalar,ColMajor,false,Scalar,RowMajor,false,ColMajor,1>::run),
|
||||
// array index: TR | (TR << 2)
|
||||
(internal::general_matrix_matrix_product<DenseIndex,Scalar,RowMajor,false,Scalar,RowMajor,false,ColMajor,1>::run),
|
||||
// array index: ADJ | (TR << 2)
|
||||
(internal::general_matrix_matrix_product<DenseIndex,Scalar,RowMajor,Conj, Scalar,RowMajor,false,ColMajor,1>::run),
|
||||
0,
|
||||
// array index: NOTR | (ADJ << 2)
|
||||
(internal::general_matrix_matrix_product<DenseIndex,Scalar,ColMajor,false,Scalar,RowMajor,Conj, ColMajor,1>::run),
|
||||
// array index: TR | (ADJ << 2)
|
||||
(internal::general_matrix_matrix_product<DenseIndex,Scalar,RowMajor,false,Scalar,RowMajor,Conj, ColMajor,1>::run),
|
||||
// array index: ADJ | (ADJ << 2)
|
||||
(internal::general_matrix_matrix_product<DenseIndex,Scalar,RowMajor,Conj, Scalar,RowMajor,Conj, ColMajor,1>::run),
|
||||
0
|
||||
};
|
||||
|
||||
const Scalar* a = reinterpret_cast<const Scalar*>(pa);
|
||||
const Scalar* b = reinterpret_cast<const Scalar*>(pb);
|
||||
Scalar* c = reinterpret_cast<Scalar*>(pc);
|
||||
Scalar alpha = *reinterpret_cast<const Scalar*>(palpha);
|
||||
Scalar beta = *reinterpret_cast<const Scalar*>(pbeta);
|
||||
|
||||
int info = 0;
|
||||
if(OP(*opa)==INVALID) info = 1;
|
||||
else if(OP(*opb)==INVALID) info = 2;
|
||||
else if(*m<0) info = 3;
|
||||
else if(*n<0) info = 4;
|
||||
else if(*k<0) info = 5;
|
||||
else if(*lda<std::max(1,(OP(*opa)==NOTR)?*m:*k)) info = 8;
|
||||
else if(*ldb<std::max(1,(OP(*opb)==NOTR)?*k:*n)) info = 10;
|
||||
else if(*ldc<std::max(1,*m)) info = 13;
|
||||
if(info)
|
||||
return xerbla_(SCALAR_SUFFIX_UP"GEMM ",&info,6);
|
||||
|
||||
if (*m == 0 || *n == 0)
|
||||
return 0;
|
||||
|
||||
if(beta!=Scalar(1))
|
||||
{
|
||||
if(beta==Scalar(0)) matrix(c, *m, *n, *ldc).setZero();
|
||||
else matrix(c, *m, *n, *ldc) *= beta;
|
||||
}
|
||||
|
||||
if(*k == 0)
|
||||
return 0;
|
||||
|
||||
internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic> blocking(*m,*n,*k,1,true);
|
||||
|
||||
int code = OP(*opa) | (OP(*opb) << 2);
|
||||
func[code](*m, *n, *k, a, *lda, b, *ldb, c, 1, *ldc, alpha, blocking, 0);
|
||||
return 0;
|
||||
}
|
||||
|
||||
int EIGEN_BLAS_FUNC(trsm)(const char *side, const char *uplo, const char *opa, const char *diag, const int *m, const int *n,
|
||||
const RealScalar *palpha, const RealScalar *pa, const int *lda, RealScalar *pb, const int *ldb)
|
||||
{
|
||||
// std::cerr << "in trsm " << *side << " " << *uplo << " " << *opa << " " << *diag << " " << *m << "," << *n << " " << *palpha << " " << *lda << " " << *ldb<< "\n";
|
||||
typedef void (*functype)(DenseIndex, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex, DenseIndex, internal::level3_blocking<Scalar,Scalar>&);
|
||||
static const functype func[32] = {
|
||||
// array index: NOTR | (LEFT << 2) | (UP << 3) | (NUNIT << 4)
|
||||
(internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Upper|0, false,ColMajor,ColMajor,1>::run),
|
||||
// array index: TR | (LEFT << 2) | (UP << 3) | (NUNIT << 4)
|
||||
(internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Lower|0, false,RowMajor,ColMajor,1>::run),
|
||||
// array index: ADJ | (LEFT << 2) | (UP << 3) | (NUNIT << 4)
|
||||
(internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Lower|0, Conj, RowMajor,ColMajor,1>::run),\
|
||||
0,
|
||||
// array index: NOTR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)
|
||||
(internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Upper|0, false,ColMajor,ColMajor,1>::run),
|
||||
// array index: TR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)
|
||||
(internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Lower|0, false,RowMajor,ColMajor,1>::run),
|
||||
// array index: ADJ | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)
|
||||
(internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Lower|0, Conj, RowMajor,ColMajor,1>::run),
|
||||
0,
|
||||
// array index: NOTR | (LEFT << 2) | (LO << 3) | (NUNIT << 4)
|
||||
(internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Lower|0, false,ColMajor,ColMajor,1>::run),
|
||||
// array index: TR | (LEFT << 2) | (LO << 3) | (NUNIT << 4)
|
||||
(internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Upper|0, false,RowMajor,ColMajor,1>::run),
|
||||
// array index: ADJ | (LEFT << 2) | (LO << 3) | (NUNIT << 4)
|
||||
(internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Upper|0, Conj, RowMajor,ColMajor,1>::run),
|
||||
0,
|
||||
// array index: NOTR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)
|
||||
(internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Lower|0, false,ColMajor,ColMajor,1>::run),
|
||||
// array index: TR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)
|
||||
(internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Upper|0, false,RowMajor,ColMajor,1>::run),
|
||||
// array index: ADJ | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)
|
||||
(internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Upper|0, Conj, RowMajor,ColMajor,1>::run),
|
||||
0,
|
||||
// array index: NOTR | (LEFT << 2) | (UP << 3) | (UNIT << 4)
|
||||
(internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Upper|UnitDiag,false,ColMajor,ColMajor,1>::run),
|
||||
// array index: TR | (LEFT << 2) | (UP << 3) | (UNIT << 4)
|
||||
(internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Lower|UnitDiag,false,RowMajor,ColMajor,1>::run),
|
||||
// array index: ADJ | (LEFT << 2) | (UP << 3) | (UNIT << 4)
|
||||
(internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Lower|UnitDiag,Conj, RowMajor,ColMajor,1>::run),
|
||||
0,
|
||||
// array index: NOTR | (RIGHT << 2) | (UP << 3) | (UNIT << 4)
|
||||
(internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Upper|UnitDiag,false,ColMajor,ColMajor,1>::run),
|
||||
// array index: TR | (RIGHT << 2) | (UP << 3) | (UNIT << 4)
|
||||
(internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Lower|UnitDiag,false,RowMajor,ColMajor,1>::run),
|
||||
// array index: ADJ | (RIGHT << 2) | (UP << 3) | (UNIT << 4)
|
||||
(internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Lower|UnitDiag,Conj, RowMajor,ColMajor,1>::run),
|
||||
0,
|
||||
// array index: NOTR | (LEFT << 2) | (LO << 3) | (UNIT << 4)
|
||||
(internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Lower|UnitDiag,false,ColMajor,ColMajor,1>::run),
|
||||
// array index: TR | (LEFT << 2) | (LO << 3) | (UNIT << 4)
|
||||
(internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Upper|UnitDiag,false,RowMajor,ColMajor,1>::run),
|
||||
// array index: ADJ | (LEFT << 2) | (LO << 3) | (UNIT << 4)
|
||||
(internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheLeft, Upper|UnitDiag,Conj, RowMajor,ColMajor,1>::run),
|
||||
0,
|
||||
// array index: NOTR | (RIGHT << 2) | (LO << 3) | (UNIT << 4)
|
||||
(internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Lower|UnitDiag,false,ColMajor,ColMajor,1>::run),
|
||||
// array index: TR | (RIGHT << 2) | (LO << 3) | (UNIT << 4)
|
||||
(internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Upper|UnitDiag,false,RowMajor,ColMajor,1>::run),
|
||||
// array index: ADJ | (RIGHT << 2) | (LO << 3) | (UNIT << 4)
|
||||
(internal::triangular_solve_matrix<Scalar,DenseIndex,OnTheRight,Upper|UnitDiag,Conj, RowMajor,ColMajor,1>::run),
|
||||
0
|
||||
};
|
||||
|
||||
const Scalar* a = reinterpret_cast<const Scalar*>(pa);
|
||||
Scalar* b = reinterpret_cast<Scalar*>(pb);
|
||||
Scalar alpha = *reinterpret_cast<const Scalar*>(palpha);
|
||||
|
||||
int info = 0;
|
||||
if(SIDE(*side)==INVALID) info = 1;
|
||||
else if(UPLO(*uplo)==INVALID) info = 2;
|
||||
else if(OP(*opa)==INVALID) info = 3;
|
||||
else if(DIAG(*diag)==INVALID) info = 4;
|
||||
else if(*m<0) info = 5;
|
||||
else if(*n<0) info = 6;
|
||||
else if(*lda<std::max(1,(SIDE(*side)==LEFT)?*m:*n)) info = 9;
|
||||
else if(*ldb<std::max(1,*m)) info = 11;
|
||||
if(info)
|
||||
return xerbla_(SCALAR_SUFFIX_UP"TRSM ",&info,6);
|
||||
|
||||
if(*m==0 || *n==0)
|
||||
return 0;
|
||||
|
||||
int code = OP(*opa) | (SIDE(*side) << 2) | (UPLO(*uplo) << 3) | (DIAG(*diag) << 4);
|
||||
|
||||
if(SIDE(*side)==LEFT)
|
||||
{
|
||||
internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic,4> blocking(*m,*n,*m,1,false);
|
||||
func[code](*m, *n, a, *lda, b, 1, *ldb, blocking);
|
||||
}
|
||||
else
|
||||
{
|
||||
internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic,4> blocking(*m,*n,*n,1,false);
|
||||
func[code](*n, *m, a, *lda, b, 1, *ldb, blocking);
|
||||
}
|
||||
|
||||
if(alpha!=Scalar(1))
|
||||
matrix(b,*m,*n,*ldb) *= alpha;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
// b = alpha*op(a)*b for side = 'L'or'l'
|
||||
// b = alpha*b*op(a) for side = 'R'or'r'
|
||||
int EIGEN_BLAS_FUNC(trmm)(const char *side, const char *uplo, const char *opa, const char *diag, const int *m, const int *n,
|
||||
const RealScalar *palpha, const RealScalar *pa, const int *lda, RealScalar *pb, const int *ldb)
|
||||
{
|
||||
// std::cerr << "in trmm " << *side << " " << *uplo << " " << *opa << " " << *diag << " " << *m << " " << *n << " " << *lda << " " << *ldb << " " << *palpha << "\n";
|
||||
typedef void (*functype)(DenseIndex, DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex, DenseIndex, const Scalar&, internal::level3_blocking<Scalar,Scalar>&);
|
||||
static const functype func[32] = {
|
||||
// array index: NOTR | (LEFT << 2) | (UP << 3) | (NUNIT << 4)
|
||||
(internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|0, true, ColMajor,false,ColMajor,false,ColMajor,1>::run),
|
||||
// array index: TR | (LEFT << 2) | (UP << 3) | (NUNIT << 4)
|
||||
(internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|0, true, RowMajor,false,ColMajor,false,ColMajor,1>::run),
|
||||
// array index: ADJ | (LEFT << 2) | (UP << 3) | (NUNIT << 4)
|
||||
(internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|0, true, RowMajor,Conj, ColMajor,false,ColMajor,1>::run),
|
||||
0,
|
||||
// array index: NOTR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)
|
||||
(internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|0, false,ColMajor,false,ColMajor,false,ColMajor,1>::run),
|
||||
// array index: TR | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)
|
||||
(internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|0, false,ColMajor,false,RowMajor,false,ColMajor,1>::run),
|
||||
// array index: ADJ | (RIGHT << 2) | (UP << 3) | (NUNIT << 4)
|
||||
(internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|0, false,ColMajor,false,RowMajor,Conj, ColMajor,1>::run),
|
||||
0,
|
||||
// array index: NOTR | (LEFT << 2) | (LO << 3) | (NUNIT << 4)
|
||||
(internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|0, true, ColMajor,false,ColMajor,false,ColMajor,1>::run),
|
||||
// array index: TR | (LEFT << 2) | (LO << 3) | (NUNIT << 4)
|
||||
(internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|0, true, RowMajor,false,ColMajor,false,ColMajor,1>::run),
|
||||
// array index: ADJ | (LEFT << 2) | (LO << 3) | (NUNIT << 4)
|
||||
(internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|0, true, RowMajor,Conj, ColMajor,false,ColMajor,1>::run),
|
||||
0,
|
||||
// array index: NOTR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)
|
||||
(internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|0, false,ColMajor,false,ColMajor,false,ColMajor,1>::run),
|
||||
// array index: TR | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)
|
||||
(internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|0, false,ColMajor,false,RowMajor,false,ColMajor,1>::run),
|
||||
// array index: ADJ | (RIGHT << 2) | (LO << 3) | (NUNIT << 4)
|
||||
(internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|0, false,ColMajor,false,RowMajor,Conj, ColMajor,1>::run),
|
||||
0,
|
||||
// array index: NOTR | (LEFT << 2) | (UP << 3) | (UNIT << 4)
|
||||
(internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|UnitDiag,true, ColMajor,false,ColMajor,false,ColMajor,1>::run),
|
||||
// array index: TR | (LEFT << 2) | (UP << 3) | (UNIT << 4)
|
||||
(internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|UnitDiag,true, RowMajor,false,ColMajor,false,ColMajor,1>::run),
|
||||
// array index: ADJ | (LEFT << 2) | (UP << 3) | (UNIT << 4)
|
||||
(internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|UnitDiag,true, RowMajor,Conj, ColMajor,false,ColMajor,1>::run),
|
||||
0,
|
||||
// array index: NOTR | (RIGHT << 2) | (UP << 3) | (UNIT << 4)
|
||||
(internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|UnitDiag,false,ColMajor,false,ColMajor,false,ColMajor,1>::run),
|
||||
// array index: TR | (RIGHT << 2) | (UP << 3) | (UNIT << 4)
|
||||
(internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|UnitDiag,false,ColMajor,false,RowMajor,false,ColMajor,1>::run),
|
||||
// array index: ADJ | (RIGHT << 2) | (UP << 3) | (UNIT << 4)
|
||||
(internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|UnitDiag,false,ColMajor,false,RowMajor,Conj, ColMajor,1>::run),
|
||||
0,
|
||||
// array index: NOTR | (LEFT << 2) | (LO << 3) | (UNIT << 4)
|
||||
(internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|UnitDiag,true, ColMajor,false,ColMajor,false,ColMajor,1>::run),
|
||||
// array index: TR | (LEFT << 2) | (LO << 3) | (UNIT << 4)
|
||||
(internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|UnitDiag,true, RowMajor,false,ColMajor,false,ColMajor,1>::run),
|
||||
// array index: ADJ | (LEFT << 2) | (LO << 3) | (UNIT << 4)
|
||||
(internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|UnitDiag,true, RowMajor,Conj, ColMajor,false,ColMajor,1>::run),
|
||||
0,
|
||||
// array index: NOTR | (RIGHT << 2) | (LO << 3) | (UNIT << 4)
|
||||
(internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Lower|UnitDiag,false,ColMajor,false,ColMajor,false,ColMajor,1>::run),
|
||||
// array index: TR | (RIGHT << 2) | (LO << 3) | (UNIT << 4)
|
||||
(internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|UnitDiag,false,ColMajor,false,RowMajor,false,ColMajor,1>::run),
|
||||
// array index: ADJ | (RIGHT << 2) | (LO << 3) | (UNIT << 4)
|
||||
(internal::product_triangular_matrix_matrix<Scalar,DenseIndex,Upper|UnitDiag,false,ColMajor,false,RowMajor,Conj, ColMajor,1>::run),
|
||||
0
|
||||
};
|
||||
|
||||
const Scalar* a = reinterpret_cast<const Scalar*>(pa);
|
||||
Scalar* b = reinterpret_cast<Scalar*>(pb);
|
||||
Scalar alpha = *reinterpret_cast<const Scalar*>(palpha);
|
||||
|
||||
int info = 0;
|
||||
if(SIDE(*side)==INVALID) info = 1;
|
||||
else if(UPLO(*uplo)==INVALID) info = 2;
|
||||
else if(OP(*opa)==INVALID) info = 3;
|
||||
else if(DIAG(*diag)==INVALID) info = 4;
|
||||
else if(*m<0) info = 5;
|
||||
else if(*n<0) info = 6;
|
||||
else if(*lda<std::max(1,(SIDE(*side)==LEFT)?*m:*n)) info = 9;
|
||||
else if(*ldb<std::max(1,*m)) info = 11;
|
||||
if(info)
|
||||
return xerbla_(SCALAR_SUFFIX_UP"TRMM ",&info,6);
|
||||
|
||||
int code = OP(*opa) | (SIDE(*side) << 2) | (UPLO(*uplo) << 3) | (DIAG(*diag) << 4);
|
||||
|
||||
if(*m==0 || *n==0)
|
||||
return 1;
|
||||
|
||||
// FIXME find a way to avoid this copy
|
||||
Matrix<Scalar,Dynamic,Dynamic,ColMajor> tmp = matrix(b,*m,*n,*ldb);
|
||||
matrix(b,*m,*n,*ldb).setZero();
|
||||
|
||||
if(SIDE(*side)==LEFT)
|
||||
{
|
||||
internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic,4> blocking(*m,*n,*m,1,false);
|
||||
func[code](*m, *n, *m, a, *lda, tmp.data(), tmp.outerStride(), b, 1, *ldb, alpha, blocking);
|
||||
}
|
||||
else
|
||||
{
|
||||
internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic,4> blocking(*m,*n,*n,1,false);
|
||||
func[code](*m, *n, *n, tmp.data(), tmp.outerStride(), a, *lda, b, 1, *ldb, alpha, blocking);
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
// c = alpha*a*b + beta*c for side = 'L'or'l'
|
||||
// c = alpha*b*a + beta*c for side = 'R'or'r
|
||||
int EIGEN_BLAS_FUNC(symm)(const char *side, const char *uplo, const int *m, const int *n, const RealScalar *palpha,
|
||||
const RealScalar *pa, const int *lda, const RealScalar *pb, const int *ldb, const RealScalar *pbeta, RealScalar *pc, const int *ldc)
|
||||
{
|
||||
// std::cerr << "in symm " << *side << " " << *uplo << " " << *m << "x" << *n << " lda:" << *lda << " ldb:" << *ldb << " ldc:" << *ldc << " alpha:" << *palpha << " beta:" << *pbeta << "\n";
|
||||
const Scalar* a = reinterpret_cast<const Scalar*>(pa);
|
||||
const Scalar* b = reinterpret_cast<const Scalar*>(pb);
|
||||
Scalar* c = reinterpret_cast<Scalar*>(pc);
|
||||
Scalar alpha = *reinterpret_cast<const Scalar*>(palpha);
|
||||
Scalar beta = *reinterpret_cast<const Scalar*>(pbeta);
|
||||
|
||||
int info = 0;
|
||||
if(SIDE(*side)==INVALID) info = 1;
|
||||
else if(UPLO(*uplo)==INVALID) info = 2;
|
||||
else if(*m<0) info = 3;
|
||||
else if(*n<0) info = 4;
|
||||
else if(*lda<std::max(1,(SIDE(*side)==LEFT)?*m:*n)) info = 7;
|
||||
else if(*ldb<std::max(1,*m)) info = 9;
|
||||
else if(*ldc<std::max(1,*m)) info = 12;
|
||||
if(info)
|
||||
return xerbla_(SCALAR_SUFFIX_UP"SYMM ",&info,6);
|
||||
|
||||
if(beta!=Scalar(1))
|
||||
{
|
||||
if(beta==Scalar(0)) matrix(c, *m, *n, *ldc).setZero();
|
||||
else matrix(c, *m, *n, *ldc) *= beta;
|
||||
}
|
||||
|
||||
if(*m==0 || *n==0)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
|
||||
int size = (SIDE(*side)==LEFT) ? (*m) : (*n);
|
||||
#if ISCOMPLEX
|
||||
// FIXME add support for symmetric complex matrix
|
||||
Matrix<Scalar,Dynamic,Dynamic,ColMajor> matA(size,size);
|
||||
if(UPLO(*uplo)==UP)
|
||||
{
|
||||
matA.triangularView<Upper>() = matrix(a,size,size,*lda);
|
||||
matA.triangularView<Lower>() = matrix(a,size,size,*lda).transpose();
|
||||
}
|
||||
else if(UPLO(*uplo)==LO)
|
||||
{
|
||||
matA.triangularView<Lower>() = matrix(a,size,size,*lda);
|
||||
matA.triangularView<Upper>() = matrix(a,size,size,*lda).transpose();
|
||||
}
|
||||
if(SIDE(*side)==LEFT)
|
||||
matrix(c, *m, *n, *ldc) += alpha * matA * matrix(b, *m, *n, *ldb);
|
||||
else if(SIDE(*side)==RIGHT)
|
||||
matrix(c, *m, *n, *ldc) += alpha * matrix(b, *m, *n, *ldb) * matA;
|
||||
#else
|
||||
internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic> blocking(*m,*n,size,1,false);
|
||||
|
||||
if(SIDE(*side)==LEFT)
|
||||
if(UPLO(*uplo)==UP) internal::product_selfadjoint_matrix<Scalar, DenseIndex, RowMajor,true,false, ColMajor,false,false, ColMajor,1>::run(*m, *n, a, *lda, b, *ldb, c, 1, *ldc, alpha, blocking);
|
||||
else if(UPLO(*uplo)==LO) internal::product_selfadjoint_matrix<Scalar, DenseIndex, ColMajor,true,false, ColMajor,false,false, ColMajor,1>::run(*m, *n, a, *lda, b, *ldb, c, 1, *ldc, alpha, blocking);
|
||||
else return 0;
|
||||
else if(SIDE(*side)==RIGHT)
|
||||
if(UPLO(*uplo)==UP) internal::product_selfadjoint_matrix<Scalar, DenseIndex, ColMajor,false,false, RowMajor,true,false, ColMajor,1>::run(*m, *n, b, *ldb, a, *lda, c, 1, *ldc, alpha, blocking);
|
||||
else if(UPLO(*uplo)==LO) internal::product_selfadjoint_matrix<Scalar, DenseIndex, ColMajor,false,false, ColMajor,true,false, ColMajor,1>::run(*m, *n, b, *ldb, a, *lda, c, 1, *ldc, alpha, blocking);
|
||||
else return 0;
|
||||
else
|
||||
return 0;
|
||||
#endif
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
// c = alpha*a*a' + beta*c for op = 'N'or'n'
|
||||
// c = alpha*a'*a + beta*c for op = 'T'or't','C'or'c'
|
||||
int EIGEN_BLAS_FUNC(syrk)(const char *uplo, const char *op, const int *n, const int *k,
|
||||
const RealScalar *palpha, const RealScalar *pa, const int *lda, const RealScalar *pbeta, RealScalar *pc, const int *ldc)
|
||||
{
|
||||
// std::cerr << "in syrk " << *uplo << " " << *op << " " << *n << " " << *k << " " << *palpha << " " << *lda << " " << *pbeta << " " << *ldc << "\n";
|
||||
#if !ISCOMPLEX
|
||||
typedef void (*functype)(DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex, DenseIndex, const Scalar&, internal::level3_blocking<Scalar,Scalar>&);
|
||||
static const functype func[8] = {
|
||||
// array index: NOTR | (UP << 2)
|
||||
(internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,ColMajor,false,Scalar,RowMajor,ColMajor,Conj, 1, Upper>::run),
|
||||
// array index: TR | (UP << 2)
|
||||
(internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,RowMajor,false,Scalar,ColMajor,ColMajor,Conj, 1, Upper>::run),
|
||||
// array index: ADJ | (UP << 2)
|
||||
(internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,RowMajor,Conj, Scalar,ColMajor,ColMajor,false,1, Upper>::run),
|
||||
0,
|
||||
// array index: NOTR | (LO << 2)
|
||||
(internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,ColMajor,false,Scalar,RowMajor,ColMajor,Conj, 1, Lower>::run),
|
||||
// array index: TR | (LO << 2)
|
||||
(internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,RowMajor,false,Scalar,ColMajor,ColMajor,Conj, 1, Lower>::run),
|
||||
// array index: ADJ | (LO << 2)
|
||||
(internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,RowMajor,Conj, Scalar,ColMajor,ColMajor,false,1, Lower>::run),
|
||||
0
|
||||
};
|
||||
#endif
|
||||
|
||||
const Scalar* a = reinterpret_cast<const Scalar*>(pa);
|
||||
Scalar* c = reinterpret_cast<Scalar*>(pc);
|
||||
Scalar alpha = *reinterpret_cast<const Scalar*>(palpha);
|
||||
Scalar beta = *reinterpret_cast<const Scalar*>(pbeta);
|
||||
|
||||
int info = 0;
|
||||
if(UPLO(*uplo)==INVALID) info = 1;
|
||||
else if(OP(*op)==INVALID || (ISCOMPLEX && OP(*op)==ADJ) ) info = 2;
|
||||
else if(*n<0) info = 3;
|
||||
else if(*k<0) info = 4;
|
||||
else if(*lda<std::max(1,(OP(*op)==NOTR)?*n:*k)) info = 7;
|
||||
else if(*ldc<std::max(1,*n)) info = 10;
|
||||
if(info)
|
||||
return xerbla_(SCALAR_SUFFIX_UP"SYRK ",&info,6);
|
||||
|
||||
if(beta!=Scalar(1))
|
||||
{
|
||||
if(UPLO(*uplo)==UP)
|
||||
if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero();
|
||||
else matrix(c, *n, *n, *ldc).triangularView<Upper>() *= beta;
|
||||
else
|
||||
if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero();
|
||||
else matrix(c, *n, *n, *ldc).triangularView<Lower>() *= beta;
|
||||
}
|
||||
|
||||
if(*n==0 || *k==0)
|
||||
return 0;
|
||||
|
||||
#if ISCOMPLEX
|
||||
// FIXME add support for symmetric complex matrix
|
||||
if(UPLO(*uplo)==UP)
|
||||
{
|
||||
if(OP(*op)==NOTR)
|
||||
matrix(c, *n, *n, *ldc).triangularView<Upper>() += alpha * matrix(a,*n,*k,*lda) * matrix(a,*n,*k,*lda).transpose();
|
||||
else
|
||||
matrix(c, *n, *n, *ldc).triangularView<Upper>() += alpha * matrix(a,*k,*n,*lda).transpose() * matrix(a,*k,*n,*lda);
|
||||
}
|
||||
else
|
||||
{
|
||||
if(OP(*op)==NOTR)
|
||||
matrix(c, *n, *n, *ldc).triangularView<Lower>() += alpha * matrix(a,*n,*k,*lda) * matrix(a,*n,*k,*lda).transpose();
|
||||
else
|
||||
matrix(c, *n, *n, *ldc).triangularView<Lower>() += alpha * matrix(a,*k,*n,*lda).transpose() * matrix(a,*k,*n,*lda);
|
||||
}
|
||||
#else
|
||||
internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic> blocking(*n,*n,*k,1,false);
|
||||
|
||||
int code = OP(*op) | (UPLO(*uplo) << 2);
|
||||
func[code](*n, *k, a, *lda, a, *lda, c, 1, *ldc, alpha, blocking);
|
||||
#endif
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
// c = alpha*a*b' + alpha*b*a' + beta*c for op = 'N'or'n'
|
||||
// c = alpha*a'*b + alpha*b'*a + beta*c for op = 'T'or't'
|
||||
int EIGEN_BLAS_FUNC(syr2k)(const char *uplo, const char *op, const int *n, const int *k, const RealScalar *palpha,
|
||||
const RealScalar *pa, const int *lda, const RealScalar *pb, const int *ldb, const RealScalar *pbeta, RealScalar *pc, const int *ldc)
|
||||
{
|
||||
const Scalar* a = reinterpret_cast<const Scalar*>(pa);
|
||||
const Scalar* b = reinterpret_cast<const Scalar*>(pb);
|
||||
Scalar* c = reinterpret_cast<Scalar*>(pc);
|
||||
Scalar alpha = *reinterpret_cast<const Scalar*>(palpha);
|
||||
Scalar beta = *reinterpret_cast<const Scalar*>(pbeta);
|
||||
|
||||
// std::cerr << "in syr2k " << *uplo << " " << *op << " " << *n << " " << *k << " " << alpha << " " << *lda << " " << *ldb << " " << beta << " " << *ldc << "\n";
|
||||
|
||||
int info = 0;
|
||||
if(UPLO(*uplo)==INVALID) info = 1;
|
||||
else if(OP(*op)==INVALID || (ISCOMPLEX && OP(*op)==ADJ) ) info = 2;
|
||||
else if(*n<0) info = 3;
|
||||
else if(*k<0) info = 4;
|
||||
else if(*lda<std::max(1,(OP(*op)==NOTR)?*n:*k)) info = 7;
|
||||
else if(*ldb<std::max(1,(OP(*op)==NOTR)?*n:*k)) info = 9;
|
||||
else if(*ldc<std::max(1,*n)) info = 12;
|
||||
if(info)
|
||||
return xerbla_(SCALAR_SUFFIX_UP"SYR2K",&info,6);
|
||||
|
||||
if(beta!=Scalar(1))
|
||||
{
|
||||
if(UPLO(*uplo)==UP)
|
||||
if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero();
|
||||
else matrix(c, *n, *n, *ldc).triangularView<Upper>() *= beta;
|
||||
else
|
||||
if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero();
|
||||
else matrix(c, *n, *n, *ldc).triangularView<Lower>() *= beta;
|
||||
}
|
||||
|
||||
if(*k==0)
|
||||
return 1;
|
||||
|
||||
if(OP(*op)==NOTR)
|
||||
{
|
||||
if(UPLO(*uplo)==UP)
|
||||
{
|
||||
matrix(c, *n, *n, *ldc).triangularView<Upper>()
|
||||
+= alpha *matrix(a, *n, *k, *lda)*matrix(b, *n, *k, *ldb).transpose()
|
||||
+ alpha*matrix(b, *n, *k, *ldb)*matrix(a, *n, *k, *lda).transpose();
|
||||
}
|
||||
else if(UPLO(*uplo)==LO)
|
||||
matrix(c, *n, *n, *ldc).triangularView<Lower>()
|
||||
+= alpha*matrix(a, *n, *k, *lda)*matrix(b, *n, *k, *ldb).transpose()
|
||||
+ alpha*matrix(b, *n, *k, *ldb)*matrix(a, *n, *k, *lda).transpose();
|
||||
}
|
||||
else if(OP(*op)==TR || OP(*op)==ADJ)
|
||||
{
|
||||
if(UPLO(*uplo)==UP)
|
||||
matrix(c, *n, *n, *ldc).triangularView<Upper>()
|
||||
+= alpha*matrix(a, *k, *n, *lda).transpose()*matrix(b, *k, *n, *ldb)
|
||||
+ alpha*matrix(b, *k, *n, *ldb).transpose()*matrix(a, *k, *n, *lda);
|
||||
else if(UPLO(*uplo)==LO)
|
||||
matrix(c, *n, *n, *ldc).triangularView<Lower>()
|
||||
+= alpha*matrix(a, *k, *n, *lda).transpose()*matrix(b, *k, *n, *ldb)
|
||||
+ alpha*matrix(b, *k, *n, *ldb).transpose()*matrix(a, *k, *n, *lda);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
#if ISCOMPLEX
|
||||
|
||||
// c = alpha*a*b + beta*c for side = 'L'or'l'
|
||||
// c = alpha*b*a + beta*c for side = 'R'or'r
|
||||
int EIGEN_BLAS_FUNC(hemm)(const char *side, const char *uplo, const int *m, const int *n, const RealScalar *palpha,
|
||||
const RealScalar *pa, const int *lda, const RealScalar *pb, const int *ldb, const RealScalar *pbeta, RealScalar *pc, const int *ldc)
|
||||
{
|
||||
const Scalar* a = reinterpret_cast<const Scalar*>(pa);
|
||||
const Scalar* b = reinterpret_cast<const Scalar*>(pb);
|
||||
Scalar* c = reinterpret_cast<Scalar*>(pc);
|
||||
Scalar alpha = *reinterpret_cast<const Scalar*>(palpha);
|
||||
Scalar beta = *reinterpret_cast<const Scalar*>(pbeta);
|
||||
|
||||
// std::cerr << "in hemm " << *side << " " << *uplo << " " << *m << " " << *n << " " << alpha << " " << *lda << " " << beta << " " << *ldc << "\n";
|
||||
|
||||
int info = 0;
|
||||
if(SIDE(*side)==INVALID) info = 1;
|
||||
else if(UPLO(*uplo)==INVALID) info = 2;
|
||||
else if(*m<0) info = 3;
|
||||
else if(*n<0) info = 4;
|
||||
else if(*lda<std::max(1,(SIDE(*side)==LEFT)?*m:*n)) info = 7;
|
||||
else if(*ldb<std::max(1,*m)) info = 9;
|
||||
else if(*ldc<std::max(1,*m)) info = 12;
|
||||
if(info)
|
||||
return xerbla_(SCALAR_SUFFIX_UP"HEMM ",&info,6);
|
||||
|
||||
if(beta==Scalar(0)) matrix(c, *m, *n, *ldc).setZero();
|
||||
else if(beta!=Scalar(1)) matrix(c, *m, *n, *ldc) *= beta;
|
||||
|
||||
if(*m==0 || *n==0)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
|
||||
int size = (SIDE(*side)==LEFT) ? (*m) : (*n);
|
||||
internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic> blocking(*m,*n,size,1,false);
|
||||
|
||||
if(SIDE(*side)==LEFT)
|
||||
{
|
||||
if(UPLO(*uplo)==UP) internal::product_selfadjoint_matrix<Scalar,DenseIndex,RowMajor,true,Conj, ColMajor,false,false, ColMajor, 1>
|
||||
::run(*m, *n, a, *lda, b, *ldb, c, 1, *ldc, alpha, blocking);
|
||||
else if(UPLO(*uplo)==LO) internal::product_selfadjoint_matrix<Scalar,DenseIndex,ColMajor,true,false, ColMajor,false,false, ColMajor,1>
|
||||
::run(*m, *n, a, *lda, b, *ldb, c, 1, *ldc, alpha, blocking);
|
||||
else return 0;
|
||||
}
|
||||
else if(SIDE(*side)==RIGHT)
|
||||
{
|
||||
if(UPLO(*uplo)==UP) matrix(c,*m,*n,*ldc) += alpha * matrix(b,*m,*n,*ldb) * matrix(a,*n,*n,*lda).selfadjointView<Upper>();/*internal::product_selfadjoint_matrix<Scalar,DenseIndex,ColMajor,false,false, RowMajor,true,Conj, ColMajor, 1>
|
||||
::run(*m, *n, b, *ldb, a, *lda, c, 1, *ldc, alpha, blocking);*/
|
||||
else if(UPLO(*uplo)==LO) internal::product_selfadjoint_matrix<Scalar,DenseIndex,ColMajor,false,false, ColMajor,true,false, ColMajor,1>
|
||||
::run(*m, *n, b, *ldb, a, *lda, c, 1, *ldc, alpha, blocking);
|
||||
else return 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
// c = alpha*a*conj(a') + beta*c for op = 'N'or'n'
|
||||
// c = alpha*conj(a')*a + beta*c for op = 'C'or'c'
|
||||
int EIGEN_BLAS_FUNC(herk)(const char *uplo, const char *op, const int *n, const int *k,
|
||||
const RealScalar *palpha, const RealScalar *pa, const int *lda, const RealScalar *pbeta, RealScalar *pc, const int *ldc)
|
||||
{
|
||||
// std::cerr << "in herk " << *uplo << " " << *op << " " << *n << " " << *k << " " << *palpha << " " << *lda << " " << *pbeta << " " << *ldc << "\n";
|
||||
|
||||
typedef void (*functype)(DenseIndex, DenseIndex, const Scalar *, DenseIndex, const Scalar *, DenseIndex, Scalar *, DenseIndex, DenseIndex, const Scalar&, internal::level3_blocking<Scalar,Scalar>&);
|
||||
static const functype func[8] = {
|
||||
// array index: NOTR | (UP << 2)
|
||||
(internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,ColMajor,false,Scalar,RowMajor,Conj, ColMajor,1,Upper>::run),
|
||||
0,
|
||||
// array index: ADJ | (UP << 2)
|
||||
(internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,RowMajor,Conj, Scalar,ColMajor,false,ColMajor,1,Upper>::run),
|
||||
0,
|
||||
// array index: NOTR | (LO << 2)
|
||||
(internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,ColMajor,false,Scalar,RowMajor,Conj, ColMajor,1,Lower>::run),
|
||||
0,
|
||||
// array index: ADJ | (LO << 2)
|
||||
(internal::general_matrix_matrix_triangular_product<DenseIndex,Scalar,RowMajor,Conj, Scalar,ColMajor,false,ColMajor,1,Lower>::run),
|
||||
0
|
||||
};
|
||||
|
||||
const Scalar* a = reinterpret_cast<const Scalar*>(pa);
|
||||
Scalar* c = reinterpret_cast<Scalar*>(pc);
|
||||
RealScalar alpha = *palpha;
|
||||
RealScalar beta = *pbeta;
|
||||
|
||||
// std::cerr << "in herk " << *uplo << " " << *op << " " << *n << " " << *k << " " << alpha << " " << *lda << " " << beta << " " << *ldc << "\n";
|
||||
|
||||
int info = 0;
|
||||
if(UPLO(*uplo)==INVALID) info = 1;
|
||||
else if((OP(*op)==INVALID) || (OP(*op)==TR)) info = 2;
|
||||
else if(*n<0) info = 3;
|
||||
else if(*k<0) info = 4;
|
||||
else if(*lda<std::max(1,(OP(*op)==NOTR)?*n:*k)) info = 7;
|
||||
else if(*ldc<std::max(1,*n)) info = 10;
|
||||
if(info)
|
||||
return xerbla_(SCALAR_SUFFIX_UP"HERK ",&info,6);
|
||||
|
||||
int code = OP(*op) | (UPLO(*uplo) << 2);
|
||||
|
||||
if(beta!=RealScalar(1))
|
||||
{
|
||||
if(UPLO(*uplo)==UP)
|
||||
if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero();
|
||||
else matrix(c, *n, *n, *ldc).triangularView<StrictlyUpper>() *= beta;
|
||||
else
|
||||
if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero();
|
||||
else matrix(c, *n, *n, *ldc).triangularView<StrictlyLower>() *= beta;
|
||||
|
||||
if(beta!=Scalar(0))
|
||||
{
|
||||
matrix(c, *n, *n, *ldc).diagonal().real() *= beta;
|
||||
matrix(c, *n, *n, *ldc).diagonal().imag().setZero();
|
||||
}
|
||||
}
|
||||
|
||||
if(*k>0 && alpha!=RealScalar(0))
|
||||
{
|
||||
internal::gemm_blocking_space<ColMajor,Scalar,Scalar,Dynamic,Dynamic,Dynamic> blocking(*n,*n,*k,1,false);
|
||||
func[code](*n, *k, a, *lda, a, *lda, c, 1, *ldc, alpha, blocking);
|
||||
matrix(c, *n, *n, *ldc).diagonal().imag().setZero();
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
// c = alpha*a*conj(b') + conj(alpha)*b*conj(a') + beta*c, for op = 'N'or'n'
|
||||
// c = alpha*conj(a')*b + conj(alpha)*conj(b')*a + beta*c, for op = 'C'or'c'
|
||||
int EIGEN_BLAS_FUNC(her2k)(const char *uplo, const char *op, const int *n, const int *k,
|
||||
const RealScalar *palpha, const RealScalar *pa, const int *lda, const RealScalar *pb, const int *ldb, const RealScalar *pbeta, RealScalar *pc, const int *ldc)
|
||||
{
|
||||
const Scalar* a = reinterpret_cast<const Scalar*>(pa);
|
||||
const Scalar* b = reinterpret_cast<const Scalar*>(pb);
|
||||
Scalar* c = reinterpret_cast<Scalar*>(pc);
|
||||
Scalar alpha = *reinterpret_cast<const Scalar*>(palpha);
|
||||
RealScalar beta = *pbeta;
|
||||
|
||||
// std::cerr << "in her2k " << *uplo << " " << *op << " " << *n << " " << *k << " " << alpha << " " << *lda << " " << *ldb << " " << beta << " " << *ldc << "\n";
|
||||
|
||||
int info = 0;
|
||||
if(UPLO(*uplo)==INVALID) info = 1;
|
||||
else if((OP(*op)==INVALID) || (OP(*op)==TR)) info = 2;
|
||||
else if(*n<0) info = 3;
|
||||
else if(*k<0) info = 4;
|
||||
else if(*lda<std::max(1,(OP(*op)==NOTR)?*n:*k)) info = 7;
|
||||
else if(*ldb<std::max(1,(OP(*op)==NOTR)?*n:*k)) info = 9;
|
||||
else if(*ldc<std::max(1,*n)) info = 12;
|
||||
if(info)
|
||||
return xerbla_(SCALAR_SUFFIX_UP"HER2K",&info,6);
|
||||
|
||||
if(beta!=RealScalar(1))
|
||||
{
|
||||
if(UPLO(*uplo)==UP)
|
||||
if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero();
|
||||
else matrix(c, *n, *n, *ldc).triangularView<StrictlyUpper>() *= beta;
|
||||
else
|
||||
if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero();
|
||||
else matrix(c, *n, *n, *ldc).triangularView<StrictlyLower>() *= beta;
|
||||
|
||||
if(beta!=Scalar(0))
|
||||
{
|
||||
matrix(c, *n, *n, *ldc).diagonal().real() *= beta;
|
||||
matrix(c, *n, *n, *ldc).diagonal().imag().setZero();
|
||||
}
|
||||
}
|
||||
else if(*k>0 && alpha!=Scalar(0))
|
||||
matrix(c, *n, *n, *ldc).diagonal().imag().setZero();
|
||||
|
||||
if(*k==0)
|
||||
return 1;
|
||||
|
||||
if(OP(*op)==NOTR)
|
||||
{
|
||||
if(UPLO(*uplo)==UP)
|
||||
{
|
||||
matrix(c, *n, *n, *ldc).triangularView<Upper>()
|
||||
+= alpha *matrix(a, *n, *k, *lda)*matrix(b, *n, *k, *ldb).adjoint()
|
||||
+ numext::conj(alpha)*matrix(b, *n, *k, *ldb)*matrix(a, *n, *k, *lda).adjoint();
|
||||
}
|
||||
else if(UPLO(*uplo)==LO)
|
||||
matrix(c, *n, *n, *ldc).triangularView<Lower>()
|
||||
+= alpha*matrix(a, *n, *k, *lda)*matrix(b, *n, *k, *ldb).adjoint()
|
||||
+ numext::conj(alpha)*matrix(b, *n, *k, *ldb)*matrix(a, *n, *k, *lda).adjoint();
|
||||
}
|
||||
else if(OP(*op)==ADJ)
|
||||
{
|
||||
if(UPLO(*uplo)==UP)
|
||||
matrix(c, *n, *n, *ldc).triangularView<Upper>()
|
||||
+= alpha*matrix(a, *k, *n, *lda).adjoint()*matrix(b, *k, *n, *ldb)
|
||||
+ numext::conj(alpha)*matrix(b, *k, *n, *ldb).adjoint()*matrix(a, *k, *n, *lda);
|
||||
else if(UPLO(*uplo)==LO)
|
||||
matrix(c, *n, *n, *ldc).triangularView<Lower>()
|
||||
+= alpha*matrix(a, *k, *n, *lda).adjoint()*matrix(b, *k, *n, *ldb)
|
||||
+ numext::conj(alpha)*matrix(b, *k, *n, *ldb).adjoint()*matrix(a, *k, *n, *lda);
|
||||
}
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
#endif // ISCOMPLEX
|
||||
22
cs440-acg/ext/eigen/blas/single.cpp
Normal file
22
cs440-acg/ext/eigen/blas/single.cpp
Normal file
@@ -0,0 +1,22 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra.
|
||||
//
|
||||
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
|
||||
//
|
||||
// This Source Code Form is subject to the terms of the Mozilla
|
||||
// Public License v. 2.0. If a copy of the MPL was not distributed
|
||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
||||
|
||||
#define SCALAR float
|
||||
#define SCALAR_SUFFIX s
|
||||
#define SCALAR_SUFFIX_UP "S"
|
||||
#define ISCOMPLEX 0
|
||||
|
||||
#include "level1_impl.h"
|
||||
#include "level1_real_impl.h"
|
||||
#include "level2_impl.h"
|
||||
#include "level2_real_impl.h"
|
||||
#include "level3_impl.h"
|
||||
|
||||
float BLASFUNC(sdsdot)(int* n, float* alpha, float* x, int* incx, float* y, int* incy)
|
||||
{ return double(*alpha) + BLASFUNC(dsdot)(n, x, incx, y, incy); }
|
||||
40
cs440-acg/ext/eigen/blas/testing/CMakeLists.txt
Normal file
40
cs440-acg/ext/eigen/blas/testing/CMakeLists.txt
Normal file
@@ -0,0 +1,40 @@
|
||||
|
||||
macro(ei_add_blas_test testname)
|
||||
|
||||
set(targetname ${testname})
|
||||
|
||||
set(filename ${testname}.f)
|
||||
add_executable(${targetname} ${filename})
|
||||
|
||||
target_link_libraries(${targetname} eigen_blas)
|
||||
|
||||
if(EIGEN_STANDARD_LIBRARIES_TO_LINK_TO)
|
||||
target_link_libraries(${targetname} ${EIGEN_STANDARD_LIBRARIES_TO_LINK_TO})
|
||||
endif()
|
||||
|
||||
target_link_libraries(${targetname} ${EXTERNAL_LIBS})
|
||||
|
||||
add_test(${testname} "${Eigen_SOURCE_DIR}/blas/testing/runblastest.sh" "${testname}" "${Eigen_SOURCE_DIR}/blas/testing/${testname}.dat")
|
||||
add_dependencies(buildtests ${targetname})
|
||||
|
||||
endmacro(ei_add_blas_test)
|
||||
|
||||
ei_add_blas_test(sblat1)
|
||||
ei_add_blas_test(sblat2)
|
||||
ei_add_blas_test(sblat3)
|
||||
|
||||
ei_add_blas_test(dblat1)
|
||||
ei_add_blas_test(dblat2)
|
||||
ei_add_blas_test(dblat3)
|
||||
|
||||
ei_add_blas_test(cblat1)
|
||||
ei_add_blas_test(cblat2)
|
||||
ei_add_blas_test(cblat3)
|
||||
|
||||
ei_add_blas_test(zblat1)
|
||||
ei_add_blas_test(zblat2)
|
||||
ei_add_blas_test(zblat3)
|
||||
|
||||
# add_custom_target(level1)
|
||||
# add_dependencies(level1 sblat1)
|
||||
|
||||
724
cs440-acg/ext/eigen/blas/testing/cblat1.f
Normal file
724
cs440-acg/ext/eigen/blas/testing/cblat1.f
Normal file
@@ -0,0 +1,724 @@
|
||||
*> \brief \b CBLAT1
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* PROGRAM CBLAT1
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> Test program for the COMPLEX Level 1 BLAS.
|
||||
*> Based upon the original BLAS test routine together with:
|
||||
*>
|
||||
*> F06GAF Example Program Text
|
||||
*> \endverbatim
|
||||
*
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \date April 2012
|
||||
*
|
||||
*> \ingroup complex_blas_testing
|
||||
*
|
||||
* =====================================================================
|
||||
PROGRAM CBLAT1
|
||||
*
|
||||
* -- Reference BLAS test routine (version 3.4.1) --
|
||||
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* April 2012
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
INTEGER NOUT
|
||||
PARAMETER (NOUT=6)
|
||||
* .. Scalars in Common ..
|
||||
INTEGER ICASE, INCX, INCY, MODE, N
|
||||
LOGICAL PASS
|
||||
* .. Local Scalars ..
|
||||
REAL SFAC
|
||||
INTEGER IC
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL CHECK1, CHECK2, HEADER
|
||||
* .. Common blocks ..
|
||||
COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS
|
||||
* .. Data statements ..
|
||||
DATA SFAC/9.765625E-4/
|
||||
* .. Executable Statements ..
|
||||
WRITE (NOUT,99999)
|
||||
DO 20 IC = 1, 10
|
||||
ICASE = IC
|
||||
CALL HEADER
|
||||
*
|
||||
* Initialize PASS, INCX, INCY, and MODE for a new case.
|
||||
* The value 9999 for INCX, INCY or MODE will appear in the
|
||||
* detailed output, if any, for cases that do not involve
|
||||
* these parameters.
|
||||
*
|
||||
PASS = .TRUE.
|
||||
INCX = 9999
|
||||
INCY = 9999
|
||||
MODE = 9999
|
||||
IF (ICASE.LE.5) THEN
|
||||
CALL CHECK2(SFAC)
|
||||
ELSE IF (ICASE.GE.6) THEN
|
||||
CALL CHECK1(SFAC)
|
||||
END IF
|
||||
* -- Print
|
||||
IF (PASS) WRITE (NOUT,99998)
|
||||
20 CONTINUE
|
||||
STOP
|
||||
*
|
||||
99999 FORMAT (' Complex BLAS Test Program Results',/1X)
|
||||
99998 FORMAT (' ----- PASS -----')
|
||||
END
|
||||
SUBROUTINE HEADER
|
||||
* .. Parameters ..
|
||||
INTEGER NOUT
|
||||
PARAMETER (NOUT=6)
|
||||
* .. Scalars in Common ..
|
||||
INTEGER ICASE, INCX, INCY, MODE, N
|
||||
LOGICAL PASS
|
||||
* .. Local Arrays ..
|
||||
CHARACTER*6 L(10)
|
||||
* .. Common blocks ..
|
||||
COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS
|
||||
* .. Data statements ..
|
||||
DATA L(1)/'CDOTC '/
|
||||
DATA L(2)/'CDOTU '/
|
||||
DATA L(3)/'CAXPY '/
|
||||
DATA L(4)/'CCOPY '/
|
||||
DATA L(5)/'CSWAP '/
|
||||
DATA L(6)/'SCNRM2'/
|
||||
DATA L(7)/'SCASUM'/
|
||||
DATA L(8)/'CSCAL '/
|
||||
DATA L(9)/'CSSCAL'/
|
||||
DATA L(10)/'ICAMAX'/
|
||||
* .. Executable Statements ..
|
||||
WRITE (NOUT,99999) ICASE, L(ICASE)
|
||||
RETURN
|
||||
*
|
||||
99999 FORMAT (/' Test of subprogram number',I3,12X,A6)
|
||||
END
|
||||
SUBROUTINE CHECK1(SFAC)
|
||||
* .. Parameters ..
|
||||
INTEGER NOUT
|
||||
PARAMETER (NOUT=6)
|
||||
* .. Scalar Arguments ..
|
||||
REAL SFAC
|
||||
* .. Scalars in Common ..
|
||||
INTEGER ICASE, INCX, INCY, MODE, N
|
||||
LOGICAL PASS
|
||||
* .. Local Scalars ..
|
||||
COMPLEX CA
|
||||
REAL SA
|
||||
INTEGER I, J, LEN, NP1
|
||||
* .. Local Arrays ..
|
||||
COMPLEX CTRUE5(8,5,2), CTRUE6(8,5,2), CV(8,5,2), CX(8),
|
||||
+ MWPCS(5), MWPCT(5)
|
||||
REAL STRUE2(5), STRUE4(5)
|
||||
INTEGER ITRUE3(5)
|
||||
* .. External Functions ..
|
||||
REAL SCASUM, SCNRM2
|
||||
INTEGER ICAMAX
|
||||
EXTERNAL SCASUM, SCNRM2, ICAMAX
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL CSCAL, CSSCAL, CTEST, ITEST1, STEST1
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC MAX
|
||||
* .. Common blocks ..
|
||||
COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS
|
||||
* .. Data statements ..
|
||||
DATA SA, CA/0.3E0, (0.4E0,-0.7E0)/
|
||||
DATA ((CV(I,J,1),I=1,8),J=1,5)/(0.1E0,0.1E0),
|
||||
+ (1.0E0,2.0E0), (1.0E0,2.0E0), (1.0E0,2.0E0),
|
||||
+ (1.0E0,2.0E0), (1.0E0,2.0E0), (1.0E0,2.0E0),
|
||||
+ (1.0E0,2.0E0), (0.3E0,-0.4E0), (3.0E0,4.0E0),
|
||||
+ (3.0E0,4.0E0), (3.0E0,4.0E0), (3.0E0,4.0E0),
|
||||
+ (3.0E0,4.0E0), (3.0E0,4.0E0), (3.0E0,4.0E0),
|
||||
+ (0.1E0,-0.3E0), (0.5E0,-0.1E0), (5.0E0,6.0E0),
|
||||
+ (5.0E0,6.0E0), (5.0E0,6.0E0), (5.0E0,6.0E0),
|
||||
+ (5.0E0,6.0E0), (5.0E0,6.0E0), (0.1E0,0.1E0),
|
||||
+ (-0.6E0,0.1E0), (0.1E0,-0.3E0), (7.0E0,8.0E0),
|
||||
+ (7.0E0,8.0E0), (7.0E0,8.0E0), (7.0E0,8.0E0),
|
||||
+ (7.0E0,8.0E0), (0.3E0,0.1E0), (0.5E0,0.0E0),
|
||||
+ (0.0E0,0.5E0), (0.0E0,0.2E0), (2.0E0,3.0E0),
|
||||
+ (2.0E0,3.0E0), (2.0E0,3.0E0), (2.0E0,3.0E0)/
|
||||
DATA ((CV(I,J,2),I=1,8),J=1,5)/(0.1E0,0.1E0),
|
||||
+ (4.0E0,5.0E0), (4.0E0,5.0E0), (4.0E0,5.0E0),
|
||||
+ (4.0E0,5.0E0), (4.0E0,5.0E0), (4.0E0,5.0E0),
|
||||
+ (4.0E0,5.0E0), (0.3E0,-0.4E0), (6.0E0,7.0E0),
|
||||
+ (6.0E0,7.0E0), (6.0E0,7.0E0), (6.0E0,7.0E0),
|
||||
+ (6.0E0,7.0E0), (6.0E0,7.0E0), (6.0E0,7.0E0),
|
||||
+ (0.1E0,-0.3E0), (8.0E0,9.0E0), (0.5E0,-0.1E0),
|
||||
+ (2.0E0,5.0E0), (2.0E0,5.0E0), (2.0E0,5.0E0),
|
||||
+ (2.0E0,5.0E0), (2.0E0,5.0E0), (0.1E0,0.1E0),
|
||||
+ (3.0E0,6.0E0), (-0.6E0,0.1E0), (4.0E0,7.0E0),
|
||||
+ (0.1E0,-0.3E0), (7.0E0,2.0E0), (7.0E0,2.0E0),
|
||||
+ (7.0E0,2.0E0), (0.3E0,0.1E0), (5.0E0,8.0E0),
|
||||
+ (0.5E0,0.0E0), (6.0E0,9.0E0), (0.0E0,0.5E0),
|
||||
+ (8.0E0,3.0E0), (0.0E0,0.2E0), (9.0E0,4.0E0)/
|
||||
DATA STRUE2/0.0E0, 0.5E0, 0.6E0, 0.7E0, 0.8E0/
|
||||
DATA STRUE4/0.0E0, 0.7E0, 1.0E0, 1.3E0, 1.6E0/
|
||||
DATA ((CTRUE5(I,J,1),I=1,8),J=1,5)/(0.1E0,0.1E0),
|
||||
+ (1.0E0,2.0E0), (1.0E0,2.0E0), (1.0E0,2.0E0),
|
||||
+ (1.0E0,2.0E0), (1.0E0,2.0E0), (1.0E0,2.0E0),
|
||||
+ (1.0E0,2.0E0), (-0.16E0,-0.37E0), (3.0E0,4.0E0),
|
||||
+ (3.0E0,4.0E0), (3.0E0,4.0E0), (3.0E0,4.0E0),
|
||||
+ (3.0E0,4.0E0), (3.0E0,4.0E0), (3.0E0,4.0E0),
|
||||
+ (-0.17E0,-0.19E0), (0.13E0,-0.39E0),
|
||||
+ (5.0E0,6.0E0), (5.0E0,6.0E0), (5.0E0,6.0E0),
|
||||
+ (5.0E0,6.0E0), (5.0E0,6.0E0), (5.0E0,6.0E0),
|
||||
+ (0.11E0,-0.03E0), (-0.17E0,0.46E0),
|
||||
+ (-0.17E0,-0.19E0), (7.0E0,8.0E0), (7.0E0,8.0E0),
|
||||
+ (7.0E0,8.0E0), (7.0E0,8.0E0), (7.0E0,8.0E0),
|
||||
+ (0.19E0,-0.17E0), (0.20E0,-0.35E0),
|
||||
+ (0.35E0,0.20E0), (0.14E0,0.08E0),
|
||||
+ (2.0E0,3.0E0), (2.0E0,3.0E0), (2.0E0,3.0E0),
|
||||
+ (2.0E0,3.0E0)/
|
||||
DATA ((CTRUE5(I,J,2),I=1,8),J=1,5)/(0.1E0,0.1E0),
|
||||
+ (4.0E0,5.0E0), (4.0E0,5.0E0), (4.0E0,5.0E0),
|
||||
+ (4.0E0,5.0E0), (4.0E0,5.0E0), (4.0E0,5.0E0),
|
||||
+ (4.0E0,5.0E0), (-0.16E0,-0.37E0), (6.0E0,7.0E0),
|
||||
+ (6.0E0,7.0E0), (6.0E0,7.0E0), (6.0E0,7.0E0),
|
||||
+ (6.0E0,7.0E0), (6.0E0,7.0E0), (6.0E0,7.0E0),
|
||||
+ (-0.17E0,-0.19E0), (8.0E0,9.0E0),
|
||||
+ (0.13E0,-0.39E0), (2.0E0,5.0E0), (2.0E0,5.0E0),
|
||||
+ (2.0E0,5.0E0), (2.0E0,5.0E0), (2.0E0,5.0E0),
|
||||
+ (0.11E0,-0.03E0), (3.0E0,6.0E0),
|
||||
+ (-0.17E0,0.46E0), (4.0E0,7.0E0),
|
||||
+ (-0.17E0,-0.19E0), (7.0E0,2.0E0), (7.0E0,2.0E0),
|
||||
+ (7.0E0,2.0E0), (0.19E0,-0.17E0), (5.0E0,8.0E0),
|
||||
+ (0.20E0,-0.35E0), (6.0E0,9.0E0),
|
||||
+ (0.35E0,0.20E0), (8.0E0,3.0E0),
|
||||
+ (0.14E0,0.08E0), (9.0E0,4.0E0)/
|
||||
DATA ((CTRUE6(I,J,1),I=1,8),J=1,5)/(0.1E0,0.1E0),
|
||||
+ (1.0E0,2.0E0), (1.0E0,2.0E0), (1.0E0,2.0E0),
|
||||
+ (1.0E0,2.0E0), (1.0E0,2.0E0), (1.0E0,2.0E0),
|
||||
+ (1.0E0,2.0E0), (0.09E0,-0.12E0), (3.0E0,4.0E0),
|
||||
+ (3.0E0,4.0E0), (3.0E0,4.0E0), (3.0E0,4.0E0),
|
||||
+ (3.0E0,4.0E0), (3.0E0,4.0E0), (3.0E0,4.0E0),
|
||||
+ (0.03E0,-0.09E0), (0.15E0,-0.03E0),
|
||||
+ (5.0E0,6.0E0), (5.0E0,6.0E0), (5.0E0,6.0E0),
|
||||
+ (5.0E0,6.0E0), (5.0E0,6.0E0), (5.0E0,6.0E0),
|
||||
+ (0.03E0,0.03E0), (-0.18E0,0.03E0),
|
||||
+ (0.03E0,-0.09E0), (7.0E0,8.0E0), (7.0E0,8.0E0),
|
||||
+ (7.0E0,8.0E0), (7.0E0,8.0E0), (7.0E0,8.0E0),
|
||||
+ (0.09E0,0.03E0), (0.15E0,0.00E0),
|
||||
+ (0.00E0,0.15E0), (0.00E0,0.06E0), (2.0E0,3.0E0),
|
||||
+ (2.0E0,3.0E0), (2.0E0,3.0E0), (2.0E0,3.0E0)/
|
||||
DATA ((CTRUE6(I,J,2),I=1,8),J=1,5)/(0.1E0,0.1E0),
|
||||
+ (4.0E0,5.0E0), (4.0E0,5.0E0), (4.0E0,5.0E0),
|
||||
+ (4.0E0,5.0E0), (4.0E0,5.0E0), (4.0E0,5.0E0),
|
||||
+ (4.0E0,5.0E0), (0.09E0,-0.12E0), (6.0E0,7.0E0),
|
||||
+ (6.0E0,7.0E0), (6.0E0,7.0E0), (6.0E0,7.0E0),
|
||||
+ (6.0E0,7.0E0), (6.0E0,7.0E0), (6.0E0,7.0E0),
|
||||
+ (0.03E0,-0.09E0), (8.0E0,9.0E0),
|
||||
+ (0.15E0,-0.03E0), (2.0E0,5.0E0), (2.0E0,5.0E0),
|
||||
+ (2.0E0,5.0E0), (2.0E0,5.0E0), (2.0E0,5.0E0),
|
||||
+ (0.03E0,0.03E0), (3.0E0,6.0E0),
|
||||
+ (-0.18E0,0.03E0), (4.0E0,7.0E0),
|
||||
+ (0.03E0,-0.09E0), (7.0E0,2.0E0), (7.0E0,2.0E0),
|
||||
+ (7.0E0,2.0E0), (0.09E0,0.03E0), (5.0E0,8.0E0),
|
||||
+ (0.15E0,0.00E0), (6.0E0,9.0E0), (0.00E0,0.15E0),
|
||||
+ (8.0E0,3.0E0), (0.00E0,0.06E0), (9.0E0,4.0E0)/
|
||||
DATA ITRUE3/0, 1, 2, 2, 2/
|
||||
* .. Executable Statements ..
|
||||
DO 60 INCX = 1, 2
|
||||
DO 40 NP1 = 1, 5
|
||||
N = NP1 - 1
|
||||
LEN = 2*MAX(N,1)
|
||||
* .. Set vector arguments ..
|
||||
DO 20 I = 1, LEN
|
||||
CX(I) = CV(I,NP1,INCX)
|
||||
20 CONTINUE
|
||||
IF (ICASE.EQ.6) THEN
|
||||
* .. SCNRM2 ..
|
||||
CALL STEST1(SCNRM2(N,CX,INCX),STRUE2(NP1),STRUE2(NP1),
|
||||
+ SFAC)
|
||||
ELSE IF (ICASE.EQ.7) THEN
|
||||
* .. SCASUM ..
|
||||
CALL STEST1(SCASUM(N,CX,INCX),STRUE4(NP1),STRUE4(NP1),
|
||||
+ SFAC)
|
||||
ELSE IF (ICASE.EQ.8) THEN
|
||||
* .. CSCAL ..
|
||||
CALL CSCAL(N,CA,CX,INCX)
|
||||
CALL CTEST(LEN,CX,CTRUE5(1,NP1,INCX),CTRUE5(1,NP1,INCX),
|
||||
+ SFAC)
|
||||
ELSE IF (ICASE.EQ.9) THEN
|
||||
* .. CSSCAL ..
|
||||
CALL CSSCAL(N,SA,CX,INCX)
|
||||
CALL CTEST(LEN,CX,CTRUE6(1,NP1,INCX),CTRUE6(1,NP1,INCX),
|
||||
+ SFAC)
|
||||
ELSE IF (ICASE.EQ.10) THEN
|
||||
* .. ICAMAX ..
|
||||
CALL ITEST1(ICAMAX(N,CX,INCX),ITRUE3(NP1))
|
||||
ELSE
|
||||
WRITE (NOUT,*) ' Shouldn''t be here in CHECK1'
|
||||
STOP
|
||||
END IF
|
||||
*
|
||||
40 CONTINUE
|
||||
60 CONTINUE
|
||||
*
|
||||
INCX = 1
|
||||
IF (ICASE.EQ.8) THEN
|
||||
* CSCAL
|
||||
* Add a test for alpha equal to zero.
|
||||
CA = (0.0E0,0.0E0)
|
||||
DO 80 I = 1, 5
|
||||
MWPCT(I) = (0.0E0,0.0E0)
|
||||
MWPCS(I) = (1.0E0,1.0E0)
|
||||
80 CONTINUE
|
||||
CALL CSCAL(5,CA,CX,INCX)
|
||||
CALL CTEST(5,CX,MWPCT,MWPCS,SFAC)
|
||||
ELSE IF (ICASE.EQ.9) THEN
|
||||
* CSSCAL
|
||||
* Add a test for alpha equal to zero.
|
||||
SA = 0.0E0
|
||||
DO 100 I = 1, 5
|
||||
MWPCT(I) = (0.0E0,0.0E0)
|
||||
MWPCS(I) = (1.0E0,1.0E0)
|
||||
100 CONTINUE
|
||||
CALL CSSCAL(5,SA,CX,INCX)
|
||||
CALL CTEST(5,CX,MWPCT,MWPCS,SFAC)
|
||||
* Add a test for alpha equal to one.
|
||||
SA = 1.0E0
|
||||
DO 120 I = 1, 5
|
||||
MWPCT(I) = CX(I)
|
||||
MWPCS(I) = CX(I)
|
||||
120 CONTINUE
|
||||
CALL CSSCAL(5,SA,CX,INCX)
|
||||
CALL CTEST(5,CX,MWPCT,MWPCS,SFAC)
|
||||
* Add a test for alpha equal to minus one.
|
||||
SA = -1.0E0
|
||||
DO 140 I = 1, 5
|
||||
MWPCT(I) = -CX(I)
|
||||
MWPCS(I) = -CX(I)
|
||||
140 CONTINUE
|
||||
CALL CSSCAL(5,SA,CX,INCX)
|
||||
CALL CTEST(5,CX,MWPCT,MWPCS,SFAC)
|
||||
END IF
|
||||
RETURN
|
||||
END
|
||||
SUBROUTINE CHECK2(SFAC)
|
||||
* .. Parameters ..
|
||||
INTEGER NOUT
|
||||
PARAMETER (NOUT=6)
|
||||
* .. Scalar Arguments ..
|
||||
REAL SFAC
|
||||
* .. Scalars in Common ..
|
||||
INTEGER ICASE, INCX, INCY, MODE, N
|
||||
LOGICAL PASS
|
||||
* .. Local Scalars ..
|
||||
COMPLEX CA
|
||||
INTEGER I, J, KI, KN, KSIZE, LENX, LENY, MX, MY
|
||||
* .. Local Arrays ..
|
||||
COMPLEX CDOT(1), CSIZE1(4), CSIZE2(7,2), CSIZE3(14),
|
||||
+ CT10X(7,4,4), CT10Y(7,4,4), CT6(4,4), CT7(4,4),
|
||||
+ CT8(7,4,4), CX(7), CX1(7), CY(7), CY1(7)
|
||||
INTEGER INCXS(4), INCYS(4), LENS(4,2), NS(4)
|
||||
* .. External Functions ..
|
||||
COMPLEX CDOTC, CDOTU
|
||||
EXTERNAL CDOTC, CDOTU
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL CAXPY, CCOPY, CSWAP, CTEST
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC ABS, MIN
|
||||
* .. Common blocks ..
|
||||
COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS
|
||||
* .. Data statements ..
|
||||
DATA CA/(0.4E0,-0.7E0)/
|
||||
DATA INCXS/1, 2, -2, -1/
|
||||
DATA INCYS/1, -2, 1, -2/
|
||||
DATA LENS/1, 1, 2, 4, 1, 1, 3, 7/
|
||||
DATA NS/0, 1, 2, 4/
|
||||
DATA CX1/(0.7E0,-0.8E0), (-0.4E0,-0.7E0),
|
||||
+ (-0.1E0,-0.9E0), (0.2E0,-0.8E0),
|
||||
+ (-0.9E0,-0.4E0), (0.1E0,0.4E0), (-0.6E0,0.6E0)/
|
||||
DATA CY1/(0.6E0,-0.6E0), (-0.9E0,0.5E0),
|
||||
+ (0.7E0,-0.6E0), (0.1E0,-0.5E0), (-0.1E0,-0.2E0),
|
||||
+ (-0.5E0,-0.3E0), (0.8E0,-0.7E0)/
|
||||
DATA ((CT8(I,J,1),I=1,7),J=1,4)/(0.6E0,-0.6E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.32E0,-1.41E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.32E0,-1.41E0),
|
||||
+ (-1.55E0,0.5E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.32E0,-1.41E0), (-1.55E0,0.5E0),
|
||||
+ (0.03E0,-0.89E0), (-0.38E0,-0.96E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0)/
|
||||
DATA ((CT8(I,J,2),I=1,7),J=1,4)/(0.6E0,-0.6E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.32E0,-1.41E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (-0.07E0,-0.89E0),
|
||||
+ (-0.9E0,0.5E0), (0.42E0,-1.41E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.78E0,0.06E0), (-0.9E0,0.5E0),
|
||||
+ (0.06E0,-0.13E0), (0.1E0,-0.5E0),
|
||||
+ (-0.77E0,-0.49E0), (-0.5E0,-0.3E0),
|
||||
+ (0.52E0,-1.51E0)/
|
||||
DATA ((CT8(I,J,3),I=1,7),J=1,4)/(0.6E0,-0.6E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.32E0,-1.41E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (-0.07E0,-0.89E0),
|
||||
+ (-1.18E0,-0.31E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.78E0,0.06E0), (-1.54E0,0.97E0),
|
||||
+ (0.03E0,-0.89E0), (-0.18E0,-1.31E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0)/
|
||||
DATA ((CT8(I,J,4),I=1,7),J=1,4)/(0.6E0,-0.6E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.32E0,-1.41E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.32E0,-1.41E0), (-0.9E0,0.5E0),
|
||||
+ (0.05E0,-0.6E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.32E0,-1.41E0),
|
||||
+ (-0.9E0,0.5E0), (0.05E0,-0.6E0), (0.1E0,-0.5E0),
|
||||
+ (-0.77E0,-0.49E0), (-0.5E0,-0.3E0),
|
||||
+ (0.32E0,-1.16E0)/
|
||||
DATA CT7/(0.0E0,0.0E0), (-0.06E0,-0.90E0),
|
||||
+ (0.65E0,-0.47E0), (-0.34E0,-1.22E0),
|
||||
+ (0.0E0,0.0E0), (-0.06E0,-0.90E0),
|
||||
+ (-0.59E0,-1.46E0), (-1.04E0,-0.04E0),
|
||||
+ (0.0E0,0.0E0), (-0.06E0,-0.90E0),
|
||||
+ (-0.83E0,0.59E0), (0.07E0,-0.37E0),
|
||||
+ (0.0E0,0.0E0), (-0.06E0,-0.90E0),
|
||||
+ (-0.76E0,-1.15E0), (-1.33E0,-1.82E0)/
|
||||
DATA CT6/(0.0E0,0.0E0), (0.90E0,0.06E0),
|
||||
+ (0.91E0,-0.77E0), (1.80E0,-0.10E0),
|
||||
+ (0.0E0,0.0E0), (0.90E0,0.06E0), (1.45E0,0.74E0),
|
||||
+ (0.20E0,0.90E0), (0.0E0,0.0E0), (0.90E0,0.06E0),
|
||||
+ (-0.55E0,0.23E0), (0.83E0,-0.39E0),
|
||||
+ (0.0E0,0.0E0), (0.90E0,0.06E0), (1.04E0,0.79E0),
|
||||
+ (1.95E0,1.22E0)/
|
||||
DATA ((CT10X(I,J,1),I=1,7),J=1,4)/(0.7E0,-0.8E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.6E0,-0.6E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.6E0,-0.6E0), (-0.9E0,0.5E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.6E0,-0.6E0),
|
||||
+ (-0.9E0,0.5E0), (0.7E0,-0.6E0), (0.1E0,-0.5E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0)/
|
||||
DATA ((CT10X(I,J,2),I=1,7),J=1,4)/(0.7E0,-0.8E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.6E0,-0.6E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.7E0,-0.6E0), (-0.4E0,-0.7E0),
|
||||
+ (0.6E0,-0.6E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.8E0,-0.7E0),
|
||||
+ (-0.4E0,-0.7E0), (-0.1E0,-0.2E0),
|
||||
+ (0.2E0,-0.8E0), (0.7E0,-0.6E0), (0.1E0,0.4E0),
|
||||
+ (0.6E0,-0.6E0)/
|
||||
DATA ((CT10X(I,J,3),I=1,7),J=1,4)/(0.7E0,-0.8E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.6E0,-0.6E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (-0.9E0,0.5E0), (-0.4E0,-0.7E0),
|
||||
+ (0.6E0,-0.6E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.1E0,-0.5E0),
|
||||
+ (-0.4E0,-0.7E0), (0.7E0,-0.6E0), (0.2E0,-0.8E0),
|
||||
+ (-0.9E0,0.5E0), (0.1E0,0.4E0), (0.6E0,-0.6E0)/
|
||||
DATA ((CT10X(I,J,4),I=1,7),J=1,4)/(0.7E0,-0.8E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.6E0,-0.6E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.6E0,-0.6E0), (0.7E0,-0.6E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.6E0,-0.6E0),
|
||||
+ (0.7E0,-0.6E0), (-0.1E0,-0.2E0), (0.8E0,-0.7E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0)/
|
||||
DATA ((CT10Y(I,J,1),I=1,7),J=1,4)/(0.6E0,-0.6E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.7E0,-0.8E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.7E0,-0.8E0), (-0.4E0,-0.7E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.7E0,-0.8E0),
|
||||
+ (-0.4E0,-0.7E0), (-0.1E0,-0.9E0),
|
||||
+ (0.2E0,-0.8E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0)/
|
||||
DATA ((CT10Y(I,J,2),I=1,7),J=1,4)/(0.6E0,-0.6E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.7E0,-0.8E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (-0.1E0,-0.9E0), (-0.9E0,0.5E0),
|
||||
+ (0.7E0,-0.8E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (-0.6E0,0.6E0),
|
||||
+ (-0.9E0,0.5E0), (-0.9E0,-0.4E0), (0.1E0,-0.5E0),
|
||||
+ (-0.1E0,-0.9E0), (-0.5E0,-0.3E0),
|
||||
+ (0.7E0,-0.8E0)/
|
||||
DATA ((CT10Y(I,J,3),I=1,7),J=1,4)/(0.6E0,-0.6E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.7E0,-0.8E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (-0.1E0,-0.9E0), (0.7E0,-0.8E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (-0.6E0,0.6E0),
|
||||
+ (-0.9E0,-0.4E0), (-0.1E0,-0.9E0),
|
||||
+ (0.7E0,-0.8E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0)/
|
||||
DATA ((CT10Y(I,J,4),I=1,7),J=1,4)/(0.6E0,-0.6E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.7E0,-0.8E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.7E0,-0.8E0), (-0.9E0,0.5E0),
|
||||
+ (-0.4E0,-0.7E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.7E0,-0.8E0),
|
||||
+ (-0.9E0,0.5E0), (-0.4E0,-0.7E0), (0.1E0,-0.5E0),
|
||||
+ (-0.1E0,-0.9E0), (-0.5E0,-0.3E0),
|
||||
+ (0.2E0,-0.8E0)/
|
||||
DATA CSIZE1/(0.0E0,0.0E0), (0.9E0,0.9E0),
|
||||
+ (1.63E0,1.73E0), (2.90E0,2.78E0)/
|
||||
DATA CSIZE3/(0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (1.17E0,1.17E0),
|
||||
+ (1.17E0,1.17E0), (1.17E0,1.17E0),
|
||||
+ (1.17E0,1.17E0), (1.17E0,1.17E0),
|
||||
+ (1.17E0,1.17E0), (1.17E0,1.17E0)/
|
||||
DATA CSIZE2/(0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (0.0E0,0.0E0),
|
||||
+ (0.0E0,0.0E0), (0.0E0,0.0E0), (1.54E0,1.54E0),
|
||||
+ (1.54E0,1.54E0), (1.54E0,1.54E0),
|
||||
+ (1.54E0,1.54E0), (1.54E0,1.54E0),
|
||||
+ (1.54E0,1.54E0), (1.54E0,1.54E0)/
|
||||
* .. Executable Statements ..
|
||||
DO 60 KI = 1, 4
|
||||
INCX = INCXS(KI)
|
||||
INCY = INCYS(KI)
|
||||
MX = ABS(INCX)
|
||||
MY = ABS(INCY)
|
||||
*
|
||||
DO 40 KN = 1, 4
|
||||
N = NS(KN)
|
||||
KSIZE = MIN(2,KN)
|
||||
LENX = LENS(KN,MX)
|
||||
LENY = LENS(KN,MY)
|
||||
* .. initialize all argument arrays ..
|
||||
DO 20 I = 1, 7
|
||||
CX(I) = CX1(I)
|
||||
CY(I) = CY1(I)
|
||||
20 CONTINUE
|
||||
IF (ICASE.EQ.1) THEN
|
||||
* .. CDOTC ..
|
||||
CDOT(1) = CDOTC(N,CX,INCX,CY,INCY)
|
||||
CALL CTEST(1,CDOT,CT6(KN,KI),CSIZE1(KN),SFAC)
|
||||
ELSE IF (ICASE.EQ.2) THEN
|
||||
* .. CDOTU ..
|
||||
CDOT(1) = CDOTU(N,CX,INCX,CY,INCY)
|
||||
CALL CTEST(1,CDOT,CT7(KN,KI),CSIZE1(KN),SFAC)
|
||||
ELSE IF (ICASE.EQ.3) THEN
|
||||
* .. CAXPY ..
|
||||
CALL CAXPY(N,CA,CX,INCX,CY,INCY)
|
||||
CALL CTEST(LENY,CY,CT8(1,KN,KI),CSIZE2(1,KSIZE),SFAC)
|
||||
ELSE IF (ICASE.EQ.4) THEN
|
||||
* .. CCOPY ..
|
||||
CALL CCOPY(N,CX,INCX,CY,INCY)
|
||||
CALL CTEST(LENY,CY,CT10Y(1,KN,KI),CSIZE3,1.0E0)
|
||||
ELSE IF (ICASE.EQ.5) THEN
|
||||
* .. CSWAP ..
|
||||
CALL CSWAP(N,CX,INCX,CY,INCY)
|
||||
CALL CTEST(LENX,CX,CT10X(1,KN,KI),CSIZE3,1.0E0)
|
||||
CALL CTEST(LENY,CY,CT10Y(1,KN,KI),CSIZE3,1.0E0)
|
||||
ELSE
|
||||
WRITE (NOUT,*) ' Shouldn''t be here in CHECK2'
|
||||
STOP
|
||||
END IF
|
||||
*
|
||||
40 CONTINUE
|
||||
60 CONTINUE
|
||||
RETURN
|
||||
END
|
||||
SUBROUTINE STEST(LEN,SCOMP,STRUE,SSIZE,SFAC)
|
||||
* ********************************* STEST **************************
|
||||
*
|
||||
* THIS SUBR COMPARES ARRAYS SCOMP() AND STRUE() OF LENGTH LEN TO
|
||||
* SEE IF THE TERM BY TERM DIFFERENCES, MULTIPLIED BY SFAC, ARE
|
||||
* NEGLIGIBLE.
|
||||
*
|
||||
* C. L. LAWSON, JPL, 1974 DEC 10
|
||||
*
|
||||
* .. Parameters ..
|
||||
INTEGER NOUT
|
||||
REAL ZERO
|
||||
PARAMETER (NOUT=6, ZERO=0.0E0)
|
||||
* .. Scalar Arguments ..
|
||||
REAL SFAC
|
||||
INTEGER LEN
|
||||
* .. Array Arguments ..
|
||||
REAL SCOMP(LEN), SSIZE(LEN), STRUE(LEN)
|
||||
* .. Scalars in Common ..
|
||||
INTEGER ICASE, INCX, INCY, MODE, N
|
||||
LOGICAL PASS
|
||||
* .. Local Scalars ..
|
||||
REAL SD
|
||||
INTEGER I
|
||||
* .. External Functions ..
|
||||
REAL SDIFF
|
||||
EXTERNAL SDIFF
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC ABS
|
||||
* .. Common blocks ..
|
||||
COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS
|
||||
* .. Executable Statements ..
|
||||
*
|
||||
DO 40 I = 1, LEN
|
||||
SD = SCOMP(I) - STRUE(I)
|
||||
IF (ABS(SFAC*SD) .LE. ABS(SSIZE(I))*EPSILON(ZERO))
|
||||
+ GO TO 40
|
||||
*
|
||||
* HERE SCOMP(I) IS NOT CLOSE TO STRUE(I).
|
||||
*
|
||||
IF ( .NOT. PASS) GO TO 20
|
||||
* PRINT FAIL MESSAGE AND HEADER.
|
||||
PASS = .FALSE.
|
||||
WRITE (NOUT,99999)
|
||||
WRITE (NOUT,99998)
|
||||
20 WRITE (NOUT,99997) ICASE, N, INCX, INCY, MODE, I, SCOMP(I),
|
||||
+ STRUE(I), SD, SSIZE(I)
|
||||
40 CONTINUE
|
||||
RETURN
|
||||
*
|
||||
99999 FORMAT (' FAIL')
|
||||
99998 FORMAT (/' CASE N INCX INCY MODE I ',
|
||||
+ ' COMP(I) TRUE(I) DIFFERENCE',
|
||||
+ ' SIZE(I)',/1X)
|
||||
99997 FORMAT (1X,I4,I3,3I5,I3,2E36.8,2E12.4)
|
||||
END
|
||||
SUBROUTINE STEST1(SCOMP1,STRUE1,SSIZE,SFAC)
|
||||
* ************************* STEST1 *****************************
|
||||
*
|
||||
* THIS IS AN INTERFACE SUBROUTINE TO ACCOMODATE THE FORTRAN
|
||||
* REQUIREMENT THAT WHEN A DUMMY ARGUMENT IS AN ARRAY, THE
|
||||
* ACTUAL ARGUMENT MUST ALSO BE AN ARRAY OR AN ARRAY ELEMENT.
|
||||
*
|
||||
* C.L. LAWSON, JPL, 1978 DEC 6
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
REAL SCOMP1, SFAC, STRUE1
|
||||
* .. Array Arguments ..
|
||||
REAL SSIZE(*)
|
||||
* .. Local Arrays ..
|
||||
REAL SCOMP(1), STRUE(1)
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL STEST
|
||||
* .. Executable Statements ..
|
||||
*
|
||||
SCOMP(1) = SCOMP1
|
||||
STRUE(1) = STRUE1
|
||||
CALL STEST(1,SCOMP,STRUE,SSIZE,SFAC)
|
||||
*
|
||||
RETURN
|
||||
END
|
||||
REAL FUNCTION SDIFF(SA,SB)
|
||||
* ********************************* SDIFF **************************
|
||||
* COMPUTES DIFFERENCE OF TWO NUMBERS. C. L. LAWSON, JPL 1974 FEB 15
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
REAL SA, SB
|
||||
* .. Executable Statements ..
|
||||
SDIFF = SA - SB
|
||||
RETURN
|
||||
END
|
||||
SUBROUTINE CTEST(LEN,CCOMP,CTRUE,CSIZE,SFAC)
|
||||
* **************************** CTEST *****************************
|
||||
*
|
||||
* C.L. LAWSON, JPL, 1978 DEC 6
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
REAL SFAC
|
||||
INTEGER LEN
|
||||
* .. Array Arguments ..
|
||||
COMPLEX CCOMP(LEN), CSIZE(LEN), CTRUE(LEN)
|
||||
* .. Local Scalars ..
|
||||
INTEGER I
|
||||
* .. Local Arrays ..
|
||||
REAL SCOMP(20), SSIZE(20), STRUE(20)
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL STEST
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC AIMAG, REAL
|
||||
* .. Executable Statements ..
|
||||
DO 20 I = 1, LEN
|
||||
SCOMP(2*I-1) = REAL(CCOMP(I))
|
||||
SCOMP(2*I) = AIMAG(CCOMP(I))
|
||||
STRUE(2*I-1) = REAL(CTRUE(I))
|
||||
STRUE(2*I) = AIMAG(CTRUE(I))
|
||||
SSIZE(2*I-1) = REAL(CSIZE(I))
|
||||
SSIZE(2*I) = AIMAG(CSIZE(I))
|
||||
20 CONTINUE
|
||||
*
|
||||
CALL STEST(2*LEN,SCOMP,STRUE,SSIZE,SFAC)
|
||||
RETURN
|
||||
END
|
||||
SUBROUTINE ITEST1(ICOMP,ITRUE)
|
||||
* ********************************* ITEST1 *************************
|
||||
*
|
||||
* THIS SUBROUTINE COMPARES THE VARIABLES ICOMP AND ITRUE FOR
|
||||
* EQUALITY.
|
||||
* C. L. LAWSON, JPL, 1974 DEC 10
|
||||
*
|
||||
* .. Parameters ..
|
||||
INTEGER NOUT
|
||||
PARAMETER (NOUT=6)
|
||||
* .. Scalar Arguments ..
|
||||
INTEGER ICOMP, ITRUE
|
||||
* .. Scalars in Common ..
|
||||
INTEGER ICASE, INCX, INCY, MODE, N
|
||||
LOGICAL PASS
|
||||
* .. Local Scalars ..
|
||||
INTEGER ID
|
||||
* .. Common blocks ..
|
||||
COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS
|
||||
* .. Executable Statements ..
|
||||
IF (ICOMP.EQ.ITRUE) GO TO 40
|
||||
*
|
||||
* HERE ICOMP IS NOT EQUAL TO ITRUE.
|
||||
*
|
||||
IF ( .NOT. PASS) GO TO 20
|
||||
* PRINT FAIL MESSAGE AND HEADER.
|
||||
PASS = .FALSE.
|
||||
WRITE (NOUT,99999)
|
||||
WRITE (NOUT,99998)
|
||||
20 ID = ICOMP - ITRUE
|
||||
WRITE (NOUT,99997) ICASE, N, INCX, INCY, MODE, ICOMP, ITRUE, ID
|
||||
40 CONTINUE
|
||||
RETURN
|
||||
*
|
||||
99999 FORMAT (' FAIL')
|
||||
99998 FORMAT (/' CASE N INCX INCY MODE ',
|
||||
+ ' COMP TRUE DIFFERENCE',
|
||||
+ /1X)
|
||||
99997 FORMAT (1X,I4,I3,3I5,2I36,I12)
|
||||
END
|
||||
35
cs440-acg/ext/eigen/blas/testing/cblat2.dat
Normal file
35
cs440-acg/ext/eigen/blas/testing/cblat2.dat
Normal file
@@ -0,0 +1,35 @@
|
||||
'cblat2.summ' NAME OF SUMMARY OUTPUT FILE
|
||||
6 UNIT NUMBER OF SUMMARY FILE
|
||||
'cblat2.snap' NAME OF SNAPSHOT OUTPUT FILE
|
||||
-1 UNIT NUMBER OF SNAPSHOT FILE (NOT USED IF .LT. 0)
|
||||
F LOGICAL FLAG, T TO REWIND SNAPSHOT FILE AFTER EACH RECORD.
|
||||
F LOGICAL FLAG, T TO STOP ON FAILURES.
|
||||
T LOGICAL FLAG, T TO TEST ERROR EXITS.
|
||||
16.0 THRESHOLD VALUE OF TEST RATIO
|
||||
6 NUMBER OF VALUES OF N
|
||||
0 1 2 3 5 9 VALUES OF N
|
||||
4 NUMBER OF VALUES OF K
|
||||
0 1 2 4 VALUES OF K
|
||||
4 NUMBER OF VALUES OF INCX AND INCY
|
||||
1 2 -1 -2 VALUES OF INCX AND INCY
|
||||
3 NUMBER OF VALUES OF ALPHA
|
||||
(0.0,0.0) (1.0,0.0) (0.7,-0.9) VALUES OF ALPHA
|
||||
3 NUMBER OF VALUES OF BETA
|
||||
(0.0,0.0) (1.0,0.0) (1.3,-1.1) VALUES OF BETA
|
||||
CGEMV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
CGBMV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
CHEMV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
CHBMV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
CHPMV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
CTRMV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
CTBMV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
CTPMV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
CTRSV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
CTBSV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
CTPSV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
CGERC T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
CGERU T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
CHER T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
CHPR T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
CHER2 T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
CHPR2 T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
3279
cs440-acg/ext/eigen/blas/testing/cblat2.f
Normal file
3279
cs440-acg/ext/eigen/blas/testing/cblat2.f
Normal file
File diff suppressed because it is too large
Load Diff
23
cs440-acg/ext/eigen/blas/testing/cblat3.dat
Normal file
23
cs440-acg/ext/eigen/blas/testing/cblat3.dat
Normal file
@@ -0,0 +1,23 @@
|
||||
'cblat3.summ' NAME OF SUMMARY OUTPUT FILE
|
||||
6 UNIT NUMBER OF SUMMARY FILE
|
||||
'cblat3.snap' NAME OF SNAPSHOT OUTPUT FILE
|
||||
-1 UNIT NUMBER OF SNAPSHOT FILE (NOT USED IF .LT. 0)
|
||||
F LOGICAL FLAG, T TO REWIND SNAPSHOT FILE AFTER EACH RECORD.
|
||||
F LOGICAL FLAG, T TO STOP ON FAILURES.
|
||||
F LOGICAL FLAG, T TO TEST ERROR EXITS.
|
||||
16.0 THRESHOLD VALUE OF TEST RATIO
|
||||
6 NUMBER OF VALUES OF N
|
||||
0 1 2 3 5 9 VALUES OF N
|
||||
3 NUMBER OF VALUES OF ALPHA
|
||||
(0.0,0.0) (1.0,0.0) (0.7,-0.9) VALUES OF ALPHA
|
||||
3 NUMBER OF VALUES OF BETA
|
||||
(0.0,0.0) (1.0,0.0) (1.3,-1.1) VALUES OF BETA
|
||||
CGEMM T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
CHEMM T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
CSYMM T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
CTRMM T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
CTRSM T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
CHERK T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
CSYRK T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
CHER2K T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
CSYR2K T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
3492
cs440-acg/ext/eigen/blas/testing/cblat3.f
Normal file
3492
cs440-acg/ext/eigen/blas/testing/cblat3.f
Normal file
File diff suppressed because it is too large
Load Diff
1065
cs440-acg/ext/eigen/blas/testing/dblat1.f
Normal file
1065
cs440-acg/ext/eigen/blas/testing/dblat1.f
Normal file
File diff suppressed because it is too large
Load Diff
34
cs440-acg/ext/eigen/blas/testing/dblat2.dat
Normal file
34
cs440-acg/ext/eigen/blas/testing/dblat2.dat
Normal file
@@ -0,0 +1,34 @@
|
||||
'dblat2.summ' NAME OF SUMMARY OUTPUT FILE
|
||||
6 UNIT NUMBER OF SUMMARY FILE
|
||||
'dblat2.snap' NAME OF SNAPSHOT OUTPUT FILE
|
||||
-1 UNIT NUMBER OF SNAPSHOT FILE (NOT USED IF .LT. 0)
|
||||
F LOGICAL FLAG, T TO REWIND SNAPSHOT FILE AFTER EACH RECORD.
|
||||
F LOGICAL FLAG, T TO STOP ON FAILURES.
|
||||
T LOGICAL FLAG, T TO TEST ERROR EXITS.
|
||||
16.0 THRESHOLD VALUE OF TEST RATIO
|
||||
6 NUMBER OF VALUES OF N
|
||||
0 1 2 3 5 9 VALUES OF N
|
||||
4 NUMBER OF VALUES OF K
|
||||
0 1 2 4 VALUES OF K
|
||||
4 NUMBER OF VALUES OF INCX AND INCY
|
||||
1 2 -1 -2 VALUES OF INCX AND INCY
|
||||
3 NUMBER OF VALUES OF ALPHA
|
||||
0.0 1.0 0.7 VALUES OF ALPHA
|
||||
3 NUMBER OF VALUES OF BETA
|
||||
0.0 1.0 0.9 VALUES OF BETA
|
||||
DGEMV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
DGBMV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
DSYMV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
DSBMV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
DSPMV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
DTRMV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
DTBMV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
DTPMV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
DTRSV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
DTBSV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
DTPSV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
DGER T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
DSYR T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
DSPR T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
DSYR2 T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
DSPR2 T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
3176
cs440-acg/ext/eigen/blas/testing/dblat2.f
Normal file
3176
cs440-acg/ext/eigen/blas/testing/dblat2.f
Normal file
File diff suppressed because it is too large
Load Diff
20
cs440-acg/ext/eigen/blas/testing/dblat3.dat
Normal file
20
cs440-acg/ext/eigen/blas/testing/dblat3.dat
Normal file
@@ -0,0 +1,20 @@
|
||||
'dblat3.summ' NAME OF SUMMARY OUTPUT FILE
|
||||
6 UNIT NUMBER OF SUMMARY FILE
|
||||
'dblat3.snap' NAME OF SNAPSHOT OUTPUT FILE
|
||||
-1 UNIT NUMBER OF SNAPSHOT FILE (NOT USED IF .LT. 0)
|
||||
F LOGICAL FLAG, T TO REWIND SNAPSHOT FILE AFTER EACH RECORD.
|
||||
F LOGICAL FLAG, T TO STOP ON FAILURES.
|
||||
T LOGICAL FLAG, T TO TEST ERROR EXITS.
|
||||
16.0 THRESHOLD VALUE OF TEST RATIO
|
||||
6 NUMBER OF VALUES OF N
|
||||
0 1 2 3 5 9 VALUES OF N
|
||||
3 NUMBER OF VALUES OF ALPHA
|
||||
0.0 1.0 0.7 VALUES OF ALPHA
|
||||
3 NUMBER OF VALUES OF BETA
|
||||
0.0 1.0 1.3 VALUES OF BETA
|
||||
DGEMM T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
DSYMM T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
DTRMM T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
DTRSM T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
DSYRK T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
DSYR2K T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
2873
cs440-acg/ext/eigen/blas/testing/dblat3.f
Normal file
2873
cs440-acg/ext/eigen/blas/testing/dblat3.f
Normal file
File diff suppressed because it is too large
Load Diff
45
cs440-acg/ext/eigen/blas/testing/runblastest.sh
Executable file
45
cs440-acg/ext/eigen/blas/testing/runblastest.sh
Executable file
@@ -0,0 +1,45 @@
|
||||
#!/bin/bash
|
||||
|
||||
black='\E[30m'
|
||||
red='\E[31m'
|
||||
green='\E[32m'
|
||||
yellow='\E[33m'
|
||||
blue='\E[34m'
|
||||
magenta='\E[35m'
|
||||
cyan='\E[36m'
|
||||
white='\E[37m'
|
||||
|
||||
if [ -f $2 ]; then
|
||||
data=$2
|
||||
if [ -f $1.summ ]; then rm $1.summ; fi
|
||||
if [ -f $1.snap ]; then rm $1.snap; fi
|
||||
else
|
||||
data=$1
|
||||
fi
|
||||
|
||||
if ! ./$1 < $data > /dev/null 2> .runtest.log ; then
|
||||
echo -e $red Test $1 failed: $black
|
||||
echo -e $blue
|
||||
cat .runtest.log
|
||||
echo -e $black
|
||||
exit 1
|
||||
else
|
||||
if [ -f $1.summ ]; then
|
||||
if [ `grep "FATAL ERROR" $1.summ | wc -l` -gt 0 ]; then
|
||||
echo -e $red "Test $1 failed (FATAL ERROR, read the file $1.summ for details)" $black
|
||||
echo -e $blue
|
||||
cat .runtest.log
|
||||
echo -e $black
|
||||
exit 1;
|
||||
fi
|
||||
|
||||
if [ `grep "FAILED THE TESTS OF ERROR-EXITS" $1.summ | wc -l` -gt 0 ]; then
|
||||
echo -e $red "Test $1 failed (FAILED THE TESTS OF ERROR-EXITS, read the file $1.summ for details)" $black
|
||||
echo -e $blue
|
||||
cat .runtest.log
|
||||
echo -e $black
|
||||
exit 1;
|
||||
fi
|
||||
fi
|
||||
echo -e $green Test $1 passed$black
|
||||
fi
|
||||
1021
cs440-acg/ext/eigen/blas/testing/sblat1.f
Normal file
1021
cs440-acg/ext/eigen/blas/testing/sblat1.f
Normal file
File diff suppressed because it is too large
Load Diff
34
cs440-acg/ext/eigen/blas/testing/sblat2.dat
Normal file
34
cs440-acg/ext/eigen/blas/testing/sblat2.dat
Normal file
@@ -0,0 +1,34 @@
|
||||
'sblat2.summ' NAME OF SUMMARY OUTPUT FILE
|
||||
6 UNIT NUMBER OF SUMMARY FILE
|
||||
'sblat2.snap' NAME OF SNAPSHOT OUTPUT FILE
|
||||
-1 UNIT NUMBER OF SNAPSHOT FILE (NOT USED IF .LT. 0)
|
||||
F LOGICAL FLAG, T TO REWIND SNAPSHOT FILE AFTER EACH RECORD.
|
||||
F LOGICAL FLAG, T TO STOP ON FAILURES.
|
||||
T LOGICAL FLAG, T TO TEST ERROR EXITS.
|
||||
16.0 THRESHOLD VALUE OF TEST RATIO
|
||||
6 NUMBER OF VALUES OF N
|
||||
0 1 2 3 5 9 VALUES OF N
|
||||
4 NUMBER OF VALUES OF K
|
||||
0 1 2 4 VALUES OF K
|
||||
4 NUMBER OF VALUES OF INCX AND INCY
|
||||
1 2 -1 -2 VALUES OF INCX AND INCY
|
||||
3 NUMBER OF VALUES OF ALPHA
|
||||
0.0 1.0 0.7 VALUES OF ALPHA
|
||||
3 NUMBER OF VALUES OF BETA
|
||||
0.0 1.0 0.9 VALUES OF BETA
|
||||
SGEMV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
SGBMV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
SSYMV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
SSBMV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
SSPMV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
STRMV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
STBMV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
STPMV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
STRSV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
STBSV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
STPSV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
SGER T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
SSYR T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
SSPR T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
SSYR2 T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
SSPR2 T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
3176
cs440-acg/ext/eigen/blas/testing/sblat2.f
Normal file
3176
cs440-acg/ext/eigen/blas/testing/sblat2.f
Normal file
File diff suppressed because it is too large
Load Diff
20
cs440-acg/ext/eigen/blas/testing/sblat3.dat
Normal file
20
cs440-acg/ext/eigen/blas/testing/sblat3.dat
Normal file
@@ -0,0 +1,20 @@
|
||||
'sblat3.summ' NAME OF SUMMARY OUTPUT FILE
|
||||
6 UNIT NUMBER OF SUMMARY FILE
|
||||
'sblat3.snap' NAME OF SNAPSHOT OUTPUT FILE
|
||||
-1 UNIT NUMBER OF SNAPSHOT FILE (NOT USED IF .LT. 0)
|
||||
F LOGICAL FLAG, T TO REWIND SNAPSHOT FILE AFTER EACH RECORD.
|
||||
F LOGICAL FLAG, T TO STOP ON FAILURES.
|
||||
T LOGICAL FLAG, T TO TEST ERROR EXITS.
|
||||
16.0 THRESHOLD VALUE OF TEST RATIO
|
||||
6 NUMBER OF VALUES OF N
|
||||
0 1 2 3 5 9 VALUES OF N
|
||||
3 NUMBER OF VALUES OF ALPHA
|
||||
0.0 1.0 0.7 VALUES OF ALPHA
|
||||
3 NUMBER OF VALUES OF BETA
|
||||
0.0 1.0 1.3 VALUES OF BETA
|
||||
SGEMM T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
SSYMM T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
STRMM T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
STRSM T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
SSYRK T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
SSYR2K T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
2873
cs440-acg/ext/eigen/blas/testing/sblat3.f
Normal file
2873
cs440-acg/ext/eigen/blas/testing/sblat3.f
Normal file
File diff suppressed because it is too large
Load Diff
724
cs440-acg/ext/eigen/blas/testing/zblat1.f
Normal file
724
cs440-acg/ext/eigen/blas/testing/zblat1.f
Normal file
@@ -0,0 +1,724 @@
|
||||
*> \brief \b ZBLAT1
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* PROGRAM ZBLAT1
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> Test program for the COMPLEX*16 Level 1 BLAS.
|
||||
*>
|
||||
*> Based upon the original BLAS test routine together with:
|
||||
*> F06GAF Example Program Text
|
||||
*> \endverbatim
|
||||
*
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \date April 2012
|
||||
*
|
||||
*> \ingroup complex16_blas_testing
|
||||
*
|
||||
* =====================================================================
|
||||
PROGRAM ZBLAT1
|
||||
*
|
||||
* -- Reference BLAS test routine (version 3.4.1) --
|
||||
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* April 2012
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
INTEGER NOUT
|
||||
PARAMETER (NOUT=6)
|
||||
* .. Scalars in Common ..
|
||||
INTEGER ICASE, INCX, INCY, MODE, N
|
||||
LOGICAL PASS
|
||||
* .. Local Scalars ..
|
||||
DOUBLE PRECISION SFAC
|
||||
INTEGER IC
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL CHECK1, CHECK2, HEADER
|
||||
* .. Common blocks ..
|
||||
COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS
|
||||
* .. Data statements ..
|
||||
DATA SFAC/9.765625D-4/
|
||||
* .. Executable Statements ..
|
||||
WRITE (NOUT,99999)
|
||||
DO 20 IC = 1, 10
|
||||
ICASE = IC
|
||||
CALL HEADER
|
||||
*
|
||||
* Initialize PASS, INCX, INCY, and MODE for a new case.
|
||||
* The value 9999 for INCX, INCY or MODE will appear in the
|
||||
* detailed output, if any, for cases that do not involve
|
||||
* these parameters.
|
||||
*
|
||||
PASS = .TRUE.
|
||||
INCX = 9999
|
||||
INCY = 9999
|
||||
MODE = 9999
|
||||
IF (ICASE.LE.5) THEN
|
||||
CALL CHECK2(SFAC)
|
||||
ELSE IF (ICASE.GE.6) THEN
|
||||
CALL CHECK1(SFAC)
|
||||
END IF
|
||||
* -- Print
|
||||
IF (PASS) WRITE (NOUT,99998)
|
||||
20 CONTINUE
|
||||
STOP
|
||||
*
|
||||
99999 FORMAT (' Complex BLAS Test Program Results',/1X)
|
||||
99998 FORMAT (' ----- PASS -----')
|
||||
END
|
||||
SUBROUTINE HEADER
|
||||
* .. Parameters ..
|
||||
INTEGER NOUT
|
||||
PARAMETER (NOUT=6)
|
||||
* .. Scalars in Common ..
|
||||
INTEGER ICASE, INCX, INCY, MODE, N
|
||||
LOGICAL PASS
|
||||
* .. Local Arrays ..
|
||||
CHARACTER*6 L(10)
|
||||
* .. Common blocks ..
|
||||
COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS
|
||||
* .. Data statements ..
|
||||
DATA L(1)/'ZDOTC '/
|
||||
DATA L(2)/'ZDOTU '/
|
||||
DATA L(3)/'ZAXPY '/
|
||||
DATA L(4)/'ZCOPY '/
|
||||
DATA L(5)/'ZSWAP '/
|
||||
DATA L(6)/'DZNRM2'/
|
||||
DATA L(7)/'DZASUM'/
|
||||
DATA L(8)/'ZSCAL '/
|
||||
DATA L(9)/'ZDSCAL'/
|
||||
DATA L(10)/'IZAMAX'/
|
||||
* .. Executable Statements ..
|
||||
WRITE (NOUT,99999) ICASE, L(ICASE)
|
||||
RETURN
|
||||
*
|
||||
99999 FORMAT (/' Test of subprogram number',I3,12X,A6)
|
||||
END
|
||||
SUBROUTINE CHECK1(SFAC)
|
||||
* .. Parameters ..
|
||||
INTEGER NOUT
|
||||
PARAMETER (NOUT=6)
|
||||
* .. Scalar Arguments ..
|
||||
DOUBLE PRECISION SFAC
|
||||
* .. Scalars in Common ..
|
||||
INTEGER ICASE, INCX, INCY, MODE, N
|
||||
LOGICAL PASS
|
||||
* .. Local Scalars ..
|
||||
COMPLEX*16 CA
|
||||
DOUBLE PRECISION SA
|
||||
INTEGER I, J, LEN, NP1
|
||||
* .. Local Arrays ..
|
||||
COMPLEX*16 CTRUE5(8,5,2), CTRUE6(8,5,2), CV(8,5,2), CX(8),
|
||||
+ MWPCS(5), MWPCT(5)
|
||||
DOUBLE PRECISION STRUE2(5), STRUE4(5)
|
||||
INTEGER ITRUE3(5)
|
||||
* .. External Functions ..
|
||||
DOUBLE PRECISION DZASUM, DZNRM2
|
||||
INTEGER IZAMAX
|
||||
EXTERNAL DZASUM, DZNRM2, IZAMAX
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL ZSCAL, ZDSCAL, CTEST, ITEST1, STEST1
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC MAX
|
||||
* .. Common blocks ..
|
||||
COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS
|
||||
* .. Data statements ..
|
||||
DATA SA, CA/0.3D0, (0.4D0,-0.7D0)/
|
||||
DATA ((CV(I,J,1),I=1,8),J=1,5)/(0.1D0,0.1D0),
|
||||
+ (1.0D0,2.0D0), (1.0D0,2.0D0), (1.0D0,2.0D0),
|
||||
+ (1.0D0,2.0D0), (1.0D0,2.0D0), (1.0D0,2.0D0),
|
||||
+ (1.0D0,2.0D0), (0.3D0,-0.4D0), (3.0D0,4.0D0),
|
||||
+ (3.0D0,4.0D0), (3.0D0,4.0D0), (3.0D0,4.0D0),
|
||||
+ (3.0D0,4.0D0), (3.0D0,4.0D0), (3.0D0,4.0D0),
|
||||
+ (0.1D0,-0.3D0), (0.5D0,-0.1D0), (5.0D0,6.0D0),
|
||||
+ (5.0D0,6.0D0), (5.0D0,6.0D0), (5.0D0,6.0D0),
|
||||
+ (5.0D0,6.0D0), (5.0D0,6.0D0), (0.1D0,0.1D0),
|
||||
+ (-0.6D0,0.1D0), (0.1D0,-0.3D0), (7.0D0,8.0D0),
|
||||
+ (7.0D0,8.0D0), (7.0D0,8.0D0), (7.0D0,8.0D0),
|
||||
+ (7.0D0,8.0D0), (0.3D0,0.1D0), (0.5D0,0.0D0),
|
||||
+ (0.0D0,0.5D0), (0.0D0,0.2D0), (2.0D0,3.0D0),
|
||||
+ (2.0D0,3.0D0), (2.0D0,3.0D0), (2.0D0,3.0D0)/
|
||||
DATA ((CV(I,J,2),I=1,8),J=1,5)/(0.1D0,0.1D0),
|
||||
+ (4.0D0,5.0D0), (4.0D0,5.0D0), (4.0D0,5.0D0),
|
||||
+ (4.0D0,5.0D0), (4.0D0,5.0D0), (4.0D0,5.0D0),
|
||||
+ (4.0D0,5.0D0), (0.3D0,-0.4D0), (6.0D0,7.0D0),
|
||||
+ (6.0D0,7.0D0), (6.0D0,7.0D0), (6.0D0,7.0D0),
|
||||
+ (6.0D0,7.0D0), (6.0D0,7.0D0), (6.0D0,7.0D0),
|
||||
+ (0.1D0,-0.3D0), (8.0D0,9.0D0), (0.5D0,-0.1D0),
|
||||
+ (2.0D0,5.0D0), (2.0D0,5.0D0), (2.0D0,5.0D0),
|
||||
+ (2.0D0,5.0D0), (2.0D0,5.0D0), (0.1D0,0.1D0),
|
||||
+ (3.0D0,6.0D0), (-0.6D0,0.1D0), (4.0D0,7.0D0),
|
||||
+ (0.1D0,-0.3D0), (7.0D0,2.0D0), (7.0D0,2.0D0),
|
||||
+ (7.0D0,2.0D0), (0.3D0,0.1D0), (5.0D0,8.0D0),
|
||||
+ (0.5D0,0.0D0), (6.0D0,9.0D0), (0.0D0,0.5D0),
|
||||
+ (8.0D0,3.0D0), (0.0D0,0.2D0), (9.0D0,4.0D0)/
|
||||
DATA STRUE2/0.0D0, 0.5D0, 0.6D0, 0.7D0, 0.8D0/
|
||||
DATA STRUE4/0.0D0, 0.7D0, 1.0D0, 1.3D0, 1.6D0/
|
||||
DATA ((CTRUE5(I,J,1),I=1,8),J=1,5)/(0.1D0,0.1D0),
|
||||
+ (1.0D0,2.0D0), (1.0D0,2.0D0), (1.0D0,2.0D0),
|
||||
+ (1.0D0,2.0D0), (1.0D0,2.0D0), (1.0D0,2.0D0),
|
||||
+ (1.0D0,2.0D0), (-0.16D0,-0.37D0), (3.0D0,4.0D0),
|
||||
+ (3.0D0,4.0D0), (3.0D0,4.0D0), (3.0D0,4.0D0),
|
||||
+ (3.0D0,4.0D0), (3.0D0,4.0D0), (3.0D0,4.0D0),
|
||||
+ (-0.17D0,-0.19D0), (0.13D0,-0.39D0),
|
||||
+ (5.0D0,6.0D0), (5.0D0,6.0D0), (5.0D0,6.0D0),
|
||||
+ (5.0D0,6.0D0), (5.0D0,6.0D0), (5.0D0,6.0D0),
|
||||
+ (0.11D0,-0.03D0), (-0.17D0,0.46D0),
|
||||
+ (-0.17D0,-0.19D0), (7.0D0,8.0D0), (7.0D0,8.0D0),
|
||||
+ (7.0D0,8.0D0), (7.0D0,8.0D0), (7.0D0,8.0D0),
|
||||
+ (0.19D0,-0.17D0), (0.20D0,-0.35D0),
|
||||
+ (0.35D0,0.20D0), (0.14D0,0.08D0),
|
||||
+ (2.0D0,3.0D0), (2.0D0,3.0D0), (2.0D0,3.0D0),
|
||||
+ (2.0D0,3.0D0)/
|
||||
DATA ((CTRUE5(I,J,2),I=1,8),J=1,5)/(0.1D0,0.1D0),
|
||||
+ (4.0D0,5.0D0), (4.0D0,5.0D0), (4.0D0,5.0D0),
|
||||
+ (4.0D0,5.0D0), (4.0D0,5.0D0), (4.0D0,5.0D0),
|
||||
+ (4.0D0,5.0D0), (-0.16D0,-0.37D0), (6.0D0,7.0D0),
|
||||
+ (6.0D0,7.0D0), (6.0D0,7.0D0), (6.0D0,7.0D0),
|
||||
+ (6.0D0,7.0D0), (6.0D0,7.0D0), (6.0D0,7.0D0),
|
||||
+ (-0.17D0,-0.19D0), (8.0D0,9.0D0),
|
||||
+ (0.13D0,-0.39D0), (2.0D0,5.0D0), (2.0D0,5.0D0),
|
||||
+ (2.0D0,5.0D0), (2.0D0,5.0D0), (2.0D0,5.0D0),
|
||||
+ (0.11D0,-0.03D0), (3.0D0,6.0D0),
|
||||
+ (-0.17D0,0.46D0), (4.0D0,7.0D0),
|
||||
+ (-0.17D0,-0.19D0), (7.0D0,2.0D0), (7.0D0,2.0D0),
|
||||
+ (7.0D0,2.0D0), (0.19D0,-0.17D0), (5.0D0,8.0D0),
|
||||
+ (0.20D0,-0.35D0), (6.0D0,9.0D0),
|
||||
+ (0.35D0,0.20D0), (8.0D0,3.0D0),
|
||||
+ (0.14D0,0.08D0), (9.0D0,4.0D0)/
|
||||
DATA ((CTRUE6(I,J,1),I=1,8),J=1,5)/(0.1D0,0.1D0),
|
||||
+ (1.0D0,2.0D0), (1.0D0,2.0D0), (1.0D0,2.0D0),
|
||||
+ (1.0D0,2.0D0), (1.0D0,2.0D0), (1.0D0,2.0D0),
|
||||
+ (1.0D0,2.0D0), (0.09D0,-0.12D0), (3.0D0,4.0D0),
|
||||
+ (3.0D0,4.0D0), (3.0D0,4.0D0), (3.0D0,4.0D0),
|
||||
+ (3.0D0,4.0D0), (3.0D0,4.0D0), (3.0D0,4.0D0),
|
||||
+ (0.03D0,-0.09D0), (0.15D0,-0.03D0),
|
||||
+ (5.0D0,6.0D0), (5.0D0,6.0D0), (5.0D0,6.0D0),
|
||||
+ (5.0D0,6.0D0), (5.0D0,6.0D0), (5.0D0,6.0D0),
|
||||
+ (0.03D0,0.03D0), (-0.18D0,0.03D0),
|
||||
+ (0.03D0,-0.09D0), (7.0D0,8.0D0), (7.0D0,8.0D0),
|
||||
+ (7.0D0,8.0D0), (7.0D0,8.0D0), (7.0D0,8.0D0),
|
||||
+ (0.09D0,0.03D0), (0.15D0,0.00D0),
|
||||
+ (0.00D0,0.15D0), (0.00D0,0.06D0), (2.0D0,3.0D0),
|
||||
+ (2.0D0,3.0D0), (2.0D0,3.0D0), (2.0D0,3.0D0)/
|
||||
DATA ((CTRUE6(I,J,2),I=1,8),J=1,5)/(0.1D0,0.1D0),
|
||||
+ (4.0D0,5.0D0), (4.0D0,5.0D0), (4.0D0,5.0D0),
|
||||
+ (4.0D0,5.0D0), (4.0D0,5.0D0), (4.0D0,5.0D0),
|
||||
+ (4.0D0,5.0D0), (0.09D0,-0.12D0), (6.0D0,7.0D0),
|
||||
+ (6.0D0,7.0D0), (6.0D0,7.0D0), (6.0D0,7.0D0),
|
||||
+ (6.0D0,7.0D0), (6.0D0,7.0D0), (6.0D0,7.0D0),
|
||||
+ (0.03D0,-0.09D0), (8.0D0,9.0D0),
|
||||
+ (0.15D0,-0.03D0), (2.0D0,5.0D0), (2.0D0,5.0D0),
|
||||
+ (2.0D0,5.0D0), (2.0D0,5.0D0), (2.0D0,5.0D0),
|
||||
+ (0.03D0,0.03D0), (3.0D0,6.0D0),
|
||||
+ (-0.18D0,0.03D0), (4.0D0,7.0D0),
|
||||
+ (0.03D0,-0.09D0), (7.0D0,2.0D0), (7.0D0,2.0D0),
|
||||
+ (7.0D0,2.0D0), (0.09D0,0.03D0), (5.0D0,8.0D0),
|
||||
+ (0.15D0,0.00D0), (6.0D0,9.0D0), (0.00D0,0.15D0),
|
||||
+ (8.0D0,3.0D0), (0.00D0,0.06D0), (9.0D0,4.0D0)/
|
||||
DATA ITRUE3/0, 1, 2, 2, 2/
|
||||
* .. Executable Statements ..
|
||||
DO 60 INCX = 1, 2
|
||||
DO 40 NP1 = 1, 5
|
||||
N = NP1 - 1
|
||||
LEN = 2*MAX(N,1)
|
||||
* .. Set vector arguments ..
|
||||
DO 20 I = 1, LEN
|
||||
CX(I) = CV(I,NP1,INCX)
|
||||
20 CONTINUE
|
||||
IF (ICASE.EQ.6) THEN
|
||||
* .. DZNRM2 ..
|
||||
CALL STEST1(DZNRM2(N,CX,INCX),STRUE2(NP1),STRUE2(NP1),
|
||||
+ SFAC)
|
||||
ELSE IF (ICASE.EQ.7) THEN
|
||||
* .. DZASUM ..
|
||||
CALL STEST1(DZASUM(N,CX,INCX),STRUE4(NP1),STRUE4(NP1),
|
||||
+ SFAC)
|
||||
ELSE IF (ICASE.EQ.8) THEN
|
||||
* .. ZSCAL ..
|
||||
CALL ZSCAL(N,CA,CX,INCX)
|
||||
CALL CTEST(LEN,CX,CTRUE5(1,NP1,INCX),CTRUE5(1,NP1,INCX),
|
||||
+ SFAC)
|
||||
ELSE IF (ICASE.EQ.9) THEN
|
||||
* .. ZDSCAL ..
|
||||
CALL ZDSCAL(N,SA,CX,INCX)
|
||||
CALL CTEST(LEN,CX,CTRUE6(1,NP1,INCX),CTRUE6(1,NP1,INCX),
|
||||
+ SFAC)
|
||||
ELSE IF (ICASE.EQ.10) THEN
|
||||
* .. IZAMAX ..
|
||||
CALL ITEST1(IZAMAX(N,CX,INCX),ITRUE3(NP1))
|
||||
ELSE
|
||||
WRITE (NOUT,*) ' Shouldn''t be here in CHECK1'
|
||||
STOP
|
||||
END IF
|
||||
*
|
||||
40 CONTINUE
|
||||
60 CONTINUE
|
||||
*
|
||||
INCX = 1
|
||||
IF (ICASE.EQ.8) THEN
|
||||
* ZSCAL
|
||||
* Add a test for alpha equal to zero.
|
||||
CA = (0.0D0,0.0D0)
|
||||
DO 80 I = 1, 5
|
||||
MWPCT(I) = (0.0D0,0.0D0)
|
||||
MWPCS(I) = (1.0D0,1.0D0)
|
||||
80 CONTINUE
|
||||
CALL ZSCAL(5,CA,CX,INCX)
|
||||
CALL CTEST(5,CX,MWPCT,MWPCS,SFAC)
|
||||
ELSE IF (ICASE.EQ.9) THEN
|
||||
* ZDSCAL
|
||||
* Add a test for alpha equal to zero.
|
||||
SA = 0.0D0
|
||||
DO 100 I = 1, 5
|
||||
MWPCT(I) = (0.0D0,0.0D0)
|
||||
MWPCS(I) = (1.0D0,1.0D0)
|
||||
100 CONTINUE
|
||||
CALL ZDSCAL(5,SA,CX,INCX)
|
||||
CALL CTEST(5,CX,MWPCT,MWPCS,SFAC)
|
||||
* Add a test for alpha equal to one.
|
||||
SA = 1.0D0
|
||||
DO 120 I = 1, 5
|
||||
MWPCT(I) = CX(I)
|
||||
MWPCS(I) = CX(I)
|
||||
120 CONTINUE
|
||||
CALL ZDSCAL(5,SA,CX,INCX)
|
||||
CALL CTEST(5,CX,MWPCT,MWPCS,SFAC)
|
||||
* Add a test for alpha equal to minus one.
|
||||
SA = -1.0D0
|
||||
DO 140 I = 1, 5
|
||||
MWPCT(I) = -CX(I)
|
||||
MWPCS(I) = -CX(I)
|
||||
140 CONTINUE
|
||||
CALL ZDSCAL(5,SA,CX,INCX)
|
||||
CALL CTEST(5,CX,MWPCT,MWPCS,SFAC)
|
||||
END IF
|
||||
RETURN
|
||||
END
|
||||
SUBROUTINE CHECK2(SFAC)
|
||||
* .. Parameters ..
|
||||
INTEGER NOUT
|
||||
PARAMETER (NOUT=6)
|
||||
* .. Scalar Arguments ..
|
||||
DOUBLE PRECISION SFAC
|
||||
* .. Scalars in Common ..
|
||||
INTEGER ICASE, INCX, INCY, MODE, N
|
||||
LOGICAL PASS
|
||||
* .. Local Scalars ..
|
||||
COMPLEX*16 CA
|
||||
INTEGER I, J, KI, KN, KSIZE, LENX, LENY, MX, MY
|
||||
* .. Local Arrays ..
|
||||
COMPLEX*16 CDOT(1), CSIZE1(4), CSIZE2(7,2), CSIZE3(14),
|
||||
+ CT10X(7,4,4), CT10Y(7,4,4), CT6(4,4), CT7(4,4),
|
||||
+ CT8(7,4,4), CX(7), CX1(7), CY(7), CY1(7)
|
||||
INTEGER INCXS(4), INCYS(4), LENS(4,2), NS(4)
|
||||
* .. External Functions ..
|
||||
COMPLEX*16 ZDOTC, ZDOTU
|
||||
EXTERNAL ZDOTC, ZDOTU
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL ZAXPY, ZCOPY, ZSWAP, CTEST
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC ABS, MIN
|
||||
* .. Common blocks ..
|
||||
COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS
|
||||
* .. Data statements ..
|
||||
DATA CA/(0.4D0,-0.7D0)/
|
||||
DATA INCXS/1, 2, -2, -1/
|
||||
DATA INCYS/1, -2, 1, -2/
|
||||
DATA LENS/1, 1, 2, 4, 1, 1, 3, 7/
|
||||
DATA NS/0, 1, 2, 4/
|
||||
DATA CX1/(0.7D0,-0.8D0), (-0.4D0,-0.7D0),
|
||||
+ (-0.1D0,-0.9D0), (0.2D0,-0.8D0),
|
||||
+ (-0.9D0,-0.4D0), (0.1D0,0.4D0), (-0.6D0,0.6D0)/
|
||||
DATA CY1/(0.6D0,-0.6D0), (-0.9D0,0.5D0),
|
||||
+ (0.7D0,-0.6D0), (0.1D0,-0.5D0), (-0.1D0,-0.2D0),
|
||||
+ (-0.5D0,-0.3D0), (0.8D0,-0.7D0)/
|
||||
DATA ((CT8(I,J,1),I=1,7),J=1,4)/(0.6D0,-0.6D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.32D0,-1.41D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.32D0,-1.41D0),
|
||||
+ (-1.55D0,0.5D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.32D0,-1.41D0), (-1.55D0,0.5D0),
|
||||
+ (0.03D0,-0.89D0), (-0.38D0,-0.96D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0)/
|
||||
DATA ((CT8(I,J,2),I=1,7),J=1,4)/(0.6D0,-0.6D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.32D0,-1.41D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (-0.07D0,-0.89D0),
|
||||
+ (-0.9D0,0.5D0), (0.42D0,-1.41D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.78D0,0.06D0), (-0.9D0,0.5D0),
|
||||
+ (0.06D0,-0.13D0), (0.1D0,-0.5D0),
|
||||
+ (-0.77D0,-0.49D0), (-0.5D0,-0.3D0),
|
||||
+ (0.52D0,-1.51D0)/
|
||||
DATA ((CT8(I,J,3),I=1,7),J=1,4)/(0.6D0,-0.6D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.32D0,-1.41D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (-0.07D0,-0.89D0),
|
||||
+ (-1.18D0,-0.31D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.78D0,0.06D0), (-1.54D0,0.97D0),
|
||||
+ (0.03D0,-0.89D0), (-0.18D0,-1.31D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0)/
|
||||
DATA ((CT8(I,J,4),I=1,7),J=1,4)/(0.6D0,-0.6D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.32D0,-1.41D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.32D0,-1.41D0), (-0.9D0,0.5D0),
|
||||
+ (0.05D0,-0.6D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.32D0,-1.41D0),
|
||||
+ (-0.9D0,0.5D0), (0.05D0,-0.6D0), (0.1D0,-0.5D0),
|
||||
+ (-0.77D0,-0.49D0), (-0.5D0,-0.3D0),
|
||||
+ (0.32D0,-1.16D0)/
|
||||
DATA CT7/(0.0D0,0.0D0), (-0.06D0,-0.90D0),
|
||||
+ (0.65D0,-0.47D0), (-0.34D0,-1.22D0),
|
||||
+ (0.0D0,0.0D0), (-0.06D0,-0.90D0),
|
||||
+ (-0.59D0,-1.46D0), (-1.04D0,-0.04D0),
|
||||
+ (0.0D0,0.0D0), (-0.06D0,-0.90D0),
|
||||
+ (-0.83D0,0.59D0), (0.07D0,-0.37D0),
|
||||
+ (0.0D0,0.0D0), (-0.06D0,-0.90D0),
|
||||
+ (-0.76D0,-1.15D0), (-1.33D0,-1.82D0)/
|
||||
DATA CT6/(0.0D0,0.0D0), (0.90D0,0.06D0),
|
||||
+ (0.91D0,-0.77D0), (1.80D0,-0.10D0),
|
||||
+ (0.0D0,0.0D0), (0.90D0,0.06D0), (1.45D0,0.74D0),
|
||||
+ (0.20D0,0.90D0), (0.0D0,0.0D0), (0.90D0,0.06D0),
|
||||
+ (-0.55D0,0.23D0), (0.83D0,-0.39D0),
|
||||
+ (0.0D0,0.0D0), (0.90D0,0.06D0), (1.04D0,0.79D0),
|
||||
+ (1.95D0,1.22D0)/
|
||||
DATA ((CT10X(I,J,1),I=1,7),J=1,4)/(0.7D0,-0.8D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.6D0,-0.6D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.6D0,-0.6D0), (-0.9D0,0.5D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.6D0,-0.6D0),
|
||||
+ (-0.9D0,0.5D0), (0.7D0,-0.6D0), (0.1D0,-0.5D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0)/
|
||||
DATA ((CT10X(I,J,2),I=1,7),J=1,4)/(0.7D0,-0.8D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.6D0,-0.6D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.7D0,-0.6D0), (-0.4D0,-0.7D0),
|
||||
+ (0.6D0,-0.6D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.8D0,-0.7D0),
|
||||
+ (-0.4D0,-0.7D0), (-0.1D0,-0.2D0),
|
||||
+ (0.2D0,-0.8D0), (0.7D0,-0.6D0), (0.1D0,0.4D0),
|
||||
+ (0.6D0,-0.6D0)/
|
||||
DATA ((CT10X(I,J,3),I=1,7),J=1,4)/(0.7D0,-0.8D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.6D0,-0.6D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (-0.9D0,0.5D0), (-0.4D0,-0.7D0),
|
||||
+ (0.6D0,-0.6D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.1D0,-0.5D0),
|
||||
+ (-0.4D0,-0.7D0), (0.7D0,-0.6D0), (0.2D0,-0.8D0),
|
||||
+ (-0.9D0,0.5D0), (0.1D0,0.4D0), (0.6D0,-0.6D0)/
|
||||
DATA ((CT10X(I,J,4),I=1,7),J=1,4)/(0.7D0,-0.8D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.6D0,-0.6D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.6D0,-0.6D0), (0.7D0,-0.6D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.6D0,-0.6D0),
|
||||
+ (0.7D0,-0.6D0), (-0.1D0,-0.2D0), (0.8D0,-0.7D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0)/
|
||||
DATA ((CT10Y(I,J,1),I=1,7),J=1,4)/(0.6D0,-0.6D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.7D0,-0.8D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.7D0,-0.8D0), (-0.4D0,-0.7D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.7D0,-0.8D0),
|
||||
+ (-0.4D0,-0.7D0), (-0.1D0,-0.9D0),
|
||||
+ (0.2D0,-0.8D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0)/
|
||||
DATA ((CT10Y(I,J,2),I=1,7),J=1,4)/(0.6D0,-0.6D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.7D0,-0.8D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (-0.1D0,-0.9D0), (-0.9D0,0.5D0),
|
||||
+ (0.7D0,-0.8D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (-0.6D0,0.6D0),
|
||||
+ (-0.9D0,0.5D0), (-0.9D0,-0.4D0), (0.1D0,-0.5D0),
|
||||
+ (-0.1D0,-0.9D0), (-0.5D0,-0.3D0),
|
||||
+ (0.7D0,-0.8D0)/
|
||||
DATA ((CT10Y(I,J,3),I=1,7),J=1,4)/(0.6D0,-0.6D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.7D0,-0.8D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (-0.1D0,-0.9D0), (0.7D0,-0.8D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (-0.6D0,0.6D0),
|
||||
+ (-0.9D0,-0.4D0), (-0.1D0,-0.9D0),
|
||||
+ (0.7D0,-0.8D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0)/
|
||||
DATA ((CT10Y(I,J,4),I=1,7),J=1,4)/(0.6D0,-0.6D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.7D0,-0.8D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.7D0,-0.8D0), (-0.9D0,0.5D0),
|
||||
+ (-0.4D0,-0.7D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.7D0,-0.8D0),
|
||||
+ (-0.9D0,0.5D0), (-0.4D0,-0.7D0), (0.1D0,-0.5D0),
|
||||
+ (-0.1D0,-0.9D0), (-0.5D0,-0.3D0),
|
||||
+ (0.2D0,-0.8D0)/
|
||||
DATA CSIZE1/(0.0D0,0.0D0), (0.9D0,0.9D0),
|
||||
+ (1.63D0,1.73D0), (2.90D0,2.78D0)/
|
||||
DATA CSIZE3/(0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (1.17D0,1.17D0),
|
||||
+ (1.17D0,1.17D0), (1.17D0,1.17D0),
|
||||
+ (1.17D0,1.17D0), (1.17D0,1.17D0),
|
||||
+ (1.17D0,1.17D0), (1.17D0,1.17D0)/
|
||||
DATA CSIZE2/(0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (0.0D0,0.0D0),
|
||||
+ (0.0D0,0.0D0), (0.0D0,0.0D0), (1.54D0,1.54D0),
|
||||
+ (1.54D0,1.54D0), (1.54D0,1.54D0),
|
||||
+ (1.54D0,1.54D0), (1.54D0,1.54D0),
|
||||
+ (1.54D0,1.54D0), (1.54D0,1.54D0)/
|
||||
* .. Executable Statements ..
|
||||
DO 60 KI = 1, 4
|
||||
INCX = INCXS(KI)
|
||||
INCY = INCYS(KI)
|
||||
MX = ABS(INCX)
|
||||
MY = ABS(INCY)
|
||||
*
|
||||
DO 40 KN = 1, 4
|
||||
N = NS(KN)
|
||||
KSIZE = MIN(2,KN)
|
||||
LENX = LENS(KN,MX)
|
||||
LENY = LENS(KN,MY)
|
||||
* .. initialize all argument arrays ..
|
||||
DO 20 I = 1, 7
|
||||
CX(I) = CX1(I)
|
||||
CY(I) = CY1(I)
|
||||
20 CONTINUE
|
||||
IF (ICASE.EQ.1) THEN
|
||||
* .. ZDOTC ..
|
||||
CDOT(1) = ZDOTC(N,CX,INCX,CY,INCY)
|
||||
CALL CTEST(1,CDOT,CT6(KN,KI),CSIZE1(KN),SFAC)
|
||||
ELSE IF (ICASE.EQ.2) THEN
|
||||
* .. ZDOTU ..
|
||||
CDOT(1) = ZDOTU(N,CX,INCX,CY,INCY)
|
||||
CALL CTEST(1,CDOT,CT7(KN,KI),CSIZE1(KN),SFAC)
|
||||
ELSE IF (ICASE.EQ.3) THEN
|
||||
* .. ZAXPY ..
|
||||
CALL ZAXPY(N,CA,CX,INCX,CY,INCY)
|
||||
CALL CTEST(LENY,CY,CT8(1,KN,KI),CSIZE2(1,KSIZE),SFAC)
|
||||
ELSE IF (ICASE.EQ.4) THEN
|
||||
* .. ZCOPY ..
|
||||
CALL ZCOPY(N,CX,INCX,CY,INCY)
|
||||
CALL CTEST(LENY,CY,CT10Y(1,KN,KI),CSIZE3,1.0D0)
|
||||
ELSE IF (ICASE.EQ.5) THEN
|
||||
* .. ZSWAP ..
|
||||
CALL ZSWAP(N,CX,INCX,CY,INCY)
|
||||
CALL CTEST(LENX,CX,CT10X(1,KN,KI),CSIZE3,1.0D0)
|
||||
CALL CTEST(LENY,CY,CT10Y(1,KN,KI),CSIZE3,1.0D0)
|
||||
ELSE
|
||||
WRITE (NOUT,*) ' Shouldn''t be here in CHECK2'
|
||||
STOP
|
||||
END IF
|
||||
*
|
||||
40 CONTINUE
|
||||
60 CONTINUE
|
||||
RETURN
|
||||
END
|
||||
SUBROUTINE STEST(LEN,SCOMP,STRUE,SSIZE,SFAC)
|
||||
* ********************************* STEST **************************
|
||||
*
|
||||
* THIS SUBR COMPARES ARRAYS SCOMP() AND STRUE() OF LENGTH LEN TO
|
||||
* SEE IF THE TERM BY TERM DIFFERENCES, MULTIPLIED BY SFAC, ARE
|
||||
* NEGLIGIBLE.
|
||||
*
|
||||
* C. L. LAWSON, JPL, 1974 DEC 10
|
||||
*
|
||||
* .. Parameters ..
|
||||
INTEGER NOUT
|
||||
DOUBLE PRECISION ZERO
|
||||
PARAMETER (NOUT=6, ZERO=0.0D0)
|
||||
* .. Scalar Arguments ..
|
||||
DOUBLE PRECISION SFAC
|
||||
INTEGER LEN
|
||||
* .. Array Arguments ..
|
||||
DOUBLE PRECISION SCOMP(LEN), SSIZE(LEN), STRUE(LEN)
|
||||
* .. Scalars in Common ..
|
||||
INTEGER ICASE, INCX, INCY, MODE, N
|
||||
LOGICAL PASS
|
||||
* .. Local Scalars ..
|
||||
DOUBLE PRECISION SD
|
||||
INTEGER I
|
||||
* .. External Functions ..
|
||||
DOUBLE PRECISION SDIFF
|
||||
EXTERNAL SDIFF
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC ABS
|
||||
* .. Common blocks ..
|
||||
COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS
|
||||
* .. Executable Statements ..
|
||||
*
|
||||
DO 40 I = 1, LEN
|
||||
SD = SCOMP(I) - STRUE(I)
|
||||
IF (ABS(SFAC*SD) .LE. ABS(SSIZE(I))*EPSILON(ZERO))
|
||||
+ GO TO 40
|
||||
*
|
||||
* HERE SCOMP(I) IS NOT CLOSE TO STRUE(I).
|
||||
*
|
||||
IF ( .NOT. PASS) GO TO 20
|
||||
* PRINT FAIL MESSAGE AND HEADER.
|
||||
PASS = .FALSE.
|
||||
WRITE (NOUT,99999)
|
||||
WRITE (NOUT,99998)
|
||||
20 WRITE (NOUT,99997) ICASE, N, INCX, INCY, MODE, I, SCOMP(I),
|
||||
+ STRUE(I), SD, SSIZE(I)
|
||||
40 CONTINUE
|
||||
RETURN
|
||||
*
|
||||
99999 FORMAT (' FAIL')
|
||||
99998 FORMAT (/' CASE N INCX INCY MODE I ',
|
||||
+ ' COMP(I) TRUE(I) DIFFERENCE',
|
||||
+ ' SIZE(I)',/1X)
|
||||
99997 FORMAT (1X,I4,I3,3I5,I3,2D36.8,2D12.4)
|
||||
END
|
||||
SUBROUTINE STEST1(SCOMP1,STRUE1,SSIZE,SFAC)
|
||||
* ************************* STEST1 *****************************
|
||||
*
|
||||
* THIS IS AN INTERFACE SUBROUTINE TO ACCOMODATE THE FORTRAN
|
||||
* REQUIREMENT THAT WHEN A DUMMY ARGUMENT IS AN ARRAY, THE
|
||||
* ACTUAL ARGUMENT MUST ALSO BE AN ARRAY OR AN ARRAY ELEMENT.
|
||||
*
|
||||
* C.L. LAWSON, JPL, 1978 DEC 6
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
DOUBLE PRECISION SCOMP1, SFAC, STRUE1
|
||||
* .. Array Arguments ..
|
||||
DOUBLE PRECISION SSIZE(*)
|
||||
* .. Local Arrays ..
|
||||
DOUBLE PRECISION SCOMP(1), STRUE(1)
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL STEST
|
||||
* .. Executable Statements ..
|
||||
*
|
||||
SCOMP(1) = SCOMP1
|
||||
STRUE(1) = STRUE1
|
||||
CALL STEST(1,SCOMP,STRUE,SSIZE,SFAC)
|
||||
*
|
||||
RETURN
|
||||
END
|
||||
DOUBLE PRECISION FUNCTION SDIFF(SA,SB)
|
||||
* ********************************* SDIFF **************************
|
||||
* COMPUTES DIFFERENCE OF TWO NUMBERS. C. L. LAWSON, JPL 1974 FEB 15
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
DOUBLE PRECISION SA, SB
|
||||
* .. Executable Statements ..
|
||||
SDIFF = SA - SB
|
||||
RETURN
|
||||
END
|
||||
SUBROUTINE CTEST(LEN,CCOMP,CTRUE,CSIZE,SFAC)
|
||||
* **************************** CTEST *****************************
|
||||
*
|
||||
* C.L. LAWSON, JPL, 1978 DEC 6
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
DOUBLE PRECISION SFAC
|
||||
INTEGER LEN
|
||||
* .. Array Arguments ..
|
||||
COMPLEX*16 CCOMP(LEN), CSIZE(LEN), CTRUE(LEN)
|
||||
* .. Local Scalars ..
|
||||
INTEGER I
|
||||
* .. Local Arrays ..
|
||||
DOUBLE PRECISION SCOMP(20), SSIZE(20), STRUE(20)
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL STEST
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC DIMAG, DBLE
|
||||
* .. Executable Statements ..
|
||||
DO 20 I = 1, LEN
|
||||
SCOMP(2*I-1) = DBLE(CCOMP(I))
|
||||
SCOMP(2*I) = DIMAG(CCOMP(I))
|
||||
STRUE(2*I-1) = DBLE(CTRUE(I))
|
||||
STRUE(2*I) = DIMAG(CTRUE(I))
|
||||
SSIZE(2*I-1) = DBLE(CSIZE(I))
|
||||
SSIZE(2*I) = DIMAG(CSIZE(I))
|
||||
20 CONTINUE
|
||||
*
|
||||
CALL STEST(2*LEN,SCOMP,STRUE,SSIZE,SFAC)
|
||||
RETURN
|
||||
END
|
||||
SUBROUTINE ITEST1(ICOMP,ITRUE)
|
||||
* ********************************* ITEST1 *************************
|
||||
*
|
||||
* THIS SUBROUTINE COMPARES THE VARIABLES ICOMP AND ITRUE FOR
|
||||
* EQUALITY.
|
||||
* C. L. LAWSON, JPL, 1974 DEC 10
|
||||
*
|
||||
* .. Parameters ..
|
||||
INTEGER NOUT
|
||||
PARAMETER (NOUT=6)
|
||||
* .. Scalar Arguments ..
|
||||
INTEGER ICOMP, ITRUE
|
||||
* .. Scalars in Common ..
|
||||
INTEGER ICASE, INCX, INCY, MODE, N
|
||||
LOGICAL PASS
|
||||
* .. Local Scalars ..
|
||||
INTEGER ID
|
||||
* .. Common blocks ..
|
||||
COMMON /COMBLA/ICASE, N, INCX, INCY, MODE, PASS
|
||||
* .. Executable Statements ..
|
||||
IF (ICOMP.EQ.ITRUE) GO TO 40
|
||||
*
|
||||
* HERE ICOMP IS NOT EQUAL TO ITRUE.
|
||||
*
|
||||
IF ( .NOT. PASS) GO TO 20
|
||||
* PRINT FAIL MESSAGE AND HEADER.
|
||||
PASS = .FALSE.
|
||||
WRITE (NOUT,99999)
|
||||
WRITE (NOUT,99998)
|
||||
20 ID = ICOMP - ITRUE
|
||||
WRITE (NOUT,99997) ICASE, N, INCX, INCY, MODE, ICOMP, ITRUE, ID
|
||||
40 CONTINUE
|
||||
RETURN
|
||||
*
|
||||
99999 FORMAT (' FAIL')
|
||||
99998 FORMAT (/' CASE N INCX INCY MODE ',
|
||||
+ ' COMP TRUE DIFFERENCE',
|
||||
+ /1X)
|
||||
99997 FORMAT (1X,I4,I3,3I5,2I36,I12)
|
||||
END
|
||||
35
cs440-acg/ext/eigen/blas/testing/zblat2.dat
Normal file
35
cs440-acg/ext/eigen/blas/testing/zblat2.dat
Normal file
@@ -0,0 +1,35 @@
|
||||
'zblat2.summ' NAME OF SUMMARY OUTPUT FILE
|
||||
6 UNIT NUMBER OF SUMMARY FILE
|
||||
'cbla2t.snap' NAME OF SNAPSHOT OUTPUT FILE
|
||||
-1 UNIT NUMBER OF SNAPSHOT FILE (NOT USED IF .LT. 0)
|
||||
F LOGICAL FLAG, T TO REWIND SNAPSHOT FILE AFTER EACH RECORD.
|
||||
F LOGICAL FLAG, T TO STOP ON FAILURES.
|
||||
T LOGICAL FLAG, T TO TEST ERROR EXITS.
|
||||
16.0 THRESHOLD VALUE OF TEST RATIO
|
||||
6 NUMBER OF VALUES OF N
|
||||
0 1 2 3 5 9 VALUES OF N
|
||||
4 NUMBER OF VALUES OF K
|
||||
0 1 2 4 VALUES OF K
|
||||
4 NUMBER OF VALUES OF INCX AND INCY
|
||||
1 2 -1 -2 VALUES OF INCX AND INCY
|
||||
3 NUMBER OF VALUES OF ALPHA
|
||||
(0.0,0.0) (1.0,0.0) (0.7,-0.9) VALUES OF ALPHA
|
||||
3 NUMBER OF VALUES OF BETA
|
||||
(0.0,0.0) (1.0,0.0) (1.3,-1.1) VALUES OF BETA
|
||||
ZGEMV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
ZGBMV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
ZHEMV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
ZHBMV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
ZHPMV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
ZTRMV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
ZTBMV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
ZTPMV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
ZTRSV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
ZTBSV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
ZTPSV T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
ZGERC T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
ZGERU T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
ZHER T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
ZHPR T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
ZHER2 T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
ZHPR2 T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
3287
cs440-acg/ext/eigen/blas/testing/zblat2.f
Normal file
3287
cs440-acg/ext/eigen/blas/testing/zblat2.f
Normal file
File diff suppressed because it is too large
Load Diff
23
cs440-acg/ext/eigen/blas/testing/zblat3.dat
Normal file
23
cs440-acg/ext/eigen/blas/testing/zblat3.dat
Normal file
@@ -0,0 +1,23 @@
|
||||
'zblat3.summ' NAME OF SUMMARY OUTPUT FILE
|
||||
6 UNIT NUMBER OF SUMMARY FILE
|
||||
'zblat3.snap' NAME OF SNAPSHOT OUTPUT FILE
|
||||
-1 UNIT NUMBER OF SNAPSHOT FILE (NOT USED IF .LT. 0)
|
||||
F LOGICAL FLAG, T TO REWIND SNAPSHOT FILE AFTER EACH RECORD.
|
||||
F LOGICAL FLAG, T TO STOP ON FAILURES.
|
||||
F LOGICAL FLAG, T TO TEST ERROR EXITS.
|
||||
16.0 THRESHOLD VALUE OF TEST RATIO
|
||||
6 NUMBER OF VALUES OF N
|
||||
0 1 2 3 5 9 VALUES OF N
|
||||
3 NUMBER OF VALUES OF ALPHA
|
||||
(0.0,0.0) (1.0,0.0) (0.7,-0.9) VALUES OF ALPHA
|
||||
3 NUMBER OF VALUES OF BETA
|
||||
(0.0,0.0) (1.0,0.0) (1.3,-1.1) VALUES OF BETA
|
||||
ZGEMM T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
ZHEMM T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
ZSYMM T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
ZTRMM T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
ZTRSM T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
ZHERK T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
ZSYRK T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
ZHER2K T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
ZSYR2K T PUT F FOR NO TEST. SAME COLUMNS.
|
||||
3502
cs440-acg/ext/eigen/blas/testing/zblat3.f
Normal file
3502
cs440-acg/ext/eigen/blas/testing/zblat3.f
Normal file
File diff suppressed because it is too large
Load Diff
23
cs440-acg/ext/eigen/blas/xerbla.cpp
Normal file
23
cs440-acg/ext/eigen/blas/xerbla.cpp
Normal file
@@ -0,0 +1,23 @@
|
||||
|
||||
#include <stdio.h>
|
||||
|
||||
#if (defined __GNUC__) && (!defined __MINGW32__) && (!defined __CYGWIN__)
|
||||
#define EIGEN_WEAK_LINKING __attribute__ ((weak))
|
||||
#else
|
||||
#define EIGEN_WEAK_LINKING
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C"
|
||||
{
|
||||
#endif
|
||||
|
||||
EIGEN_WEAK_LINKING int xerbla_(const char * msg, int *info, int)
|
||||
{
|
||||
printf("Eigen BLAS ERROR #%i: %s\n", *info, msg );
|
||||
return 0;
|
||||
}
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
Reference in New Issue
Block a user