214 lines
7.1 KiB
C++
214 lines
7.1 KiB
C++
|
/*
|
||
|
Copyright (c) 2005-2020 Intel Corporation
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License.
|
||
|
*/
|
||
|
|
||
|
//
|
||
|
// Self-organizing map in TBB flow::graph
|
||
|
//
|
||
|
// we will do a color map (the simple example.)
|
||
|
//
|
||
|
// serial algorithm
|
||
|
//
|
||
|
// initialize map with vectors (could be random, gradient, or something else)
|
||
|
// for some number of iterations
|
||
|
// update radius r, weight of change L
|
||
|
// for each example V
|
||
|
// find the best matching unit
|
||
|
// for each part of map within radius of BMU W
|
||
|
// update vector: W(t+1) = W(t) + w(dist)*L*(V - W(t))
|
||
|
|
||
|
#include "som.h"
|
||
|
#include "tbb/task.h"
|
||
|
|
||
|
std::ostream& operator<<( std::ostream &out, const SOM_element &s) {
|
||
|
out << "(";
|
||
|
for(int i=0;i<(int)s.w.size();++i) {
|
||
|
out << s.w[i];
|
||
|
if(i < (int)s.w.size()-1) {
|
||
|
out << ",";
|
||
|
}
|
||
|
}
|
||
|
out << ")";
|
||
|
return out;
|
||
|
}
|
||
|
|
||
|
void remark_SOM_element(const SOM_element &s) {
|
||
|
printf("(");
|
||
|
for(int i=0;i<(int)s.w.size();++i) {
|
||
|
printf("%g",s.w[i]);
|
||
|
if(i < (int)s.w.size()-1) {
|
||
|
printf(",");
|
||
|
}
|
||
|
}
|
||
|
printf(")");
|
||
|
}
|
||
|
|
||
|
std::ostream& operator<<( std::ostream &out, const search_result_type &s) {
|
||
|
out << "<";
|
||
|
out << get<RADIUS>(s);
|
||
|
out << ", " << get<XV>(s);
|
||
|
out << ", ";
|
||
|
out << get<YV>(s);
|
||
|
out << ">";
|
||
|
return out;
|
||
|
}
|
||
|
|
||
|
void remark_search_result_type(const search_result_type &s) {
|
||
|
printf("<%g,%d,%d>", get<RADIUS>(s), get<XV>(s), get<YV>(s));
|
||
|
}
|
||
|
|
||
|
double
|
||
|
randval( double lowlimit, double highlimit) {
|
||
|
return double(rand()) / double(RAND_MAX) * (highlimit - lowlimit) + lowlimit;
|
||
|
}
|
||
|
|
||
|
void
|
||
|
find_data_ranges(teaching_vector_type &teaching, SOM_element &max_range, SOM_element &min_range ) {
|
||
|
if(teaching.size() == 0) return;
|
||
|
max_range = min_range = teaching[0];
|
||
|
for(int i = 1; i < (int)teaching.size(); ++i) {
|
||
|
max_range.elementwise_max(teaching[i]);
|
||
|
min_range.elementwise_min(teaching[i]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void add_fraction_of_difference( SOM_element &to, SOM_element const &from, double frac) {
|
||
|
for(int i = 0; i < (int)from.size(); ++i) {
|
||
|
to[i] += frac*(from[i] - to[i]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
double
|
||
|
distance_squared(SOM_element x, SOM_element y) {
|
||
|
double rval = 0.0; for(int i=0;i<(int)x.size();++i) {
|
||
|
double diff = x[i] - y[i];
|
||
|
rval += diff*diff;
|
||
|
}
|
||
|
return rval;
|
||
|
}
|
||
|
|
||
|
void SOMap::initialize(InitializeType it, SOM_element &max_range, SOM_element &min_range) {
|
||
|
for(int x = 0; x < xMax; ++x) {
|
||
|
for(int y = 0; y < yMax; ++y) {
|
||
|
for( int i = 0; i < (int)max_range.size(); ++i) {
|
||
|
if(it == InitializeRandom) {
|
||
|
my_map[x][y][i] = (randval(min_range[i], max_range[i]));
|
||
|
}
|
||
|
else if(it == InitializeGradient) {
|
||
|
my_map[x][y][i] = ((double)(x+y)/(xMax+yMax)*(max_range[i]-min_range[i]) + min_range[i]);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// subsquare [low,high)
|
||
|
double
|
||
|
SOMap::BMU_range( const SOM_element &s, int &xval, int &yval, subsquare_type &r) {
|
||
|
double min_distance_squared = DBL_MAX;
|
||
|
task &my_task = task::self();
|
||
|
int min_x = -1;
|
||
|
int min_y = -1;
|
||
|
for(int x = r.rows().begin(); x != r.rows().end(); ++x) {
|
||
|
for( int y = r.cols().begin(); y != r.cols().end(); ++y) {
|
||
|
double dist = distance_squared(s,my_map[x][y]);
|
||
|
if(dist < min_distance_squared) {
|
||
|
min_distance_squared = dist;
|
||
|
min_x = x;
|
||
|
min_y = y;
|
||
|
}
|
||
|
if(cancel_test && my_task.is_cancelled()) {
|
||
|
xval = r.rows().begin();
|
||
|
yval = r.cols().begin();
|
||
|
return DBL_MAX;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
xval = min_x;
|
||
|
yval = min_y;
|
||
|
return sqrt(min_distance_squared);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
SOMap::epoch_update_range( SOM_element const &s, int epoch, int min_x, int min_y, double radius, double learning_rate, blocked_range<int> &r) {
|
||
|
int min_xiter = (int)((double)min_x - radius);
|
||
|
if(min_xiter < 0) min_xiter = 0;
|
||
|
int max_xiter = (int)((double)min_x + radius);
|
||
|
if(max_xiter > (int)my_map.size()-1) max_xiter = (int)my_map.size()-1;
|
||
|
for(int xx = r.begin(); xx <= r.end(); ++xx) {
|
||
|
double xrsq = (xx-min_x)*(xx-min_x);
|
||
|
double ysq = radius*radius - xrsq; // max extent of y influence
|
||
|
double yd;
|
||
|
if(ysq > 0) {
|
||
|
yd = sqrt(ysq);
|
||
|
int lb = (int)(min_y - yd);
|
||
|
int ub = (int)(min_y + yd);
|
||
|
for(int yy = lb; yy < ub; ++yy) {
|
||
|
if(yy >= 0 && yy < (int)my_map[xx].size()) {
|
||
|
// [xx, yy] is in the range of the update.
|
||
|
double my_rsq = xrsq + (yy-min_y)*(yy-min_y); // distance from BMU squared
|
||
|
double theta = exp(-(radius*radius) /(2.0* my_rsq));
|
||
|
add_fraction_of_difference(my_map[xx][yy], s, theta * learning_rate);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void SOMap::teach(teaching_vector_type &in) {
|
||
|
for(int i = 0; i < nPasses; ++i ) {
|
||
|
int j = (int)(randval(0, (double)in.size())); // this won't be reproducible.
|
||
|
if(j == in.size()) --j;
|
||
|
|
||
|
int min_x = -1;
|
||
|
int min_y = -1;
|
||
|
subsquare_type br2(0, (int)my_map.size(), 1, 0, (int)my_map[0].size(), 1);
|
||
|
(void) BMU_range(in[j],min_x, min_y, br2); // just need min_x, min_y
|
||
|
// radius of interest
|
||
|
double radius = max_radius * exp(-(double)i*radius_decay_rate);
|
||
|
// update circle is min_xiter to max_xiter inclusive.
|
||
|
double learning_rate = max_learning_rate * exp( -(double)i * learning_decay_rate);
|
||
|
epoch_update(in[j], i, min_x, min_y, radius, learning_rate);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void SOMap::debug_output() {
|
||
|
printf("SOMap:\n");
|
||
|
for(int i = 0; i < (int)(this->my_map.size()); ++i) {
|
||
|
for(int j = 0; j < (int)(this->my_map[i].size()); ++j) {
|
||
|
printf( "map[%d, %d] == ", i, j );
|
||
|
remark_SOM_element( this->my_map[i][j] );
|
||
|
printf("\n");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#define RED 0
|
||
|
#define GREEN 1
|
||
|
#define BLUE 2
|
||
|
|
||
|
void readInputData() {
|
||
|
my_teaching.push_back(SOM_element());
|
||
|
my_teaching.push_back(SOM_element());
|
||
|
my_teaching.push_back(SOM_element());
|
||
|
my_teaching.push_back(SOM_element());
|
||
|
my_teaching.push_back(SOM_element());
|
||
|
my_teaching[0][RED] = 1.0; my_teaching[0][GREEN] = 0.0; my_teaching[0][BLUE] = 0.0;
|
||
|
my_teaching[1][RED] = 0.0; my_teaching[1][GREEN] = 1.0; my_teaching[1][BLUE] = 0.0;
|
||
|
my_teaching[2][RED] = 0.0; my_teaching[2][GREEN] = 0.0; my_teaching[2][BLUE] = 1.0;
|
||
|
my_teaching[3][RED] = 0.3; my_teaching[3][GREEN] = 0.3; my_teaching[3][BLUE] = 0.0;
|
||
|
my_teaching[4][RED] = 0.5; my_teaching[4][GREEN] = 0.5; my_teaching[4][BLUE] = 0.9;
|
||
|
}
|