Disabled external gits
This commit is contained in:
		
							
								
								
									
										73
									
								
								cs440-acg/ext/eigen/Eigen/OrderingMethods
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										73
									
								
								cs440-acg/ext/eigen/Eigen/OrderingMethods
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,73 @@
 | 
			
		||||
// This file is part of Eigen, a lightweight C++ template library
 | 
			
		||||
// for linear algebra.
 | 
			
		||||
//
 | 
			
		||||
// This Source Code Form is subject to the terms of the Mozilla
 | 
			
		||||
// Public License v. 2.0. If a copy of the MPL was not distributed
 | 
			
		||||
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
 | 
			
		||||
 | 
			
		||||
#ifndef EIGEN_ORDERINGMETHODS_MODULE_H
 | 
			
		||||
#define EIGEN_ORDERINGMETHODS_MODULE_H
 | 
			
		||||
 | 
			
		||||
#include "SparseCore"
 | 
			
		||||
 | 
			
		||||
#include "src/Core/util/DisableStupidWarnings.h"
 | 
			
		||||
 | 
			
		||||
/** 
 | 
			
		||||
  * \defgroup OrderingMethods_Module OrderingMethods module
 | 
			
		||||
  *
 | 
			
		||||
  * This module is currently for internal use only
 | 
			
		||||
  * 
 | 
			
		||||
  * It defines various built-in and external ordering methods for sparse matrices. 
 | 
			
		||||
  * They are typically used to reduce the number of elements during 
 | 
			
		||||
  * the sparse matrix decomposition (LLT, LU, QR).
 | 
			
		||||
  * Precisely, in a preprocessing step, a permutation matrix P is computed using 
 | 
			
		||||
  * those ordering methods and applied to the columns of the matrix. 
 | 
			
		||||
  * Using for instance the sparse Cholesky decomposition, it is expected that 
 | 
			
		||||
  * the nonzeros elements in LLT(A*P) will be much smaller than that in LLT(A).
 | 
			
		||||
  * 
 | 
			
		||||
  * 
 | 
			
		||||
  * Usage : 
 | 
			
		||||
  * \code
 | 
			
		||||
  * #include <Eigen/OrderingMethods>
 | 
			
		||||
  * \endcode
 | 
			
		||||
  * 
 | 
			
		||||
  * A simple usage is as a template parameter in the sparse decomposition classes : 
 | 
			
		||||
  * 
 | 
			
		||||
  * \code 
 | 
			
		||||
  * SparseLU<MatrixType, COLAMDOrdering<int> > solver;
 | 
			
		||||
  * \endcode 
 | 
			
		||||
  * 
 | 
			
		||||
  * \code 
 | 
			
		||||
  * SparseQR<MatrixType, COLAMDOrdering<int> > solver;
 | 
			
		||||
  * \endcode
 | 
			
		||||
  * 
 | 
			
		||||
  * It is possible as well to call directly a particular ordering method for your own purpose, 
 | 
			
		||||
  * \code 
 | 
			
		||||
  * AMDOrdering<int> ordering;
 | 
			
		||||
  * PermutationMatrix<Dynamic, Dynamic, int> perm;
 | 
			
		||||
  * SparseMatrix<double> A; 
 | 
			
		||||
  * //Fill the matrix ...
 | 
			
		||||
  * 
 | 
			
		||||
  * ordering(A, perm); // Call AMD
 | 
			
		||||
  * \endcode
 | 
			
		||||
  * 
 | 
			
		||||
  * \note Some of these methods (like AMD or METIS), need the sparsity pattern 
 | 
			
		||||
  * of the input matrix to be symmetric. When the matrix is structurally unsymmetric, 
 | 
			
		||||
  * Eigen computes internally the pattern of \f$A^T*A\f$ before calling the method.
 | 
			
		||||
  * If your matrix is already symmetric (at leat in structure), you can avoid that
 | 
			
		||||
  * by calling the method with a SelfAdjointView type.
 | 
			
		||||
  * 
 | 
			
		||||
  * \code
 | 
			
		||||
  *  // Call the ordering on the pattern of the lower triangular matrix A
 | 
			
		||||
  * ordering(A.selfadjointView<Lower>(), perm);
 | 
			
		||||
  * \endcode
 | 
			
		||||
  */
 | 
			
		||||
 | 
			
		||||
#ifndef EIGEN_MPL2_ONLY
 | 
			
		||||
#include "src/OrderingMethods/Amd.h"
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#include "src/OrderingMethods/Ordering.h"
 | 
			
		||||
#include "src/Core/util/ReenableStupidWarnings.h"
 | 
			
		||||
 | 
			
		||||
#endif // EIGEN_ORDERINGMETHODS_MODULE_H
 | 
			
		||||
		Reference in New Issue
	
	Block a user