176 lines
5.4 KiB
C
Raw Normal View History

2022-04-07 18:46:57 +02:00
#include "msp.h"
#include "math.h"
// =========================== Convenience functions ===========================
inline void setmasked32(volatile uint32_t* ptr, uint32_t mask, uint32_t bits) {
*ptr = (*ptr & ~mask) | bits;
}
inline void setmasked16(volatile uint16_t* ptr, uint16_t mask, uint16_t bits) {
*ptr = (*ptr & ~mask) | bits;
}
inline void clearmasked16(volatile uint16_t* ptr, uint16_t mask) {
*ptr &= ~(mask);
}
inline void clearbit32(volatile uint32_t* ptr, unsigned idx) {
*ptr &= ~(1 << idx);
}
inline void clearbit16(volatile uint16_t* ptr, unsigned idx) {
*ptr &= ~(1 << idx);
}
inline void clearbit8(volatile uint8_t* ptr, unsigned idx) {
*ptr &= ~(1 << idx);
}
inline void setbit32(volatile uint32_t* ptr, unsigned idx) {
*ptr |= 1 << idx;;
}
inline void setbit16(volatile uint16_t* ptr, unsigned idx) {
*ptr |= 1 << idx;;
}
inline void setbit8(volatile uint8_t* ptr, unsigned idx) {
*ptr |= 1 << idx;;
}
// =============================================================================
#define ADC_MAX ((1 << 14) - 1) // 14-bit ADC
#define ADC_MCTL_IDX (0)
#define TIMER_PERIOD 20 // ms
#define TIMER_DIV (8)
#define TIMER_FCLK 3000000
#define TIMER_PERIOD_TICKS (((TIMER_FCLK / TIMER_DIV) * TIMER_PERIOD) / 1000)
void startTimer(Timer_A_Type* timer) {
// Select clock source = SMCLK
setmasked16(&timer->CTL, TIMER_A_CTL_SSEL_MASK, TIMER_A_CTL_SSEL__SMCLK);
// Divide by 8*1 (SMCLK defaults to 3000000Hz, dont bother to change it).
// Although one should probably use a lower-freq clock if we are in
// the millisecond range for interrupts.
setmasked16(&timer->EX0, TIMER_A_EX0_IDEX_MASK, TIMER_A_EX0_IDEX__8); // divide by 8
// CCR0 is set to the full period count.
// When CCR0 is met, the timer should reset to 0 and repeat (in UP mode).
timer->CCR[0] = TIMER_PERIOD_TICKS;
// Enable IRQ from timer (caller shall enable corresponding bit in NVIC)
setmasked16(&timer->CCTL[0], 1 << TIMER_A_CCTLN_CCIE_OFS,TIMER_A_CCTLN_CCIE);
// Reset timer
clearmasked16(&timer->CCTL[0], TIMER_A_CCTLN_CCIFG);
TIMER_A0->R = 0;
// Start the timer - Count upwards
setmasked16(&timer->CTL, TIMER_A_CTL_MC_MASK, TIMER_A_CTL_MC__UP);
}
void enableADC() {
// Configure pin 4.0 (A13) as an ADC input
clearbit8(&P4->DIR, 0);
clearbit8(&P4->SEL0, 1);
clearbit8(&P4->SEL1, 1);
// Enable ADC finish conversion interrupt
NVIC_EnableIRQ(ADC14_IRQn);
// Set voltage reference from rail to rail
setmasked32(&ADC14->MCTL[ADC_MCTL_IDX], ADC14_MCTLN_VRSEL_MASK, ADC14_MCTLN_VRSEL_0);
// Non-difference mode
clearbit32(&ADC14->MCTL[ADC_MCTL_IDX], ADC14_MCTLN_DIF_OFS);
// Input channel
setmasked32(&ADC14->MCTL[ADC_MCTL_IDX], ADC14_MCTLN_INCH_MASK, ADC14_MCTLN_INCH_13);
setmasked32(&ADC14->CTL1, ADC14_CTL1_CSTARTADD_MASK, ADC_MCTL_IDX << ADC14_CTL1_CSTARTADD_OFS);
// Enable the channel 0 interrupt
setbit32(&ADC14->IER0, ADC14_IER0_IE0_OFS);
// This is a >software triggered< adc routine (convert when requested)
setmasked32(&ADC14->CTL0, ADC14_CTL0_SHS_MASK, ADC14_CTL0_SHS_0);
// Mega-speed is not ultra important so set clock source to ACLK
setmasked32(&ADC14->CTL0, ADC14_CTL0_SSEL_MASK, ADC14_CTL0_SSEL_2);
// Enable conversion
setbit32(&ADC14->CTL0, ADC14_CTL0_ON_OFS);
setbit32(&ADC14->CTL0, ADC14_CTL0_ENC_OFS);
}
void setAngle(float ratio) {
// We work in microseconds to have the appropriate precision.
// This allows a range of 1000 different angles (1000us to 2000 us).
const unsigned duty_period_us = (1000 /* 1ms = 0 degrees */ + 1000 * ratio);
const unsigned duty_ticks = ((TIMER_FCLK / TIMER_DIV) * duty_period_us) / 1000000;
// Finally, write the new duty cycle tick count to TA0.CCR1
TIMER_A0->CCR[1] = TIMER_PERIOD_TICKS - duty_ticks;
}
void ADC14_IRQHandler() {
// Adjust duty cycle of PWM
const float ratio = ((float)(ADC14->MEM[ADC_MCTL_IDX]) / ADC_MAX);
setAngle(ratio);
}
void TA1_0_IRQHandler() {
// Initiate software-controlled ADC conversion
setbit32(&ADC14->CTL0, ADC14_CTL0_SC_OFS);
clearbit32(&ADC14->CTL0, ADC14_CTL0_SC_OFS);
}
void motorController() {
// Step 1: Enable ADC
enableADC();
startTimer(TIMER_A0); // PWM timer
startTimer(TIMER_A1); // ADC sampling trigger timer (software triggered)
// Enable PWM output of TA0.1
// Compare mode is required to generate PWM signals.
// Compare mode => capture mode is disables => CAP = 0
clearbit16(&TIMER_A0->CCTL[1], TIMER_A_CCTLN_CAP_OFS);
// Enable output for reg1 of timer 0 (P2.4)
setbit8(&P2->DIR, 4);
setbit8(&P2->SEL0, 4);
clearbit8(&P2->SEL1, 4);
// Next, we need to configure the output unit of the capture/compare
// block to generate the proper PWM signal. The PWM is defined by
// using the set/reset output mode (note: we are creating a
// sawtooth wave and NOT a triangle wave).
setmasked16(&TIMER_A0->CCTL[1], TIMER_A_CCTLN_OUTMOD_MASK, TIMER_A_CCTLN_OUTMOD_3);
// Enable timer interrupts in NVIC
NVIC_EnableIRQ(TA1_0_IRQn);
}
/**
* main.c
*/
void main(void)
{
WDT_A->CTL = WDT_A_CTL_PW | WDT_A_CTL_HOLD; // stop watchdog timer
// Program clock system
CS->KEY = CS_KEY_VAL;
// ....
CS->KEY = 0xdeadbeef;
motorController();
}