Distrib. Comput. (2007) 20:165-177
DOI 10.1007/s00446-007-0042-0

Anonymous and fault-tolerant shared-memory computing

Rachid Guerraoui - Eric Ruppert

Received: 17 November 2005 / Accepted: 23 October 2006 / Published online: 4 September 2007

© Springer-Verlag 2007

Abstract The vast majority of papers on distributed com-
puting assume that processes are assigned unique identifiers
before computation begins. But is this assumption neces-
sary? What if processes do not have unique identifiers or do
not wish to divulge them for reasons of privacy? We con-
sider asynchronous shared-memory systems that are anony-
mous. The shared memory contains only the most common
type of shared objects, read/write registers. We investigate,
for the first time, what can be implemented deterministically
in this model when processes can fail. We give anonymous
algorithms for some fundamental problems: time-stamping,
snapshots and consensus. Our solutions to the first two are
wait-free and the third is obstruction-free. We also show that
a shared object has an obstruction-free implementation if and
only if it satisfies a simple property called idempotence. To
prove the sufficiency of this condition, we give a universal
construction that implements any idempotent object.

Keywords Anonymous - Shared memory - Timestamps -
Snapshots - Consensus

R. Guerraoui (<)

Distributed Programming Laboratory, School of Computer
and Communication Sciences, Ecole Polytechnique,
Fédérale de Lausanne, CH 1015,

Lausanne, Switzerland

e-mail: rachid.guerraoui @epfl.ch

E. Ruppert

Department of Computer Science and Engineering,
York University, 4700 Keele Street Toronto,
Toronto, ON, Canada M3J 1P3

1 Introduction

Distributed computing typically studies what can be com-
puted by a system of n processes that can fail independently.
Variations on the level of synchrony, the means of inter-pro-
cess communication, failure modes of the system, and other
parameters have led to an abundant literature. In particular, a
prolific research trend has explored the capabilities of a sys-
tem of crash-prone asynchronous processes communicating
through basic read/write objects (registers).

To fully understand theoretical models of distributed com-
puting, it is important to precisely measure the impact of
their underlying assumptions. Virtually all of the literature
on distributed computing assumes that processes have dis-
tinct identities. Thus, it is interesting to investigate what can
be done without the assumption of distinct identities. A sys-
tem is called anonymous if processes are programmed iden-
tically [5,7,8,13,26,31]. In particular, processes do not have
identifiers.

Besides intellectual curiosity, it is also appealing to revisit
this fundamental assumption for practical reasons. Indeed,
certain systems, like sensor networks, consist of mass-pro-
duced tiny agents that might not even have identifiers [4].
Others, like web servers [32] and peer-to-peer file sharing
systems [12], sometimes mandate preserving the anonymity
of the users and forbid the use of any form of identity for
the sake of privacy. (See [11] for a discussion of anonymous
computing used for privacy.)

Consider a server that houses a collection of shared-mem-
ory objects. Users wish to access these objects to carry out
a shared-memory distributed algorithm. However, the users
may not wish to divulge their identities to the server or to one
another, or even allow the server to observe that two different
operations on the shared objects are coming from the same
source. Instead of revealing their identities to the server, users

@ Springer

166

R. Guerraoui, E. Ruppert

might enlist the help of a trusted third party that provides an
anonymous proxy service. This party forwards all processes’
invocations to the server (stripped of the processes’ identi-
fiers) and then forwards the server’s responses back to the
processes. The trusted third party can be approximated by a
decentralized mechanism called onion routing [19]. Whereas
this scheme makes anonymous shared-memory computing
possible, it is not clear what can actually be done in an anon-
ymous system.

There has been work on anonymous message-passing sys-
tems, starting with Angluin [3]. The small amount of research
that has looked at anonymous shared-memory systems
assumed failure-free systems or the existence of a random
oracle to build randomized algorithms. (See Sect. 2 for a
discussion of this work.)

We explore in this paper the types of shared objects that
can be implemented deterministically in an anonymous,
asynchronous shared-memory system. We assume that any
number of unpredictable crash failures may occur. The shared
memory is composed of registers that are (multi-reader and)
multi-writer, so that every process is permitted to write to
every register. In contrast, usage of single-writer registers
would violate total anonymity by giving processes at least
some rudimentary sense of identity: processes would know
that values written into the same register at different times
were produced by the same process.

Several properties have been defined to describe the
progress made by an algorithm regardless of process
crashes or asynchrony. The strongest is wait-freedom [21],
which requires every non-faulty process to complete its
algorithm in a finite number of its own steps. However, wait-
free algorithms are often either provably impossible or too
inefficient to be practical. In many settings, a weaker progress
guarantee is sufficient. The non-blocking property (some-
times called lock-freedom) is one such guarantee, ensuring
that, eventually, some process will complete its algorithm.
It is weaker than wait-freedom because it permits individual
processes to starve. A third condition that is weaker still is
obstruction-freedom [22], which can be very useful when
low contention is expected to be the common case, or if
contention-management is used. Obstruction-freedom guar-
antees that a process will complete its algorithm whenever it
has an opportunity to take enough steps without interruption
by other processes. If only registers are available for com-
munication and algorithms are deterministic, obstruction-
freedom is strictly weaker than the non-blocking property.
However, a randomized contention manager can be
used to turn an obstruction-free algorithm into a wait-free
one.

Some problems, such as leader election, are clearly impos-
sible to solve anonymously because symmetry cannot be bro-
ken; if processes run in lockstep, they will perform exactly
the same sequence of operations. However, we show that

@ Springer

some interesting problems can be solved without breaking
symmetry.

We first consider timestamps, which are frequently used to
help processes agree on the order of various events. Objects
such as fetch&increment and counters, which have been used
traditionally for creating timestamps, have no obstruction-
free implementation in our anonymous model (as we shall
see in Theorem 12). We introduce a weaker object called a
weak counter, which provides sufficiently good timestamps
for our applications. We construct, in Sect. 4, an efficient,
wait-free implementation of a weak counter.

In non-anonymous systems, the snapshot object [1,2,6]
is probably the most important example of a shared object
that has a wait-free implementation from registers. It is an
abstraction of the problem of obtaining a consistent view of
many registers while they are being concurrently updated by
other processes. There are many known implementations of
snapshot objects but, to our knowledge, all do make essen-
tial use of process identities. Wait-free algorithms generally
rely on helping mechanisms, in which fast processes help the
slow ones complete their operations. One of the challenges of
anonymity is the difficulty of helping other processes when it
is not easy to determine who needs help. In Sect. 5, we show
that a wait-free snapshot implementation does exist and has
fairly efficient time complexity. The timestamps provided
by the weak counter are essential in this construction. We
also give a non-blocking implementation with better space
complexity.

In non-anonymous systems, most objects have no wait-
free (or even non-blocking) implementation [21]. However,
it is possible to build an obstruction-free implementation of
any object by using a subroutine for consensus, which is a
cornerstone of distributed computing that does itself have an
obstruction-free implementation [22]. Consensus also arises
in a wide variety of process-coordination tasks. There is no
(deterministic) wait-free implementation of consensus using
registers, even if processes do have identifiers [21,29]. In
Sect. 6, we note that an obstruction-free anonymous consen-
sus algorithm can be obtained by simply derandomizing the
randomized algorithm of Chandra [14]. The resulting algo-
rithm uses unbounded space. We then give a new algorithm
that uses a bounded number of registers, with the help of our
snapshots.

Finally, we give a complete characterization of the types
of objects that have obstruction-free implementations in our
model in Sect. 7. An object can be implemented if and only if
it is idempotent, i.e., applying any permitted operation twice
in a row (with the same arguments) has the same effect as
applying it once. This means that both consecutive invoca-
tions return the same response, and the state of the object
after the two invocations is indistinguishable from the state
it has after just one invocation. (A formal definition of idem-
potence appears in Sect. 7.) Examples of idempotent objects

Anonymous and fault-tolerant shared-memory computing

167

Table 1 Summary of implementations, where n is the number of processes, k is the number of operations invoked, and d is the number of possible

inputs to consensus

Theorem Implemented object Using Number of registers Progress Uses
3 Weak counter Binary registers O (k) Non-blocking

1 Weak counter Registers 0O (k) Wait-free

[16] Weak counter Registers n Wait-free

[16] Weak counter Registers 0n?) Bounded wait-free

4 m-Component snapshot Registers m Non-blocking

5 m-Component snapshot Registers O(m +k) Wait-free 1

5 m-Component snapshot Registers m+n Wait-free [16]
5 m-Component snapshot Registers O(m + n?) Bounded wait-free [16]
6 Binary consensus Binary registers Unbounded Obstruction-free

7 Binary consensus Registers O(n) Obstruction-free 4

9 Consensus Binary registers Unbounded Obstruction-free 6,8
9 Consensus Registers O(nlogd) Obstruction-free 7,8
12 Idempotent object Binary registers Unbounded Obstruction-free 3,9
14 Idempotent object Registers Object-dependent Obstruction-free 3,7

include registers, snapshot objects, sticky bits and resettable
consensus objects. We use a symmetry argument to show
the idempotence condition is necessary for the existence
of an anonymous implementation. To prove sufficiency, we
give a universal construction that implements any idempo-
tent object, using our weak counter object and our consensus
algorithm.

To summarize, we show that the anonymous asynchronous
shared-memory model has some, perhaps surprising, similar-
ities to the non-anonymous model, but there are also some
important differences. We construct a wait-free algorithm
for snapshots and an obstruction-free algorithm for consen-
sus that uses bounded space. Not every type of object has an
obstruction-free anonymous implementation, however. We
give a characterization of the types that do. Table 1 lists
all anonymous implementations given in this paper, indi-
cating which implementations are used as subroutines for
others. Ellen et al. [16] gave some anonymous timestamp
algorithms with bounded space complexity, and those can be
combined with the wait-free snapshot algorithm given here
to improve the snapshot’s complexity. Those improvements
are also listed in the table and are discussed further in Sect. 8.

2 Related work

Some research has studied anonymous shared-memory sys-
tems under the assumption that no failures can occur.
Attiya et al. [8] gave a characterization of the tasks that are
solvable without failures using registers if n is not known.
The characterization is the same if n is known [15]. Con-
sensus is solvable in these models, but it is not solvable if

the registers cannot be initialized by the programmer [25].
Aspnes et al. [5] looked at failure-free models with other
types of objects, such as counters. They also characterized
which shared-memory models can be implemented if com-
munication is through anonymous broadcasts, showing the
broadcast model is equivalent to having shared counters and
strictly stronger than shared registers. Johnson and Schnei-
der [26] gave leader election algorithms using versions of
single-writer snapshots and test&set objects.

There has also been some research on randomized algo-
rithms for anonymous shared-memory systems with no fail-
ures. The naming problem, where processes must choose
unique names for themselves, is a key problem since it essen-
tially turns an anonymous system into a non-anonymous one.
Processes can randomly choose names, which will be unique
with high probability. Registers can be used to detect when
the names chosen are indeed unique, thus guaranteeing cor-
rectness whenever the algorithm terminates, which happens
with high probability [28,34]. Two papers gave randomized
renaming algorithms that have finite expected running time,
and hence terminate with probability one [17,27].

Randomized algorithms for systems with crash failures
have also been studied. Panconesi et al. [31] gave a ran-
domized wait-free algorithm that solves the naming problem
using single-writer registers, which give the system some
ability to distinguish between different processes’ actions.
Several impossibility results have been shown for random-
ized naming using only multi-writer registers [13,17,27].
Interestingly, Buhrman et al. [13] gave a randomized wait-
free anonymous algorithm for consensus in this model that
is based on Chandra’s randomized consensus algorithm [14].
Thus, producing unique identifiers is strictly harder than

@ Springer

168

R. Guerraoui, E. Ruppert

consensus in the randomized setting. Aspnes et al. [7]
extended the consensus algorithm of Buhrman et al. to a
setting with infinitely many processes.

Solving a decision task can be viewed as a special case of
implementing objects: each process accesses the object, pro-
viding its input as an argument, and later the object responds
with the output the process should choose. Herlihy and Sha-
vit [23] described how their characterization of decision tasks
that have wait-free solutions in non-anonymous systems can
be extended to systems with a kind of anonymity: processes
have identifiers but are only allowed to use them in very
limited ways. Their characterization uses tools from alge-
braic topology. Herlihy gave a universal construction which
describes how to create a wait-free implementation of any
object type using consensus objects [21]. Processes use con-
sensus to agree on the exact order in which the operations are
applied to the implemented object. Although this construc-
tion requires identifiers, it was the inspiration for our obstruc-
tion-free construction in Sect. 7. Recently, Bazzi and Ding
[10] introduced, in the context of Byzantine systems, non-
skipping timestamps, a stronger abstraction than what we call
a weak counter. (The specification of our weak counter does
not preclude skipping values.)

Obstruction-free shared memory algorithms have been
studied by Attiya et al. [9] assuming unique process iden-
tities. In particular, their consensus algorithm can be viewed
as a race between processes and it relies on the fact that
every process writes in its own register. The consensus algo-
rithm we describe in this paper can rather be viewed as a race
between values, and all processes may write in all registers.
They also show that every object type has an obstruction-free
implementation from registers in the non-anonymous model,
which contrasts with our results in Sect. 7 for the anonymous
case.

3 Model

We consider an anonymous system, where a collection of
n processes execute identical algorithms. In particular, the
processes do not have identifiers. The system is asynchro-
nous, which means that processes run at arbitrarily varying
speeds. It is useful to think of processes being allocated steps
by an adversarial scheduler. Algorithms must work correctly
in all possible schedules. Processes are subject to crash fail-
ures: they may stop taking steps without any warning. The
algorithms we consider are deterministic.

Processes communicate with one another by accessing
shared data structures, called objects. The type of an object
specifies what states it can have and what operations may
be performed on it. The programmer chooses the initial state
of the objects used. Except for our weak counter object in
Sect. 4, all objects are linearizable (atomic) [24]: although

@ Springer

operations on an object take some interval of time to com-
plete, each appears to happen at some instant between its
invocation and response. An operation atomically changes
the state of an object and returns a response to the invok-
ing process. (The weak counter object can be viewed as a
set-linearizable object [30].) We consider oblivious objects:
all processes are permitted to perform the same set of opera-
tions on it and its response to an operation does not depend on
the identity of the invoking process. (Non-oblivious objects
would be somewhat inconsistent with the notion of totally
anonymous systems, since processes would have to identify
themselves when they invoke an operation.)

Some types of objects are provided by the system and all
other types needed by a programmer must be implemented
from them. An implementation specifies the code that must
be executed to perform each operation on the implemented
object. Since we are considering anonymous systems, all pro-
cesses execute identical code to perform a particular opera-
tion. (We refer to such an implementation as an anonymous
implementation.) The implementation must also specify how
to initialize the base objects to represent any possible starting
state of the implemented object. Implemented objects should
appear, from the user’s point of view, as if they are provided
as base objects by the system. In particular, they should be
linearizable too. A configuration is a description of the sys-
tem at some instant in time. It is comprised of the state of
each shared object used in the implementation and the local
state of every process.

We assume the shared memory contains the most basic
kind of objects: registers, which provide two types of opera-
tions. A read operation returns the state of the object without
changing it. A write(v) changes the state to v and returns
ack. Every process can access every register. If the set of
possible values that can be stored is finite, the register is
bounded; otherwise it is unbounded. A binary register has
only two possible states. When describing our algorithms in
pseudocode, names of shared objects begin with upper-case
letters, and names of the process’s private variables begin
with lower-case letters.

4 Weak counters

A weak counter provides a single operation, GETTIMESTAMP,
which returns an integer. It has the property that if one oper-
ation precedes another, the value returned by the later opera-
tion must be larger than the value returned by the earlier one.
(Two concurrent GETTIMESTAMP operations may return the
same value.) This object will be used as a building block for
our implementation of snapshots in Sect. 5 and our character-
ization of implementable types in Sect. 7. It is used in those
algorithms to provide timestamps to different operations.

Anonymous and fault-tolerant shared-memory computing

The weak counter is essentially a weakened form of a
fetch&increment object: a fetch&increment object has the
additional requirements that the values returned should be
distinct and consecutive. It is known that a fetch&increment
object has no wait-free implementation from registers, even
if processes have identifiers [21]. By considering our weaker
version, we have an object that is implementable, and still
strong enough for our purposes. Our weak counter imple-
mentations also generate timestamps that do not grow too
quickly: the value returned to any operation does not exceed
the number of invocations that have occurred so far. Although
this property is not necessary to satisfy the specification of
the object, it is useful in bounding the space used to store
timestamps.

We give an anonymous, wait-free implementation of a
weak counter from unbounded registers. A similar but sim-
pler construction, which provides an implementation that sat-
isfies the weaker non-blocking progress property, but uses
only binary registers, is then described briefly. Processes
must know 7, the number of processes in the system, (or
at least an upper bound on n) for the wait-free implementa-
tion, but this knowledge is not needed for the non-blocking
case.

Our wait-free implementation uses an infinite array
A[l, 2, ...] of binary registers, each initialized to L. (The
array can be finite if the number of operations to be applied
on the counter is known in advance.) To obtain a counter
value, a process locates the first entry of the array that is
1, changes it to T, and returns the index of this entry (see
Fig. 1). The key property for correctness is the following
invariant: if A[k] = T, then all entries in A[1...k] are T.
To locate the first 1 in A efficiently, the algorithm uses a
binary search. Starting from the location a returned by the
process’s previous GETTIMESTAMP operation, the algorithm
probes locations a + 1,a +3,a +7,...,a +20—1,...
until it finds a L in some location b. (For the first operation
by the process, we initialize a to 1.) We call this portion of
the algorithm, corresponding to the first loop in the pseudo-
code, phase 1. The process then executes a binary search of
Ala . ..b] in the second loop, which constitutes phase 2.

To ensure processes cannot enter an infinite loop in phase
1 (while other processes write more and more T°’s into the
array), we incorporate a helping mechanism. Whenever a
process writes a T into an entry of A, it also writes the index
of the entry into a shared register L (initialized to 0). A pro-
cess may terminate early if it sees that n writes to L have
occurred since its invocation. In this case, it returns the larg-
est value it has seen in L. The local variables j and ¢ keep
track of the number of times the process has seen L change,
and the largest value the process has seen in L, respectively.

Theorem 1 Figure 1 gives a wait-free, anonymous imple-
mentation of a weak counter from registers.

169
GETTIMESTAMP
1 b—a+1
2 L+ L
3 t—/
4 <0
5 loop until Afb] = L
6 if L#4
7 then ¢ «— L
8 t — max(t,{)
9 j—J+1
10 if j>n
11 thena—0b+1
12 return t and halt
13 end if
14 end if
15 b—2b—a+1
16 end loop
17 loop until a = b
18 mid «— Lg_l > This is always an integer
19 if Almid] = L then b — mid
20 else a «— mid +1
21 end if
22 end loop
23 write T to A[b]
24 L+b

25 return b

Fig. 1 Wait-free implementation of a weak counter from registers

Proof We first give three simple invariants.

Invariant 1: For each process’s value of a, if a > 1, then
Ala—1]=T.

Once T is written into an entry of A, that entry’s value will
never change again. It follows that line 20 maintains Invari-
ant 1. Line 11 does too, since the preceding iteration of line
5 found that A[p] = T.

Invariant 2: If A[k] = T, then A[k'l = T forall k' < k.
Entries never change from T to L, so Invariant 2 follows from
Invariant 1: whenever line 23 is executed, we have a = b, so
A[b — 1] is already T, by Invariant 1.

Invariant 3: Whenever a process P executes line 17 during a
GETTIMESTAMP operation op, P’s value of b has the prop-
erty that A[b] was equal to L at some earlier time during op.
This is true the first time line 17 is executed, by the exit con-
dition of the first loop. Every time b is changed in line 19,
it is changed to the index of a location which has just been
seen to contain L.

Wait-freedom: To derive a contradiction, assume there is an
execution where some operation by a process P runs forever
without terminating. This can only happen if there is an infi-
nite loop in Phase 1, so an infinite number of T’s are written
into A during this execution. This means that an infinite num-
ber of writes to L will occur. Suppose some process Q writes
a value x into L. Before doing so, it must write T into A[x].
Thus, any subsequent invocation of GETTIMESTAMP by Q
will never see A[x] = _L. It follows from Invariant 3 that
Q can never again write x into L. Thus, P’s operation will
eventually see n different values in L and terminate, contrary
to the assumption.

@ Springer

170

R. Guerraoui, E. Ruppert

Correctness: Finally, we prove that the implementation
satisfies the specification of a weak counter. Suppose one
GETTIMESTAMP operation op completes before another one,
op>, begins. Let r| and r» be the values returned by op; and
opa, respectively. We must show that r, > ry. If op; ter-
minates in line 12, then, at some earlier time, some process
wrote rq into L and also wrote T into A[rq]. If op; termi-
nates in line 25, it is also clear that A[r;] = T when op;
terminates.

If op; terminates in line 25, then A[r>] was L at some time
during op», by Invariant 3. Thus, by Invariant 2, rp > ry. If
op» terminates in line 12, it returns a value that some process
wrote into L. In this case, op; has seen the value in L change
n times during its run, so at least two of the changes were
made by the same process. Since a GETTIMESTAMP operation
can write to L at most once, at least one of those changes was
made by an operation op3 that started after op, began (and
hence after op; terminated). Since op3 terminated in line 25,
we have already proved that the value r3 that op3 returns (and
writes into L) must be greater than ;. But op, returns the
largest value it sees in L, so rp > r3 > r1. Thus op, returns
a larger result than op; in either case, as required. O

In any finite execution in which k GETTIMESTAMP
operations are invoked, at most O (k) of the registers are
ever accessed, and the worst-case time for any operation is
O (logk). This is because each operation writes to at most
one location in A, so the first loop must terminate when b
becomes bigger than k. If the implementation runs forever,
k can grow arbitrarily large, so this implementation is wait-
free, but not bounded wait-free. We use an amortized analysis
to prove the stronger bound of O (logn) on the average time
per operation in any finite execution. Intuitively, if some pro-
cess P must perform a phase 1 that is excessively long, we
can charge its cost to the many operations that must have
written into A since P did its previous operation.

Proposition 2 [fn processes perform a total of k invocations
of the GETTIMESTAMP algorithm in Fig. 1, the total number
of steps by all processes is O (klogn) and O (k) registers are
accessed.

Proof To do this amortized analysis, we shall count only
the number of locations probed in line 5, since the time to
perform the entire operation is proportional to this number.

Each time a process writes to an entry A[i], it stores 4
credits in that location. Consider an operation op that per-
forms k probes during phase 1, testing locations a + 1, a +
3,a+7,...,a+ 2k — 1. The first log n probes are billed
to op itself. For logn < i < k, the cost of the ith probe
is paid for using 2=~ units of credit from each of the
2i=2 Jocations a + 272, ...,a+ 2171 —1 (which must all
contain T, and therefore have credit stored on them). Since

i > logn, the amount billed to each location for the probe is
2—i+2 g .p—logn _ 4
o

@ Springer

It remains to check that no location is charged more than
4 units of credit throughout the execution. Clearly, no two
probes during the same operation are billed to the same loca-
tion. A process P probes location a + 2/ — 1 during phase
1 of an operation op only if location ¢ = a + 2/~! — 1
already contains T. This means that, either in line 11 or dur-
ing phase 2 of op, a will be changed to a value larger than
q. If P later performs another operation op’, it will not bill
any of the probes done during op’ to any location smaller
than a. It follows that process P never bills two probes to
the same location, so the amount billed to any location is at
most n - % = 4. Therefore, the amortized number of probes
per operation is at most 4 + logn € O(logn).

If there are k invocations, at most k registers will be written
with non-_L values, so no process will ever access a register
whose index is beyond 2k. O

To see that the time analysis in the preceding proof is
tight (when k > n), consider an execution where the follow-
ing sequence is repeated | X | times: process Py does n — 1
complete GETTIMESTAMP operations, and then processes P,
to P, each perform one GETTIMESTAMP operation in lock
step. This execution has a total of €2 (% (n+m—1)logn)) =
Q(klogn) steps.

If we do not require the weak counter implementation to
be wait-free, we do not need the helping mechanism. Thus,
we can omit lines 2—4, 6-14 and 24, which allow a process
to terminate early if it ever sees that n changes to the shared
register L occur. This yields a non-blocking implementation
that uses only binary registers. The proof of correctness is a
simplified version of the proof of Theorem 1, and the analysis
is identical to the proof of Proposition 2.

Theorem 3 There is a non-blocking, anonymous implemen-
tation of a weak counter from binary registers. In any execu-
tion with k invocations of GETTIMESTAMP in a system of n
processes, the total number of steps is O (k logn) and O (k)
registers are accessed.

5 Snapshot objects

The snapshot object[1,2,6] is an extremely useful abstraction
of the problem of getting a consistent view of several regis-
ters when they can be concurrently updated by other pro-
cesses. It has wait-free (non-anonymous) implementations
from registers, and has been widely used as a basic building
block for other algorithms. A snapshot object consists of a
collection of m > 1 components and supports two kinds of
operations: a process can update the value stored in a com-
ponent and atomically scan the object to obtain the values
of all the components. Since we are interested in anonymous
systems, we consider the multi-writer version, where any pro-
cess can update any component. Snapshot objects have been

Anonymous and fault-tolerant shared-memory computing

171

s R,

if some register contained (x,v,t') with ¢’ >t
then return v
elseif n sets of reads gave the same results
then return the first field of each value in such a set

SCAN
1 ¢+ GETTIMESTAMP
. 2 loop
UPDATE(i, 7) 3 read Ri, Ra,...
1 ¢+ GETTIMESTAMP 4
2 v« SCAN 5
3 write (z,v,t) in R; 6
7
8 end if
9 end loop

Fig. 2 Wait-free implementation of a snapshot object from registers

extensively studied, and many algorithms exist to implement
snapshots, but all use process identifiers. However, a simple
modification of the classic non-blocking snapshot algorithm
for non-anonymous systems [1] yields an anonymous non-
blocking algorithm.

One register is used to represent each component of the
snapshot object. Each process keeps a local variable ¢ that
stores a timestamp. To perform an UPDATE on a component
with value v, a process simply writes (¢, v) into the corre-
sponding register and increments its value of 7. To SCAN,
a process repeatedly reads all of the registers until it sees
exactly the same set of values (¢1, v1), (f2, v2), ..., (tm, Uim)
in all of the registers during ¢ sets of reads, where g = m(n—
1)+2. When this happens, the SCAN returns (vy, v, ..., Vp).

Proposition 4 The algorithm described in the preceding
paragraph is a non-blocking, anonymous implementation of
an m-component snapshot object from m registers.

Proof We show that the algorithm makes progress and is
correctly linearizable.

Non-blocking property: UPDATES terminate in a single step.
A SCAN can only be prevented from terminating if UPDATES
are constantly being completed.

Linearizability: Consider a SCAN operation that terminates.
We describe how to linearize the SCAN. For 1 < i < ¢, let
T; be the moment just after the ith identical set of reads is
completed. Since a value-timestamp pair can be written only
once by a process, that pair can be written into a register at
most n — 1 times during the SCAN. So, for any j, the value of
the jth register is different from (¢, v;) at most n — 1 of the
times 71, ..., T,_1. Since ¢ = m(n — 1) + 2, there is one
time 7; at which, for all j, the jth register contains (¢;, v;).
Linearize the SCAN at that moment. O

More surprisingly, we show that an algorithm for (non-
anonymous) wait-free snapshots [1] can also be modified
to work in an anonymous system (see Fig. 2). The original
algorithm could create a unique timestamp for each UPDATE
operation. We use our weak counter to generate timestamps
that are not necessarily distinct, but are sufficient for imple-
menting the snapshot object. The non-uniqueness of the iden-
tifiers imposes a need for more iterations of the loop than in
the non-anonymous algorithm. Our algorithm uses m (large)

registers, Ry, ..., R,, and one weak counter, which can be
implemented from registers, by Theorem 1. Each register R;
will contain a value of the component, a view of the entire
snapshot object and a timestamp.

Theorem 5 The algorithm in Fig. 2 is an anonymous, wait-
[free implementation of a snapshot object from registers. The
average number of steps per operation in any finite execution
is O(mn?).

Proof We prove that the algorithm is wait-free and lineariz-
able.

Wait-freedom: We need only prove that the loop in the SCAN
routine eventually terminates. Consider the time 7 when the
SCAN finishes executing line 1 and receives its timestamp
t from the weak counter. The only UPDATES that can write
a timestamp less than or equal to ¢ after time 7 are those
UPDATES that had already started before T, since any UPDATE
that begins after 7 will receive a larger timestamp. Thus,
at most n — 1 changes to the registers Ry, ..., R, can be
observed by the SCAN before the first termination condition
is satisfied. If the first condition is never satisfied, then after at
mostn(n — 1)+ 1 iterations of the loop, the SCAN will see the
same values in n sets of reads, so the loop can terminate using
the second termination condition. Thus, each operation must
terminate within O (mn?) steps, plus the time required for the
GETTIMESTAMP operation. It follows from Proposition 2 that
the total number of steps in an execution with k invocations
of UPDATES and SCANS is O (k logn + kmn?) = O (kmn?).
Linearizability: To prove the implementation is correct, we
describe how to linearize all of the snapshot operations,
including the SCANS embedded in UPDATE operations. An
UPDATE operation is linearized at the moment it writes in
line 3.

Consider a process P that performs a SCAN that receives
timestamp ¢ in line 1. Suppose that P sees identical results
r1, ...,y in n sets of reads. Suppose the first of the n sets
of reads begins at time 7. None of the triples r; will contain
a timestamp greater than 7; otherwise P would have termi-
nated after the first set. So, any UPDATE that writes the triple
r; into register R; after 7 must already have been pending at
time 7. There are at most n — 1 such UPDATES. This means
that during one of the identical sets of reads, no UPDATE

@ Springer

172

R. Guerraoui, E. Ruppert

performed a write, so throughout the interval of time P takes
to do that set of reads, the value of R; was r;, for all i. If we
linearize the SCAN at some time during this interval, it will
return a valid result.

Itremains to linearize a SCAN S that exits the loop using the
first termination condition. Let ¢ be the timestamp obtained
by S, and ¢’ > ¢ be the timestamp associated with the view v
returned by S. Assume that we have already chosen correct
linearization points for all SCANS that terminated before S ter-
minates. In particular, we have chosen a linearization point
for the SCAN S’ that was embedded in an UPDATE operation
U that wrote the value (x, v, t") that was read by S. We line-
arize S immediately after S’. Since the two SCANS return the
same result, this choice satisfies the correctness property of
the snapshot object. This linearization point is clearly before
S returns. We must check that it is also after the invocation
of S. Since ¢’ > t, the GETTIMESTAMP operation invoked by
U must have terminated after the GETTIMESTAMP operation
invoked by S began. Consequently, S” must have started later
than S. O

6 Consensus

In the consensus problem, processes each start with a pri-
vate input value and must all choose the same output value.
The common output must be the input value of some pro-
cess. These two conditions are called agreement and validity,
respectively. First, we focus on binary consensus, where all
inputs are either O or 1, and then we solve the more general
problem by agreeing on the output bit-by-bit. Herlihy et al.
[22] observed that a randomized wait-free consensus algo-
rithm can be “derandomized” to obtain an obstruction-free
consensus algorithm. If we derandomize the anonymous con-
sensus algorithm of Chandra [14], we obtain the following
algorithm.

The algorithm, shown in Fig. 3, uses two unbounded arrays
of binary registers, Ro[l,2,3,...] and Rq[1,2,3,...], all
initialized to L. We use v to denote 1 — v. We refer to the
jth iteration of the loop as round ;.

We first give a high-level sketch of how the algorithm
works. Each process maintains a preference that is either 0
or 1. Initially, a process’s preference is its own input value.
A process is said to change its preference whenever it exe-
cutes line 9. Intuitively, the processes are grouped into two
teams according to their preference and the teams execute a
race along a course of unbounded length that has one track
for each preference. Processes mark their progress along the
track (which is represented by an unbounded array of binary
registers) by changing register values from L to T along the
way. Whenever a process P sees that the opposing team is
ahead of P’s position, P switches its preference to join the
other team. As soon as a process observes that it is sufficiently

@ Springer

PROPOSE(input)
1 v« input
2 j«1
3 loop
4 if Rs[j]=1L
5 then write T into R,[j]
6 if j>1and Rs[j—1]=1
7 then return v
8 end if
9 else v« v

10 end if

11 j—ji+1

12 end loop

Fig. 3 Obstruction-free binary consensus using binary registers

far ahead of all processes on the opposing team, it stops and
outputs its own preference. Two processes with opposite pref-
erences could continue to race forever in lockstep but a pro-
cess running by itself will eventually out-distance all com-
petitors, ensuring obstruction-freedom.

Theorem 6 The algorithm in Fig. 3 solves anonymous,
obstruction-free binary consensus using binary registers.

Proof We use one key invariant for the correctness proof.
Invariant: Forv € {0, 1}, j>1, Ry[j+1]1=T=Ry[j]1=T.
Consider the first process that writes to Ry[j + 1] in round
j + 1. In round j, that process either wrote to R,[j], or it
switched its preference from v to v. It can do the latter only
if it saw that R,[j] # L when it executed line 4 of round
Jj- The invariant follows from the fact that entries of R, are
never changed from T back to L.

Obstruction-freedom: Suppose some process P begins run-
ning by itself from some configuration C. Let j be some
value such that Ro[j] = Ri[j] = L in C. Eventually, either
P will terminate or P’s value of j will increase to . In the
latter case, P will write into either Ry[j] or R[] and then
decide in its next round.

Validity: Consider the first process P that changes its prefer-
ence from v to v. It did this because it saw that some other pro-
cess had written into an element of Rj earlier. That process
must have had input v (since it did not change its preference
before P). Thus, if any process ever changes its preference,
both input values are present in the execution. The validity
condition follows.

Agreement: Consider any execution where some process
decides. Let] be the smallest round in which some pro-
cess decides. Let P be any process that decides in round .
Without loss of generality, assume that P decides 0. (The
case where P decides 1 is symmetric.) Let 7 be the time
when P last executes the read in line 6. At time 7', we know
that Ri[j — 1] = L. This means that no process could have
changed its preference from 0 to 1 during round j — 1 before
time 7.

Anonymous and fault-tolerant shared-memory computing

173

We show that no process has begun round j before 7 with
preference 1. If there were such a process, it would have
entered round j — 1 with preference 1 also, since no process
changed its preference from O to 1 in round j — 1 before T'.
Therefore, it must have executed line 5 in round j — 1. This
contradicts the fact that Ry [j — 1] is still equal to L attime 7.

Thus, all processes that enter round j with preference 1
do so after T, so they will all change their preferences to 0
during round j, and no process can ever write to R []] during
the entire execution. It follows that each process that enters
round ; with preference 0 will not change its preference dur-
ing the round, and will either decide O or enter the next round
with preference 0. Thus, all processes that enter round j + 1
do so with preference 0, and they will all decide O during that
round. O

The algorithm in Fig. 3 uses an unbounded number of
binary registers. We now give a more interesting construction
of an obstruction-free, anonymous algorithm for consensus
that uses a bounded number of multivalued registers.

Our bounded-space algorithm uses a two-track race course
that is circular, with circumference 4n + 1, instead of an
unbounded straight one. The course is represented by one
array for each track, denoted Ry[l,2,...,4n + 1] and
R1[1,2,...,4n 4+ 1]. We treat these two arrays as a single
snapshot object R, which we can implement from registers,
as described in Proposition 4. Each component stores an inte-
ger, initially 0. As a process runs around the race course, it
keeps track of which lap it is running. This is incremented
each time a process moves from position 4n + 1 to position
1. The progress of processes in the race is recorded by hav-
ing each process write its lap into the components of R as it
passes.

Several complications are introduced by using a circu-
lar track. After a fast process records its progress in R, a
slow teammate who has a smaller lap number could over-
write those values. Although this difficulty cannot be entirely
eliminated, we circumvent it with the following strategy. If
a process P ever observes that another process is already
working on its kth lap while P is working on a lower lap, P
jumps ahead to the start of lap k& and continues racing from
there. We use this to ensure that, once there are at least n + 1
entries containing values greater than or equal to k, each pro-
cess P can later write a lap number lower than k at most
once. This limits the amount of overwriting that replaces
large lap values with smaller ones. There is a second com-
plication: because some numbers recorded in R may be arti-
ficially low due to the overwrites by slow processes, pro-
cesses may get an incorrect impression of which team is in
the lead. To handle this, we make processes less fickle: they
switch teams only when they have lots of evidence that the
other team is in the lead. Also, we require a process to have
evidence that it is leading by a very wide margin before it

PROPOSE (input)

1 v« input
2 7«0
3 lap — 1
4 loop
5 S« ScaN of R
6 if S, [i] < Sp[d] for a majority of values of
ie{l,. dn+1}
7 then v «— v
8 end if
9 if min S,[i] > max Sp[i]
1<i<dn+1 1<i<dn+1
10 then return v
11 elseif some element of S is greater than lap
12 then lap < maximum element of S
13 j—1
14 else j—i+1
15 if j=4n+2
16 then lap «— lap +1
17 je—1
18 end if
19 end if
20 UPDATE the value of R,[j] to lap
21 end loop

Fig. 4 Obstruction-free consensus using O (n) registers

decides. The algorithm is given in Fig. 4, where we use v to
denote 1 — v.

Theorem 7 The algorithm in Fig. 4 is an anonymous,
obstruction-free binary consensus algorithm that uses 8n +2
registers.

Proof We use 8n + 2 registers to get a non-blocking imple-
mentation of the snapshot object R using Proposition 4. We
now prove the obstruction-freedom, validity and agreement
properties.

Obstruction-freedom: Consider any configuration C. Let m
be the maximum value that appears in any component of R
in C. Suppose some process P runs by itself forever without
halting, starting from C. It is easy to check that P’s local
variable /ap increases at least once every 4n + 1 iterations of
the loop. Eventually P will have lap > m + 1 and j = 1.
Let vg be P’s local value of v when P next executes line 9.
At this point, no entries in R are larger than m. Furthermore,
Ry li] = Ry, [i] for a majority of the values i; otherwise P
would have changed its value of v in the previous iteration.
From this point onward, P will never change its local value
v, since it will write only values bigger than m to R,,, and
Ry, contains no elements larger than 2, so none of P’s future
writes will ever make the condition in line 6 true. During the
next 4n + 1 iterations of the loop, P will write its value of lap
into each of the entries of R,,, and then the termination con-
dition will be satisfied, contrary to the assumption that P runs
forever. (This termination occurs within O(n) iterations of
the loop, once P has started to run on its own, so termination
is guaranteed as soon as any process takes O(n*) steps by
itself, since the SCAN algorithm of Proposition 4 terminates
if a process takes O (n?) steps by itself.)

Validity: Suppose all processes begin with input 0. (The case
when they all start with input 1 is symmetric.) Then we have
the following invariants:

@ Springer

174

R. Guerraoui, E. Ruppert

(1) Ry[i] = O for all i, and
(2) Every process’s local variable v is equal to 0.

These are easy to prove: if they are true, the test in line 6 will
always fail, so (2) can never become false, and this means
that no process can every write to R in line 20. Thus any
process that decides in line 10 can only decide 0.
Agreement: For each process that decides, consider the
moment when it last performs a SCAN of R. Let T be the first
such moment in the execution. Let S* be the SCAN taken at
time 7. Without loss of generality, assume the value decided
by the process that did this SCAN is 0. We shall show that
every other process that terminates also decides 0. Let m be
the minimum value that appears in Sj. Note that all values
in S} are less than m.

We first show that, after 7', at most n UPDATES write a
value smaller than m into R. If not, consider the first n + 1
such UPDATES after 7. At least two of them are done by the
same process, say P. Process P must do a SCAN in between
the two UPDATES. That SCAN would still see one of the values
in Ry that is at least m, since 4n + 1 > n. Immediately after
this SCAN, P would change its local variable lap to be at least
m and the value of lap is non-decreasing, so P could never
perform the second UPDATE with a value smaller than m.

We use a similar argument to show that, after 7', at most
n UPDATE operations write a value into Rj. If this is not the
case, consider the first n + 1 such UPDATES after 7. At least
two of them are performed by the same process, say P. Pro-
cess P must do a SCAN between the two UPDATES. Consider
the last SCAN that P does between these two UPDATES. That
SCAN will see at most values in R; that are greater than or
equal to m, since all such values were written into R; after
T. It will also see at most n values in R that are less than m
(by the argument in the previous paragraph). Thus, there will
be at least 2n + 1 values of i for which Rg[i] > m > Ri[i]
when the SCAN occurs. Thus, immediately after the SCAN, P
will change its local value of v to O in line 7, contradicting
the fact that it writes into R; later in that iteration.

It follows from the preceding two paragraphs that, at all
times after 7, min Rj[i] < m < max Ry[i]. Any

1<i<4n+1 I1<i<4n+1
process that takes its final SCAN after 7 cannot decide 1. O

Just as a randomized, wait-free consensus algorithm can
be “derandomized” to yield an obstruction-free algorithm,
the algorithm in Fig. 4 could be used as the basis of a ran-
domized wait-free anonymous algorithm that solves binary
consensus using bounded space.

Theorems 6 and 7 can be extended to non-binary con-
sensus using the following proposition, which is proved by
constructing a consensus algorithm where processes agree
on the output bit-by-bit.

Proposition 8 If there is an anonymous, obstruction-free
algorithm for binary consensus using a set of objects S, then

@ Springer

there is an anonymous, obstruction-free algorithm for con-
sensus with inputs from the countable set D that uses |D|
binary registers and log | D| copies of S. Such an algorithm
can also be implemented using 2 1og | D| registers andlog | D|
copies of S if | D| is finite.

Proof The standard way to solve multi-valued consensus
using binary consensus is to agree on each bit of the out-
put using a separate instance of binary consensus. (If D is
countably infinite, we can encode each element as a finite
string using the alphabet {00, 01, 10} and use 11 to mark the
end of a value so that processes will know when they can
stop agreeing on bits and decide.)

We first describe how to solve multi-valued consensus
using an additional set of | D| binary registers, {R[v] : v €
D}, that are initialized to L. Before taking any steps, a pro-
cess with input v writes T into R[v]. Assume that all pro-
cess have agreed upon the first m — 1 bits of the output,
bi, ..., byu—1.Assume also that every process stores (locally)
a preference that is the input of some process and begins with
b1b; . ..by,_1.Processes execute binary consensus, using the
mth bit of their preferred value as the input, to decide on the
next bit of the output, by, . If the value agreed upon is different
from the value a process proposed, that process must change
its preference to one that agrees with the first m bits that have
been decided. It can do this by searching the array R for such
avthathas R(v) = T.

If D is finite, we can use a similar construction that has
2log | D| additional registers instead of the binary registers
of R. Let the additional registers be Ry[l...log|D]|] and
R1[1...log|D]]. Before a process proposes a value b to the
mth instance of binary consensus, which is being used to
determine the mth bit of the output, it writes its preference
into Rp[m]. (Initially, a process’s preference is its own input
value.) If a process must change its preference as a result
of the binary consensus, it uses the value it then reads from
Ri[m]. O

The following corollaries follow directly from Theorems 6
and 7 and the preceding proposition.

Corollary 9 There is an anonymous, obstruction-free algo-
rithm for consensus, with arbitrary inputs, using binary reg-
isters. There is an anonymous, obstruction-free algorithm
for consensus with inputs from a finite set D that uses (8n +
4)log | D| registers.

7 Obstruction-free implementations
We now give a complete characterization of the (determinis-

tic) object types that have anonymous, obstruction-free
implementations from registers. We say that an object is

Anonymous and fault-tolerant shared-memory computing

175

idempotent if, starting from any state, two successive invoca-
tions of the same operation, with the same arguments, return
the same response and leave the object in a state that is indis-
tinguishable from the state a single application would leave it
in. (This is a slightly more general definition of idempotence
than the one used in [5].) This definition of idempotence is
made more precise using the formalism of Aspnes and Her-
lihy [6]. A sequential history is a sequence of steps applied
to a particular object, each step being a pair consisting of
an operation invocation and its response. Such a history is
called legal (for a given initial state) if it is consistent with
the specification of the object’s type.

Definition 10 ([6]) Two sequential histories H and H’ are
equivalent if, for all sequential histories G, H - G is legal if
and only if H' - G is legal.

Definition 11 A step p is idempotent if, for all sequential
histories H, if H - p is legal then H - p - p is legal and
equivalentto H - p.

An object is called idempotent if all of its operations are
idempotent. Examples of idempotent objects include regis-
ters, sticky bits, snapshot objects and resettable consensus
objects.

Theorem 12 A deterministic object type T has an anony-
mous, obstruction-free implementation from binary registers
if and only if T is idempotent.

Proof (=) To derive a contradiction, assume that there is
an implementation of 7', but 7 is not idempotent. Let H =
hy - hy - - - hy be a minimal length history that violates the i-
dempotence property. That is, there is a step p such that H - p
is legal, but either H - p- pisnotlegalor H-pand H-p - p
are not equivalent.

Let H; = hy - hy - - - h; be the prefix consisting of the first
i steps of H. Let H = hy - hy -hy-ha---h; - h; and let
H' = H]. We prove by induction on i that H; is legal and
equivalent to H; for 0 <i < k. The base case, when i = 0,
is trivial, since both histories are empty. Assume the claim
is true for i — 1. It follows that H/ , - h; - h; = H] is legal
and equivalent to H;_1 - h; - h;. The history H;_1 - h; - h; is
legal and equivalent to H;_; - h; = H;, by the minimality of
H . By the transitivity of equivalence, H! is equivalent to H;,
completing the proof of the claim. Thus, H' is equivalent to
H.

Let P and Q be two distinct processes. Consider the exe-
cution « in which process P executes the implementation’s
code for the sequence of operations in H - p. (Since the
type T is deterministic, the sequence of responses P gets
for all operations will match the ones that appear in the his-
tory H - p.) Let B be the execution where P and Q execute
the implementation’s code for the sequence of operations in
H - p, taking alternate steps. Since P and Q access only

1

2 t < GETTIMESTAMP

3 (op’,t') < PROPOSE(0p,t) to Conli]

4 res «— result returned to op’ if it is done
after history

5 history « history -(op, res)

6 1—i+1

7 if (op’,t") = (op,t)

8 then return res

9 end if

0 end loop

Fig. 5 Obstruction-free implementation of an idempotent object from
binary registers

registers, they will take exactly the same sequence of steps,
and both will generate identical responses for each operation.
The execution B therefore simulates the history H' - p - p,
and this history must be legal; otherwise the implementation
would be incorrect. Since H' is equivalent to H, the history
H - p - p must also be legal.

The internal state of P is the same at the end of @ and .
The value stored in each register is also the same at the end
of these two runs. Thus, any sequence of operations simu-
lated by P after « will generate exactly the same sequence
of responses as they would if P simulated them after 8. It
follows that for any history G, H - p - G is legal if and only if
H'-p-p-Gislegal Thus, H - p is equivalentto H' - p - p,
which is equivalent to H - p - p (since H' is equivalent to H).
This contradicts the definition of H.

(<) Let T be any idempotent type. We give an anon-
ymous, obstruction-free algorithm that implements 7' from
binary registers. The algorithm uses an unbounded number of
consensus objects Con[1, 2, .. .], which have an obstruction-
free implementation from binary registers, by Corollary 9.
The algorithm also uses the GETTIMESTAMP operation that
accesses a weak counter, which can also be implemented
from binary registers, according to Theorem 3. These will
be used to agree on the sequence of operations performed
on the simulated object. All other variables are local. The
history variable is initialized to an empty sequence, and i is
initialized to 1. The code in Fig. 5 describes how a process
simulates an operation op.

Obstruction-freedom: If, after some point of time, only one
process takes steps, all of its subroutine calls will terminate,
and it will eventually increase i until it accesses a consensus
object that no other process has accessed. When that happens,
the loop is guaranteed to terminate.

Linearizability: We must describe how to linearize all of the
simulated operations. Any simulated operation that receives
a result in line 3 that is equal to the value it proposed to the
consensus object is linearized at the moment that consensus
object was first accessed. All (identical) operations linear-
ized at the moment Con[i] is first accessed are said to belong
to group i.

@ Springer

176

R. Guerraoui, E. Ruppert

The following invariant follows easily from the code (and
the fact that the object is idempotent): At the beginning of any
iteration of the loop by any process P, history p is equivalent
to the history that would result from the first ip — 1 groups
of simulated operations taking place (in order), where i p and
history p are P’s local values of the variables i and history.
Thus, the results returned to all simulated operations are con-
sistent with the linearization.

‘We must still show that the linearization point chosen for a
simulated operation is between its invocation and response.
Let D be an execution of DO(op) in group i. The lineari-
zation point T of D is the first access in the execution to
Conli]. Clearly, this cannot be after D completes, since D
itself accesses Conl[i]. Let D’ be the execution of Do(op’)
that first accesses Con[i]. (It is possible that D = D’.) Since
D is linearized in group i, it must be the case that op = op/,
and also that the timestamps used in the proposals by D and
D' to Conli] are equal. Let ¢ be the value of this common
timestamp. Note that 7 occurs after D’ has completed the
GETTIMESTAMP operation that returned ¢. If T were before
D is invoked, then the GETTIMESTAMP operation that D calls
would have to return a timestamp larger than ¢. Thus, 7 is
after the invocation of D, as required. O

The algorithm used in the above proof does not require
processes to have knowledge of the number of processes, n,
so the characterization of Theorem 12 applies whether or not
processes know n. Since unbounded registers are idempotent,
it follows from the theorem that they have an obstruction-free
implementation from binary registers, and we get the follow-
ing corollary.

Corollary 13 An object type T has an anonymous, obstruc-
tion-free implementation from unbounded registers if and
only if T is idempotent.

In the more often-studied context of non-anonymous wait-
free computing, counters (with separate increment and read
operations) can be implemented from registers [6], while
consensus objects cannot be [21,29]. The reverse is true for
anonymous, obstruction-free implementations (since consen-
sus is idempotent, but counters are not). Thus, the traditional
classification of object types according to their consensus
numbers [21] will not tell us very much about anonymous,
obstruction-free implementations since, for example, con-
sensus objects cannot implement counters, which have con-
sensus number 1.

If large registers are available (instead of just binary reg-
isters), the algorithm in Fig. 5 could use, as a consensus
subroutine, the algorithm of Theorem 7 instead of the algo-
rithm of Theorem 6. If the number of different operations
that are permitted on the idempotent object type is d and
k invocations occur, then the number of registers needed to
implement each consensus object is O (n log(dk)), by Prop-

@ Springer

osition 8, and at most k consensus objects are needed. This
yields the following proposition.

Proposition 14 An idempotent object with a operation set of
size d has an implementation that uses O (kn log(dk)) regis-
ters in any execution with k invocations on the object.

8 Concluding remarks

This paper is the first investigation of what object types can
be deterministically implemented in an anonymous, asyn-
chronous shared-memory system. In particular, we gave a
characterization of the class of objects with obstruction-free
implementations. A number of related questions are open.

Determining the class of objects that have wait-free imple-
mentations is a challenging objective. It will be strictly
smaller than the class of objects with obstruction-free imple-
mentations, since consensus has no wait-free solution, but
how much smaller?

Can binary registers implement multi-valued registers in
a wait-free way? In this paper, we assumed atomic registers.
It is known that such registers can be obtained from binary
safe registers assuming identities. Is this also the case in an
anonymous system?

Many of the implementations in this paper used either
unbounded registers or an unbounded number of binary reg-
isters. Does anonymity inherently require unbounded space
to solve some problems?

For some of the problems in this paper, subsequent work
has reduced the number of (unbounded) registers required.
Ellen et al. [16] gave an anonymous wait-free weak counter
implementation that uses n registers. They also gave a
bounded wait-free weak counter algorithm using O (n?) reg-
isters. Plugging the former weak counter into the snapshot
algorithm of Theorem 5 in this paper yields a wait-free snap-
shot implementation that uses m + n registers for m com-
ponents. Plugging in the latter timestamp algorithm instead
gives an anonymous snapshot implementation from O (m +
n2) registers, and this is the first bounded wait-free anony-
mous algorithm for the snapshot problem. The same authors
proved a time-space tradeoff for anonymous implementa-
tions of snapshots: if an implementation uses r registers,
Q(n/r) steps are needed to perform a SCAN, even if m = 2
[18].

This paper focused on implementations from registers. A
sequel to this paper studies the possibility of wait-free algo-
rithms for consensus and naming problems in anonymous
systems equipped with stronger types of shared objects [33].

Acknowledgments We thank Petr Kouznetsov for helpful conver-
sations and the referees (who were, fittingly, anonymous) for their
comments. This research was supported by the Swiss National Sci-
ence Foundation (NCCR MICS project) and the Natural Sciences and

Anonymous and fault-tolerant shared-memory computing

177

Engineering Research Council of Canada. A preliminary version of this
paper appeared in [20].

References

10.

12.

13.

15.

. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.:

Atomic snapshots of shared memory. J. ACM 40(4), 873—
890 (1993)

Anderson, J.H.: Composite registers. Distrib. Comput. 6(3), 141—
154 (1993)

Angluin, D.: Local and global properties in networks of proces-
sors. In: Proceedings of 12th ACM Symposium on Theory of
Computing, pp. 82-93 (1980)

Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.:
Computation in networks of passively mobile finite-state sen-
sors. Distrib. Comput. 18(4), 235-253 (2006)

Aspnes, J., Fich, FE., Ruppert, E.: Relationships between broad-
cast and shared memory in reliable anonymous distributed sys-
tems. Distrib. Comput. 18(3), 209-219 (2006)

Aspnes, J., Herlihy, M.: Wait-free data structures in the asynchro-
nous PRAM model. In: Proceedings of 2nd ACM Symposium on
Parallel Algorithms and Architectures, pp. 340-349 (1990)
Aspnes, J., Shah, G., Shah, J.: Wait-free consensus with infinite
arrivals. In: Proceedings of 34th ACM Symposium on Theory of
Computing, pp. 524-533 (2002)

Attiya, H., Gorbach, A., Moran, S.: Computing in totally
anonymous asynchronous shared memory systems. Inf. Com-
put. 173(2), 162-183 (2002)

Attiya, H., Guerraoui, R., Kouznetsov, P.: Computing with reads
and writes in the absence of step contention. In: Distributed Com-
puting, 19th International Conference, vol. 3724 of LNCS, pp.
122-136 (2005)

Bazzi, R.A., Ding, Y.: Non-skipping timestamps for Byzantine
data storage systems. In: Distributed Computing, 18th Interna-
tional Conference, vol. 3274 of LNCS, pp. 405-419 (2004)

. Berthold, O., Federrath, H., Kéhntopp, M.: Project “anonymity

and unobservability in the internet”. In: Proceedings of 10th Con-
ference on Computers, Freedom and Privacy, pp. 57-65 (2000)
Bono, S.C., Soghoian, C.A., Monrose, F.: Mantis: A lightweight,
server-anonymity preserving, searchable P2P network. Technical
Report TR-2004-01-B-ISI-JHU, Information Security Institute,
Johns Hopkins University (2004)

Buhrman, H., Panconesi, A., Silvestri, R., Vitanyi, P.: On the
importance of having an identity or, is consensus really univer-
sal?. Distrib. Comput. 18(3), 167-176 (2006)

Chandra, T.D.: Polylog randomized wait-free consensus. In: Pro-
ceedings of 15th ACM Symposium on Principles of Distributed
Computing, pp. 166175 (1996)

Druld, C.: The totally anonymous shared memory model in which
the number of processes is known. Personal communication

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Ellen, F., Fatourou, P., Ruppert, E.: The space complexity of
unbounded timestamps. In: Proceedings of 21st International
Symposium on Distributed Computing (2007, to appear)
Egecioglu, O., Singh, A.K.: Naming symmetric processes using
shared variables. Distrib. Comput. 8(1), 19-38 (1994)

Fatourou, P., Fich, EE., Ruppert, E.: Time-space tradeoffs for
implementations of snapshots. In: Proceedings of 38th ACM Sym-
posium on Theory of Computing (2006)

Goldschlag, D., Reed, M., Syverson, P.: Onion routing. Commun.
ACM 42(2), 39-41 (1999)

Guerraoui, R., Ruppert, E.: What can be implemented anony-
mously? In: Distributed Computing, 19th International Confer-
ence, vol. 3724 of LNCS, pp. 244-259 (2005)

Herlihy, M.: Wait-free synchronization. ACM Trans. Program.
Lang. Syst. 13(1), 124-149 (1991)

Herlihy, M., Luchangco, V., Moir, M.: Obstruction-free synchro-
nization: double-ended queues as an example. In: Proceedings of
23rd IEEE International Conference on Distributed Computing
Systems, pp. 522-529 (2003)

Herlihy, M., Shavit, N.: The topological structure of asynchronous
computability. J. ACM 46(6), 858-923 (1999)

Herlihy, M.P., Wing, J.M.: Linearizability: a correctness con-
dition for concurrent objects. ACM Trans. Program. Lang.
Syst. 12(3), 463—492 (1990)

Jayanti, P, Toueg, S.: Wakeup under read/write atomicity. In:
Distributed Algorithms, 4th International Workshop, vol. 486 of
LNCS, pp. 277-288 (1990)

Johnson, R.E., Schneider, F.B.: Symmetry and similarity in dis-
tributed systems. In: Proceedings of 4th ACM Symposium on
Principles of Distributed Computing, pp. 13-22 (1985)

Kutten, S., Ostrovsky, R., Patt-Shamir, B.: The Las-Vegas pro-
cessor identity problem (How and when to be unique). J. Algo-
rithms 37(2), 468-494 (2000)

Lipton, R.J., Park, A.: The processor identity problem. Inf. Pro-
cess. Lett. 36(2), 91-94 (1990)

Loui, M.C., Abu-Amara, H.H.: Memory requirements for agree-
ment among unreliable asynchronous processes. In: Preparata,
FP. (ed.) Advances in Computing Research, vol. 4., pp. 163—
183. JAI Press, Greenwich (1987)

Neiger, G.: Set-linearizability. In: Proceedings of 13th ACM Sym-
posium on Principles of Distributed Computing, pp. 396 (1994)
Panconesi, A., Papatriantafilou, M., Tsigas, P., Vitanyi, P.: Ran-
domized naming using wait-free shared variables. Distrib. Com-
put. 11(3), 113-124 (1998)

Reiter, M.K., Rubin, A.D.: Crowds: anonymity for web transac-
tions. ACM Trans. Inf. Syst. Secur. 1(1), 66-92 (1998)

Ruppert, E.: The anonymous consensus hierarchy and naming
problems. Technical Report CSE-2006-11, Department of Com-
puter Science and Engineering, York University (2006)

Teng, S.-H.: Space efficient processor identity protocol. Inf. Pro-
cess. Lett. 34(3), 147-154 (1990)

@ Springer

	Anonymous and fault-tolerant shared-memory computing
	Abstract
	Introduction
	Related work
	Model
	Weak counters
	Snapshot objects
	Consensus
	Obstruction-free implementations
	Concluding remarks
	Acknowledgments

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

