Lectures Notes on Concurrent Computing

October 17, 2011

Contents

1 Introduction

1.1 Abroad picture e e
1.2 ThetopiC e
1.3 Contentofthebook e
1.3.1 Shared objects as concurrency abstractions e e
1.3.2 AtOMICItY o e
1.3.3 Wait-freedom
1.3.4 Objectimplementation e e
1.3.5 Reducibility e
1.4 Contentand organization e e
1.5 Bibliographical notes
2 Atomicity: A Correctness Property for Shared Objects
2.1 Introduction L e e
2.2 Model
2.2.1 Processesand operations e e e
2.2.2 Objects e e
2.2.3 Histories
2.2.4 Sequential history e
2.3 AtOMICItY e e e
2.3.1 Legalhistory e
2.3.2 Thecase of complete historieso
2.3.3 Thecase ofincomplete histories
2.4 Locality e
2.4.1 Localproperties e e
2.4.2 Atomicityisalocal property e e
2.5 Alternatives to atomicity e e
2.5.1 Sequential consistency e
2.5.2 Serializability e
2.6 SUMMANY e
2.7 Bibliographicnotes

3 Wait-freedom: A Progress Property for Shared Object Implementations
3.1 Introduction e e
3.2 Implementation

3.2.1 High Level Objectand Low Level Object
3.2.2 Zoominginto histories e e
3.3 Progress properties e e e e e
3.3.1 Solo, partial and global termination,
3.3.2 Boundedtermination e
3.4 Atomicity and wait-freedom L L e e e
3.4.1 Operation termination and atomicity
3.4.2 Example e
3.4.3 Onthe power of low level objects
3.4.4 Non-determinism e e e
3.5 Summary ... e

Safe, regular and atomic registers
4.1 Introduction e e e e
4.2 Themanyfacesofregisters
4.3 Safe, regularand atomicregisters e e e e e
4.3.1 Saferegisters e e e
4.3.2 Regularregisters e e e
4.3.3 Atomicregisters e e e e
4.3.4 Regularity and atomicity: a reading function ..
4.3.5 From very weak to very strongregisters oL
4.4 Two simple bounded transformations
4.4.1 Safelregular registers: from single reader to meltigaders
4.4.2 Binary multi-reader registers: from safetoregular.
4.5 Frombinary td-valued registers e
4.5.1 From safe bits to satevalued registers
4.5.2 From regular bits to regulasvalued registers
4.5.3 From atomic bits to atomievalued registers oL
4.6 Three (unbounded) atomic register implementations
4.6.1 1WIR registers: From unbounded regular to atomic
4.6.2 Atomic registers: from unbounded 1W1R to IWMR e e
4.6.3 Atomic registers: from unbounded IWMRto MWMR
4.7 Concludingremark e e
4.8 Bibliographicnotes

From safe bits to atomic bits: an optimal construction

5.1 Introduction e

5.2 AlowerBound Theorem e
5.2.1 Digests and SequencesofWrites
5.2.2 The Impossibility Result and the LowerBound

5.3 From three safe bits to an atomicbito
5.3.1 Base architecture of the construction
5.3.2 Handshaking mechanism and the write operation
5.3.3 Anincremental construction of the read operation
5.3.4 Proofofthe construction e e
5.3.5 Costofthealgorithms e

5.4 Bibliographic notes

Chapter 1

Introduction

1.1 A broad picture

The field of concurrent computing has gained a huge impogtafter major chip manufacturers announced
their switch of focus from increasing the speed of individuacessors to increasing the number of proces-
sors on a chip. The old good times where nothing needed toree tddoost the performance of programs,
besides changing the underlying processors, are over.gloierulti-core architectures, programs have to
be devised in a parallel manner. For instance, a singledec application can exploit at most 1/100 of the
potential throughput of a 100-core chip and such a chip ntighavailable before this book is edited. Chip
manufacturers are calling for a new software revolutioe:cbncurrency revolution

This might look surprising at first glance for concurrencyaisost as old as computer science. The
famous computer scientists that shaped up the field of cangphtave devoted a large amount of their
time studying concurrency, including mainly Dijkstra anddtle. In fact, the revolution is more than about
concurrency alone: it is aboabncurrency for the massef short, concurrency is going out of the small
box of specialist programmers and is conquering the ma3$eschallenge is to come up with abstractions
that such programmers can easily use for general purposeirgent programming. In particular, designing
and implementing abstractions to enable inter-processhsgnization is crucial. Moreover, given that the
contribution of synchronization mechanisms to the costsoofcurrent computations is deciding [1], these
implementations should also be efficient. In a way, whefedsng threadss relatively easysynchronizing
their activities is usually much more complicated. Thisrisgisely the topic of this book.

1.2 The topic

In concurrent computing, a problem is solved through a sptaéesses that execute relatively independent
tasks. Except in embarrassingly parallel programs, tHestased sometimes to synchronize their activities
through shared elements. It is good practice to view thesaetts as instances of abstract data types, acces-
sible through some interface exporting a set of operatidhss interface is itself defined by a specification
that captures the semantics of the operations and the wsg Have to be used.

This book studies algorithms that implement ssblaredobjects in aobustmanner. Roughly speaking,
“robustness” means the following:

e No processp ever prevents any other proceg$rom making progress whei executes an object
operation on shared objedf. This means that, provided it remains alive and kickipgerminates

7

its operation onX despite the speed or the failure of any other progesBrocess could be very
fast and might be permanently accessing shared oBjeair could have been swapped out by the
operating system while accessig None of these situations should preverfrom executing its
operation. This aspect of robustness is calledt-freedom As we will explain later in this chapter,
this property transforms the difficult problem of reasonaigput a failure-prone concurrent system
where processes can be arbitrarily delayed and swappd@opaged-out), into the simpler problem
of reasoning about a failure-free concurrent system whegeygrocess progresses at its own pace
and runs to completion.

e Despite concurrency, the operations issued on each olgjpetaas if they are executed sequentially.
In fact, each operationp on an objectX appears to take effect at some indivisible instant between
the invocation and the reply times @f. This robustness property is callatbmicity.

In short, this property transforms the difficult problem e&soning about a concurrent system into
the simpler problem of reasoning about a sequential one.

This book focuses mainly amait-free implementations of atomic objedBasically, given certain shared
objects ofbasetypes, say provided in hardware, we study how and whethsrait all possible to wait-free
implement (i.e., in software) an atomic object afhare powerfutype. In fact, and strictly speaking, when
we talk about implementing an object, we actually mean imglieting its type. As we shall see, ensuring
each of atomicity or wait-freedom alone is trivial. The ¢eage is to ensure both.

The material of the book is presented in an incremental nrarive first define atomicity and wait-
freedom, and then we show how to implement simple sharectisbfeom even simpler ones, and more
progressively how to use the resulting objects to build ewere powerful objects.

1.3 Content of the book

1.3.1 Shared objects as concurrency abstractions

Defining and implementing appropriate programming abstas are among the main challenges of com-
puter science. A file, a stack, a record, a list, queue and argetvell-known examples of abstractions that
have proved to be valuable in traditional sequential antrakred computing.

In modern computing, an abstraction is usually capturednoybgect representing a server program that
offers a set of operations to its users. These operationghamndspecification define the behavior of the
object, also called thg/peof the object. The way an abstraction (object) is implemgigausually hidden
to its users who can only rely on its operations and theirifpation to design and produce upper layer
software, i.e., software using that object. Such a modudpraach is key to implementing provably correct
software that can be reused by subsequent programmers.

The aim of the book is to study abstractions é@mncurrentcomputing, in the form ogharedobjects,
i.e., objects that can be accessed by concurrent procethas.s, the operations exported by the shared
object can be accessed by concurrent processes. Eachgemmesses the shared object in a sequential
manner. Roughly speaking, sequentiality means here tfiat,ibhas invoked an operation on an object,
a process waits to receive a reply indicating that the ojoerditas terminated, and only then is allowed to
invoke another operation on the same or a different objewe. fact that a procegsis executing an operation
on a shared object does not however preclude other procegsEem invoking an operations on the same
objectX.

1.3.2 Atomicity

Atomicity, also calledinearizability, means that each object operation appears to execute atrstimigible

point in time, also calletinearizationpoint, between the invocation and reply time events of treraton.
Atomicity provides the illusion that the operations isstbigdhe processes on the shared objects are executed
one after the other. To program with atomic objects, the logez simply needs theequential specification

of each object, called also its sequential type or simphyyite, which specifies how the object behaves
when accessed sequentially by the processes.

Most interesting synchronization problems are best desdras atomic objects. Examples of popular
synchronization problems are treader-writerand theproducer-consumeproblems. In the reader-writer
problem, the processes need to read or write a shared dattustr such that the value read by a process at
a given point in time is the last value written before Solving this problem boils down to implementing
an atomic object exportingsad() andwrite() operations. Such an object type is usually called an atomic
read-write variable or egister. It abstracts the very notions of shared file and disk storage

In the producer-consumer problem, the processes are yispiitlinto two camps: the producers which
create items and the consumers which use the items. It isalyfa require that the first item produced is
the first to be consumed. Solving the producer-consumerigmoboils down to implementing an atomic
object type, called a FIFQueue (or simply a queue) that exports two operatioasqueue() (invoked by a
producer) andlequeue() (invoked by a consumer).

1.3.3 Wait-freedom

Traditional synchronization algorithms rely onutual exclusior(typically based on somiecking primi-
tives): critical shared objects (or critical sections ofleavithin shared objects) are accessed by processes
one at a time. No process can enter a critical section if sdhmer process is in that critical section. We also
say that a process has acquirelbek on that object (resp., critical section). This techniquedfein the
sense that it ensures atomicity and protects the programifroonsistencies due to concurrent accesses to
shared variables.

However, coarse-grained mutual exclusion does not scaldirergrained mutual exclusion can easily
lead to violate atomicity. Indeed, atomicity is automdticensured only if all related variables are pro-
tected by the same critical section. This significantly t8rihe parallelism and thus the performance of the
program, unless the program is devised with minimal interfee among processes. This, on the other hand,
is nevertheless hard to expect from common programmersractudes most legacy programs.

Maybe more importantly, mutual exclusion hampers progsgs® a process delayed in a critical section
prevents all other processes from entering that criticetice. Delays could be significant and especially
when caused by crashes, preemptions and memory paging.n$tanée, a process paged-out might be
delayed for millions of instructions, and this would meataglisng many other processes if these want to
enter the critical section held by the delayed process.

Lock-freeimplementations of atomic objects provide an alternativenutual exclusion-based imple-
mentations. In particulawait-freedomprecludes any form of blocking. In short, wait-freedom skippes
that, unless it stops executing (say it crashes), any psdbes invokes an object operation eventually ob-
tains a reply. That is, the process calling the operatiorherobject (to be implemented), should obtain a
response for the operation, in a finite number of its own stepependently of concurrent steps from other
processes. The notion of step means here a local instruattithe process, say updating a local variable, or
an operation invocation on a base object used in the implatien. Sometimes, we will assume that the
object to be implemented should tolerate a certain numbbagé object failures. That is, we will seek to

9

implement objects that are resilient in the sense that thegteally return from process invocations, even if
the underlying base objects fail and do not return, or retiseless replies.

1.3.4 Object implementation

This book studies how to wait-free implement certain atoaotijects out of certain base objects. The notion
of implementation has to be considered here indlgerithmic sense (there is no promise of C or Java code
in this book).

An object to be implemented is typically calléigh-leve] in comparison with the objects used in the
implementation, considered atawer-level It is common to talk aboutmulationsof the high-level object
using the low-level ones. Unless explicitly stated otheayive will by default meawait-free implementa-
tion when we writeimplementationandatomic objectwhen we writeobject

It is often assumed that the underlying system model previtene form ofegistersas base objects.
These provide the abstraction of read-write storage el&nddessage-passing systems can also, under
certain conditions, emulate such registers. Sometimebabe registers that are supported are atomic but
sometimes not. As we will see in this book, there are algorittihat implement atomic registers out of
non-atomic base registers that might be provided in harelwar

Some multiprocessor machines also provide objects thanare powerful that registers likest&tet
objects orcompare&swapbjects. Intuitively, these are more powerful in the sehse the writer process
does not systematically overwrite the state of the objedtspecifies the conditions under which this can be
done. Roughly speaking, this enables more powerful symitetion schemes than with a simple register
object. We will capture the notion of “more powerful” moreeprisely later in the book.

Not surprisingly, a lot of work has been devoted to figure obether certain objects can wait-free
implement other objects. As we have seen, focusing on wedtimplementations clearly excludes mutual
exclusion based approaches, with all its drawbacks. Frenapiplication perspective, there is a clear gain
because relying on wait-free implementations makes itvab®erable to failures and dead-locks. However,
the desire for wait-freedom makes the design of atomic olijeglementations subtle and difficult. This is
particularly so when we assume that processes haeepnmri information about the interleaving of their
steps: this is the model we will assume by default in this book

1.3.5 Reducibility

In its abstract form, the question we address in this bookehaof implementing high level objects using
lower level objects, can be stated as a geneicibility question in the parlance of the classical theory of
computing. Given two object typek1 and X2, can we implemeni 2 using any number of instances of
X1 (we simply say usingX1)? In other words, is there an algorithm that implemeXitsusing X1? The
specificity of concurrent computing here lies in the veryt that under the term "implementing”, lies the
notions of atomicity and wait-freedom These notions enalaps the smooth handling of concurrency and
failures.

If the answer to the reducibility question is negative, tliteis also interesting to ask what is needed
(under some minimality metric) to add to the base objectsriteoto implement the desired high level
object. For instance, if the base objects provided by a gmeitiprocessor machine are not enough to
implement a particular object, knowing that extending tlasebobjects with another specific object (or
many of such objects) is sufficient, might give some usefidrination to the designers of the new version
of the multiprocessor machine in question.

10

1.4 Content and organization

The book is organized in an incremental way, going from im@ating simple objects from even simpler
ones, to implementing more powerful objects. After prdgiskefining the notions of atomicity and wait-
freedom, we go through the following steps.

1. We first study how to implement atomic registers objectsobunon-atomic base registers. Roughly
speaking, assuming as base objects registers that pro@dkewguarantees than atomicity, and we
show how to wait-free implement atomic registers from thesek registers. Furthermore, we also
show how to implement registers that can contain an arbiteaige range of values, and be read and
written by any process in the system, from single bit regssfee., that contain onlg or 1) that can
be accessed by only one writer procgsmd only one reader procegs

2. We then discuss how to use registers to implement seegymingie sophisticated objects than regis-
ters, likecountersandsnapshobjects. We contrast this with the inherent limitation afisters in
implementing more powerful objects lilggieues This limitation is highlighted through the seminal
consensus impossibilitgsult.

3. We then discuss the importance @hsensus as an object type, by explaining itgiversality In
particular, we describe a simple algorithm that uses regisind consensus objects to implement any
other object. Then, we turn to the question on how to impldéra@onsensus object from other objects.
In particular, we describe an algorithm to implement a cosge object in a system of two processes,
using registers and either a test&set or a queue objectselhsasvan algorithm that implements a
consensus object using a compare&swap object in a systemawitrbitrary size. The difference
between these implementations is highlighted to introdbeenotion ofconsensus numhber

4. We then study a complementary way of implementing consenssing registers and some additional
assumptions about the way processes access these redikiegprecisely, we make use of an oracle
that reveals information about the operational status efptfocesses accessing the shared registers.
We discuss how even an oracle that is unreliable most of tamehelp devise a consensus algorithm,
and hence any other object. We also discuss the implemamtatisuch an oracle assuming that the
computing environment satisfies additional assumptiomsitatne scheduling of the processes. This
may be viewed as a slight weakening of the wait-freedom rement which requires progress no
matter how processes interleave their steps.

5. We then consider the question of implementing object®bb&se objects that can fail. This issue can
be of practical relevance in a distributed multi-core amdture where it is reasonable to assume that
certain base objects might fail. It also abstracts the proldf implementing a highly available storage
abstraction in a storage area network where basic units @ilelisks) can fail. Not surprisingly, the
general way to achieve resilience is replication, but theeudllying approach depends on the failure
model. We distinguish two canonical failure models. Fingt, consider a failure model where a base
object that fails keeps on returning a specific valusvhenever it is invoked. This model is called
the responsivefailure model. Then we look at another failure model whereasebobject that fails
stops replying. This model is called tmen-responsivdailure model. As we will see, algorithms
that tolerate the first form of failures are usually sequraigorithms whereas those that tolerate the
second form of failures are usually parallel ones.

11

6. Finally, we revisit some of the implementations giventie book by giving up the assumption that
processes do have unique identities. We study aromymousmplementations. We give anonymous
implementations of a weak counter object and a snapshottdigsed on registers.

1.5 Bibliographical notes

The fundamental notion of abstract object type has beenlajme in various textbooks on the theory or
practice of programming. Early works on the genesis of absttata types were described in [4, 13, 17, 18].
In the context of concurrent computing, one of the earliestkwvas reported in [9, 16]. More information
on the history concurrent programming can be found in th&h3p

The notion of register (as considered in this book) and itm&dization are due to Lamport [12]. A
more hardware-oriented presentation was given in [15].nidton of atomicity has been generalized to any
object type by Herlihy and Wing [8] under the name lineariligh The concept of snapshot object has been
introduced in [2]. A theory of wait-free atomic objects wadloped in [10].

The mutual exclusion problem has been introduced by Dgkgt. The problem constituted a basic
chapter in nearly all textbooks devoted to operating systelhere was also an entire monograph solely
devoted to the mutual exclusion problem [21]. Various syaolzation algorithms are also detailed in [22].

The notion of wait-free computation originated in the woikLamport [11], and was then explored
further by Peterson [20]. It has then generalized and fameelby Herlihy [7].

The consensus problem was introduced in [19]. Its impdgsiloh asynchronous message-passing sys-
tems prone to process crash failures has been proved byeFEisghch and Paterson in [6]. Its impossibility
in shared memory systems was proved in [14]. The univeysaflithe consensus problem and the notion of
consensus number were investigated in [7].

12

Chapter 2

Atomicity: A Correctness Property for
Shared Objects

2.1 Introduction

Before diving into how to implement shared sequential dgjese first address in this chapter the following
guestions:

e What is a sequential object?

e What does it mean for a shared-object implementation to bect? In particular, how to evaluate
correctness even when one or more processes stop theitierdouhe middle of an operation?

To give a flavor of the questions we address, let us considenlaounded FIFO (first in first out) queue.
This is an object of the typgueue defined by the following two operations:

e Eng(v): Add the valuev at the end of the queue,

e Deq(): Return the first value of the queue and suppress it from teaejuf the queue is empty, return
the default valuel .

Eng(a) Eng() Bng®) Deq(a) Deq(o)

Figure 2.1: A sequential execution an a queue

Figure 2.1 describes a sequential execution of a system oadé a single process using the queue.
The time-line, going from left to right, describes the piegg of the process when it enqueues first the value
a, then the value, and finally the valué. According to the expected semantics of a queue, and astelépic
by the figure, the first invocation ddeq() returns the value, the second returns the valdgetc.

Figure 2.2 depicts an execution of a system made up of tweepses sharing the same queue. Now,
procesg; enqueues and therb whereas process concurrently enqueues On the figure, the execution
of Eng(c) by ps overlaps bothFng(a) and Eng(b) by p;. Such execution raises the following questions:

e What values are dequeued byandp,?

13

Eng (a) Eng (b) Deg (alblc) ?

b1

Eng (c) Deg (alb|c) ?

D2

Figure 2.2: A concurrent execution on a queue

e What values can be returned by a process if the other proesdaifed while executing an operation?

e What happens if; andp, share several queues instead of a single one? Etc.

Addressing these and related questions goes first througtindemore precisely our model of compu-
tation.

2.2 Model

2.2.1 Processes and operations

The system we consider consists of a finite set pfocessesdenotedpy, ..., p,. The processes execute
some common distributed computation and, while doing soperate by accessirgihared objects

Processes synchronize their activities by executing tipesaexported by shared objects. An execution
by a process of an operation on an obj&cts denotedX.op(arg)(res) wherearg andres denote respec-
tively the input and output parameters of the invocation.e Daitput corresponds to the response to the
invocation. Sometimes we simply wrif€.op when the input and output parameters are not important. The
execution of an operatiosp() on an objectX by a procesg; is modeled by two events, namely, the events
denotedinv|[X.op(arg) by p;] that occurs whem; invokes the operation (invocation event), and the event
denotedresp[X.op(res) by p;] that occurs when the operation terminates. (When there @minguity, we
talk aboutoperationswhere we should be talking abooperation executions We say that these events are
generated by the procegsand associated with the objekt Given an operatiotX.op(arg)(res), the event
resp[X.op(res) by p;] is called the response event matching the invocation eweni .op(arg by p;).

An execution of a distributed system induces a sequencetariaictions between the processes of the
system and the shared objects. Every such interactionspannels to a computatistepand is represented
by anevent the visible part of a step, i.e., the invocation or the raglan operation. A sequence of events
is called ahistory and this is precisely how we model executions. We will ddtad later in this chapter.

As we pointed out in the introduction of the book, we gengraisume that processes asguential
a process executes (at most) one operation of an object mttea fThat is, the algorithm of a sequential
process stipulates that after an operation is invoked orbgatiband until a matching response is received,
the process does not invoke any other operation. The fagptbeesses are individually sequential does not
preclude them from concurrently invoking operations ong@me shared object. Sometimes, we will focus
onsequential executiornodeled bysequential historigswhich precisely preclude such concurrency; that
is, only one process at a time invokes an operation on antabjacsequential execution.

14

2.2.2 Objects

An object has a name and a type. A type is defined by (1) the getsaible values for (the states of) objects
of that type; (2) a finite set of operations through which thgots of that type can be manipulated; and (3)
a specification describing, for each operation, the camlitinder which that operation can be invoked, and
the effect produced after it has been executed. Figure 2septs a structural view of a setioforocesses
sharingm objects.

1 k ¢ 1
opy opy opy OPm,

-

ObjectO, ObjectO, ObjectO,,

Figure 2.3: Structural view of a system

Sequential specification The object types we consider do generally have a sequeptalfeation. We
talk both about the specification of the object or the spetifia of the type. A sequential specification
depicts the behavior of the object when accessed sequritil, in a sequential execution.

One can describe a sequential specification by associatingrtedicates with each operation. These
predicates are called pre-assertion and post-assertisauring the pre-assertion is satisfied before exe-
cuting the operation, the post-assertion describes thevakwe of the object and the result of the operation
returned to the calling process. We say that an object apergttotal if it is defined for every state of the
object; otherwise it ipartial. This means that, differently from the pre-assertion dased with a partial
operation, the pre-assertion associated with a total tipars always satisfied.

We also say that an object operatiomléterministidf, given any state of the object that satisfies the pre-
assertion and input parameters, the output parametersarithal state of the object are uniquely defined.
An object (resp., type) that has only deterministic operatiis said to be deterministic; otherwise we say
that the object (resp., type) is hon-deterministic.

Example 1: aread/write object (register) To illustrate the notion of sequential specification, wesidar
here three examples object types. The first type (calledyfierégister) is a simple read/write abstraction,
that models objects such as a shared memory word, a shareddikhared disk.

It has two operations:

e The operationread() has no input parameter. It returns a value of the object.

e The operationwrite(v) has an input parameter, a new value of the object. The result of that
operation is a valuek indicating to the calling process that the operation hasiteated.

15

The sequential specification of the object is defined by allsiaquences of read and write operations in
which each read operation returns the value of the last giregevrite operation (i.e., the last value written).
Clearly, the read and write operations are always definey. die total operations.

The problem of implementing a concurrent read/write objec classical synchronization problem
known under the nameader/writerproblem.

Example 2: a FIFO queue with total operations The second example is the unbounded (FIFO) queue
described in Section 2.1. Such object has the following eetial specification: every dequeue returns
the first element enqueued and not dequeued yet. If therd such element (i.e., the queue is empty), a
specific default valued. is returned. This definition never prevents an enqueue ogaeaig operation to be
executed: both enqueue and dequeue operations are total.

Example 3: a FIFO queue with a partial operation Let us consider now the previous queue definition
modified as follows: a dequeue operation can be executedidréy the queue is not empty. The sequential
specification of this object is then a restriction of the wag specification; all situations where a dequeue
operations returnd. have to be precluded. The enqueue operation can always betesgeso it remains

a total operation. On the other hand, the pre-assertioneofilyueue operation states that it can only be
executed when the queue is not empty; consequently, theatopeis a partial operation.

The two FIFO queues examples (2 and 3) are two variants of eldlssicalproducer/consumesynchro-
nization problem.

Example 4: an object with no sequential specification Not all object types have a sequential specifi-
cation. To illustrate this, let us considerendezvousbject that can be accessed by two procepgsemnd

pe2. Such an object provides the processes with a single operatieting() with the following semantics:
after it has been invoked by a process, the operation tetesmaly when the other process has also invoked
the operation. In other words, the key property of this abjgthat no process can terminate an operation
without a concurrent invocation. It is easy to see that suptndezvous object has no sequential specifi-
cation: the behavior of the object cannot be described sitmplstating what happens when the operation
invocations byp; andp, would be totally ordered. (A rendezvous object is a typicaneple of an object
that has no sequential specification. In this book, we aralgnaiterested in objects that have a sequential
specification.)

2.2.3 Histories

An execution of a set of processes accessing a set of shajectsols captured through the notion of a
history.

Representing an execution as a history of eventsProcesses interact with shared objectsimacation
andresponsevents. We assume that simultaneous (invocation or respemsnts do not affect each other.
This is generally the case, in particular for events geedrhy sequential processes accessing objects with a
sequential specification. Therefore, without loss of galitgr we can arbitrarily order simultaneous events.
This makes it possible to model the interaction betweenge®es and objects as an ordered sequence
of eventsH, called ahistory (sometimes also calledteace). The total order relation on the set of events
induced byH is denoted< ;. A history abstracts the real-time order in which the eveatsctually occur.

16

Recall that an event includes the name of an object, the nmprocess, the name of an operation and
input -or output- parameters). The objects and processesiaged with events dff are said to be involved
in H.

A local history of p;, denotedH |p;, is a projection ofH on proces9;: the subsequencH consisting
of the events generated by.

Equivalent histories Two historiesH andH' are said to bequivalenif they have the same local histories,
i.e., for eachp;, H|p; = H'|p;. That s, equivalent histories cannot be distinguishedryypocess.

Well-formed histories As we are interested only in histories generated by seqigmticesses, we restrict
our attention to the historieH such that, for each procegs, H |p; (the local history generated hy) is
sequential: it starts with an invocation, followed by a @sge, called the matching response and associated
with the same object, followed by another invocation, ete. 34l in this case thaf is well-formed

Complete vs incomplete histories An operation is said to beompletan a history if the history includes
both the event corresponding to the invocation of the ofmarand its response. Otherwise we say that the
operation ipending A history without pending operations is said todmmplete A history with pending
operations is said to becomplete Note that, being sequential, a process can have at mostenming
operation in a given history.

Partial order on operations A history H induces an irreflexive partial order on its operations asvis.
Letop = X.opl() by p; andop’ = Y.op2() by p; be two operations. Informally, operatiop precedes op-
erationop’, if op terminates beforep’ starts, where “terminates” and “starts” refer to the tinme-abstracted
by the <y total order relation. More formally:

(op —p op') def (resp[op] <y im)[op’]).

Two operationsop andop’ are said tooverlap (we also say areoncurren} in a history H if neither
resplop| <m inv[op'], nor resplop’| <z inv[op]. Notice that two overlapping operations are such that
—(op —p op’) and—(op’ —p op). As a sequential history has no overlapping operations|liaviis that
— g is a total order ifH is a sequential history.

lllustrating histories Figure 2.4 depicts a well-formed histoy. The history comprises ten events
el...el0 (e4, e6, e7 ande9 are explicitly detailed). As all the events i are on the same object, its
name is omitted. The enqueue operation issueghbyverlaps both enqueue operations issuegbyNo-
tice that the operatio'ng(c) by ps is concurrent with bottEng(a) and Eng(b) issued byp,. Moreover,
the historyH has no pending operations, and is consequently complete.

To illustrate the notions of incomplete and complete hisgrlet us again consider Figure 2.4. The
sequencesl ... e9 is an incomplete history where the dequeue operation isbyed is pending. The
sequencel ... e6 e7 e8 el0 is another incomplete history in which the dequeue operasisued byps is
pending. Finally, the historyl... e8 has two pending operations. Now we are ready to define what we
mean by asequentiahistory.

17

Eng (a) Eng (b) Deq (alblc) ?

h
Enq (c) Degq (a|bic) ?
b2 ! 1 l : ! l !
- y v “‘/ 3 ¢ i \i/ : \i/ :
History H ele2 e3 | €d : e el0
ed=inv[Eng®)byp] i
e6 = resp[Enqg(ok) byvpl] | |
; s
e7 =inv[Deq() by ps]
€9 = resp[Deq(?) by ps)

Figure 2.4: Example of a history

2.2.4 Sequential history

Definition A history is sequentialif its first event is an invocation, and then (1) each invamatevent,
except possibly the last, is immediately followed by the ¢chatg response event, and (2) each response
event, except possibly the last, is immediately followedanyinvocation event. The sentence “except
possibly the last” associated with an invocation event estduhe the fact that a history can be incomplete. A
complete sequential history always ends with a responsa.eddnistory that is not sequential @®ncurrent

A sequential history models a sequential multiprocess cation (there are no overlapping operations
in such a computation), while a concurrent history modelsrecarrent multiprocess computation (there
are at least two overlapping operations in such a compujatiGiven that a sequential histoy has no
overlapping operations, the associated partial orderdefined on its operations is actually a total order.

Strictly speaking, the sequential specification of an dhifea set of sequential histories involving solely
that object. Basically, the sequential specification regnés all possible sequential accesses to the object.

Example Considering Figure 2.4H is a complete concurrent history. On the other hand, the t&mp
history
Hi =elededebe2edele9e8ell

is sequential: it has no overlapping operations. We canhiigigight its sequential nature by separating its
operations using square brackets as follows:

Hy = [el e3] [e4 e6] [e2 eb] [e7 9] [e8 e10].
The following historiesH, and Hy

Hy = [el e3] [e4 e6] [e2 e5] [e8 el0] [e7 9],

18

Hs = [el e3] [e4 e6] [e8 el0] [e2 eb] [eT €9].

are also sequential. Let us also notice that histakiedd;, Ho, H3 are equivalent. Let{, be the history
defined as follows
H, = [el e3] [e4 e6] [e2 e5] [e8 el0] [eT.

H, is an incomplete sequential history. All these historiegehthe same local history for procegs.
H|py = Hi|p1 = Ha|p1 = Hslp1 = Hylp1 = el e3] [e4 6] [e8 e10], and, as fap, is concernedHy|p-
is a prefix of H |py = Hi|pa = Ha|pa = Hs|ps = [e2 eb] [eT €9].

So far, we defined the notion of a history as an abstract wagpictithe interaction between a set of
processes and a set of shared objects. In short, a histotgtel @arder on the set of invocation and response
events generated by the processes on the objects. We areeadwto define what we mean by a correct
shared-object implementation, based on the notionatbmic(or linearizablg history.

2.3 Atomicity

This section introduces the correctness condition caltechicity (or linearizability). The aim of atomicity
is to transform the difficult problem of reasoning about aatorent execution into the simpler problem of
reasoning about a sequential one.

Intuitively, atomicity states that a history is correcttf invocation and response events could have been
obtained, in the same order, by a single sequential pro¢esms atomic (also called linearizable) history,
each operation has to appear as if it has been executed aldriestantaneously at some point between its
invocation event and its response event. This section defiimmally the atomicity concept and presents its
main properties.

2.3.1 Legal history

As we pointed out earlier, shared objects that are usualtgidered in programming typically have a se-
guential specification defining their semantics. Not ssipgly, a definition of what is a “correct” history
has to refer in one way or another to sequential specificatibhe notion ofegal history captures this idea.

Given a sequential history, let S| X (S at X') denote the subsequence$Mmade up of all the events
involving objectX. We say that a sequential histofyis legal if, for each objectX, the sequencé|X
belongs to the sequential specificationof In a sense, a history is legal if it could have been geneiated
processes sequentially accessing objects.

2.3.2 The case of complete histories

We first define in this section atomicity for complete histati, i.e., histories without pending operations:
each invocation event aff has a matching response eventin The section that follows will extend this
definition to incomplete histories.

Definition A complete historyH is atomic(or linearizablg if there is a “witness” historys' such that:
1. H andS are equivalent,

2. S'is sequential and legal, and

19

3. »yC—g.

The definition above states that for a histdfyto be linearizable, there must exist a permutatio/of
S (witness history), which satisfies the following requirertse First,S has to be indistinguishable froii
to any process [item 1]. Secon#,has to be sequential (interleave the process histories artnularity
of complete operations) and legal (respect the sequepigification of each object) [item 2]. Notice that,
as s is sequential—g is a total order. FinallyS has also to respect the real-time occurrence order of the
operations as defined by [item 3]. S represents a history that could have been obtained by éxgcut
all the operations, one after the other, while respectiegttturrence order of non-overlapping operations.
Such a sequential histotyis called dinearizationof H.

When proving that an algorithm implements an atomic objgetneed to prove that all histories gener-
ated by the algorithm are linearizable, i.e., identify a&énzation of its operations that respects the “real-
time” occurrence order of the operations and that is casisistith the sequential specification of the object.

It is important to notice that the notion of atomicity inceslinherently a form of nondeterminism. A
history H, may allow for several linearizations.

Linearization: an example Let us consider the histor§f described in Figure 2.4 where the dequeue
operation invoked by, returns the valué while the dequeue operation invoked by returns the value

a. This means that we havw® = resp[Deq(a) by ps] andel0 = resp[Deq(b) by p1]. To show that this
history is linearizable, we have to exhibit a linearizatgatisfying the three requirements of atomicity. The
reader can check that histofy; = [el €3] [e4 e6] [e2 e5] [e7 e9] [e8 e10] defined in Section 2.2.4 is such a
witness. At the granularity level defined by the operatiavitness historyf; can be represented as follows

[Eng(a) by p1][Eng(b) by p1][Eng(c) by pa][Deg(a) by p2][Deq(b) by pi1].

This formulation highlights the intuition that underlidsetdefinition of the atomicity concept.

Linearization points The very existence of a linearization of an atomic histbfyneans that each op-
eration of H could have been executed at an indivisible instant betwseinviocation and response time
events (while providing the same result/. It is thus possible to associatdirearization pointwith each
operation of an atomic history. This is a point of the timeeliat which the corresponding operation could
have been “instantaneously” executed according to itd leggarization.

To respect the real time occurrence order, the linearizgt@nt associated with an operation has always
to appear within the interval defined by the invocation evaard the response event associated with that
operation.

Example Figure 2.5 depicts the linearization point of each opematié triangle is associated with each
operation, such that the vertex at the bottom of a trianghd(bot) represents the associated linearization
point. A triangle shows how atomicity allows shrinking aneogtion (the history of which takes some
duration) into a single point of the time-line.

In that sense, atomicity reduces the difficult problem ofogeng about a concurrent system to the
simpler problem of reasoning about a sequential systementer operations issued by the processes are
instantaneously executed.

As a second example, let us consider the complete historigtddpin Figure 2.5 where the response
eventse9 andel0 are such that9 = resp[Deq(b) by ps] andel0 = resp[Deg(a) by p1]. It is easy to

20

Eng (a) Eng (b)

L

History H el e2 e3 ed e5> €6

Figure 2.5: Linearization points

see that this history is linearizable: the sequential hysfd, described in Section 2.2.4 is one possible
linearization. Similarly, the history whek& = resp[Deq(c) by p2] andel0 = resp[Deqg(a) by p4] is also
linearizable. It has the following sequential witnessdrigt

[Eng(c) by p2][Eng(a) by p1][Eng(b) by p1][Deq(c) by pa][Deq(a) by p1].

On the other hand, the history in which the two dequeue opasatvould return the same value is not
linearizable: it does not have any witness history whiclpeets the sequential specification of the queue.

2.3.3 The case of incomplete histories

We show here how to extend the definition of atomicity to pdutiistories. As we explained, these are
histories with at least one process whose last operatiorridipg: the invocation event of this operation
appears in the history while the corresponding respongs# eees not. The historjf, described in Section
2.2.4 is such a partial history. Extending atomicity to ahtistories is important as it allows to cope with
process crashes.

Definition A partial history H is linearizable ifH can becompletedi.e., modified in such a way that
every invocation of a pending operation is either removedoonpleted with a response event, so taht the
resulting (complete) historyi’ is linearizable.

Basically, we reduce the problem of determining whetherremomplete historyH is linearizable to
the problem of determining whether a complete histafy extracted fromH, is linearizable. We obtain
H' by adding response events to certain pending operatios, af if these operations have indeed been
completed, but also removing invocation events from soméhn@fpending operations df. We require
however that all complete operations@fbe preserved iif’. It is important to notice that, given a history
H, we can extract several historiég that satisfy the required conditions.

Example Consider Figure 2.6 where we depict two processes acceassihgred register. Processfirst
writes the valud). The same process later issues a write for the valumit p; crashes during this second
write (this is indicated by a cross on its time-line). Pragesexecutes two consecutive read operations. The
first read operation lies between the two write operationg;adnd returns the value. A different value

21

. 74N >

Z Read(0) Read(v)
P2 /

H,

H,

Figure 2.6: Two ways of completing a history

would clearly violate atomicity. The situation is less aiyé with the second value and it is not entirely
clear what value has to be returned by the second read operation in orderddristory to be linearizable?

As we now explain, both valugsand1 can be returned by that read operation while preservingiatom
ity. The second write operation is pending in the incompiistery H modeling this execution. This history
H is made up of 7 events (the name of the object and process reamesmitted as there is no ambiguity),
namely:

inv[write(0)] resplwrite(0)] inviread(0)] resp[read(0)] inv[read(v)] inv[write(1)] resp[read(v)].
We explain now why botld and1 can be returned by the second read:

e Let us first assume that the returned vaiis 0.
We can associate with histof¥ a legal sequential withess histoF which includes only complete
operations and respects the partial order defineff lpn these operations (see Figure 2.6). To obtain
H), we construct historyl’ by removing fromH eventinv[write(1)]: we obtain a complete history,
i.e., without pending operations.

History H with v = 0 is consequently linearizable. The associated witneserkigf, models the
situation where; is considered as having crashed before invoking the secditelaperation: every-
thing appears as if this write has never been issued.

e Let us now assume that the returned valis 1.
Similarly to the previous case, we can associate with histbra witness legal sequential histoFf;
that respects the partial order on the operations. We &¢tigive H; by first constructing?’, which
we obtain by adding tdi the response events[write(1)]. (In Figure 2.6, the part added # in
order to obtainH’ -from which H; is constructed- is indicated by dotted lines).

The history wherey = 1 is consequently linearizable. The associated witnessrkigf; represents
the situation where the second write is taken into accouspitiethe crash of the process that issued
that write operation.

22

2.4 Locality

This section presents an inherent property of atomicityriekes it particularly attractive. (Another impor-
tant property of atomicity, namelyon-blockingnesss discussed in the next chapters.)

2.4.1 Local properties

Let P be any property that is on a set of objects. The propEriy said to bdocal if the set of objects as a
whole satisfies” whenever each object taken alone satisftes

Locality is an important concept that promotes modulai@gnsider some local property. To prove
that an entire set of objects satighy we only have to ensure that each object -independently fih@others
satisfiesP. As a consequence, properBycan be implemented on a per object basis. At one extreme, it
is even possible to design an implementation where eacletdiges its own algorithm implementing. At
another extreme, all the objects (whatever their typeshmige the same algorithm to implemédni(each
object using its own instance of the algorithm).

2.4.2 Atomicity is a local property

Intuitively, the fact that atomicity is local comes from tfaet that (1) it considers that each operation is on
single object, and (2) it involves the real-time occurreao#er on non-concurrent operations whatever the
objects and the processes concerned by these operationsill\\dy on these two aspects in the proof of
the following theorem.

Theorem 1 A history H is atomic (linearizable) if and only if, for each objeat involved inH, H|X is
atomic (linearizable).

Proof The “=" direction (only if) is an immediate consequence of the defin of atomicity: if H is
linearizable then, for each obje&tinvolved in H, H|X is linearizable. So, the rest of the proof is restricted
to the “<” direction. We also restrict the rest of the proof to the cabere H is complete, i.e.H has no
pending operation. This is without loss of generality, gitieat the definition of atomicity for an incomplete
history is derived from the definition of atomicity for a colete history.

Given an objectX, let Sx be a linearization ot | X. It follows from the definition of atomicity that'x
defines a total order on the operations involvikig Let — x denote this total order. We construct an order
relation— defined on the whole set of operationsinas the uniof| J, —x}U —p, i.e.:

1. For each objeck: —x C —,

Basically, “—" totally orders all operations on the same obj&Gtaccording to— x (item 1), while preserv-
ing — g, i.e., the real-time occurrence order on the operatioes(R).
Claim. — is acyclic.

The claim implies that a transitive closure -ef indeed defines a partial order on the set of all the op-
erations ofH. Since any partial order can be extended to a total order,omstact a sequential history
including all events off and respecting-. By construction, we have>C— g where—g is the total order
on the operations defined froéh We have the three following conditions: (&) and.S are equivalent (2§
is sequential (by construction) and legal (due to item 1 ejjaand (3)— 5y C—5 (due to item 2 above and

23

the fact that—C—g). It follows that H is linearizable.

Proof of the claim We show (by contradiction) that> is acyclic. Assume first that> induces a cycle
involving the operations on a single obje¥t Indeed, as— x is a total order, in particular transitive, there
must be two operationsp; andop; on X such thatop; —x op; andop; —py op;. Butop; —x op; =
invlop;] <m resplop;] becauseX is linearizable. Given thatp; —p op; = resplop;] <m inv|op;l,
which establishes the contradiction<ag is a total order on the whole set of events.

It follows that any cycle must involve at least two objects@ dbtain a contradiction we show that, in
that case, a cycle in> implies a cycle in— g (which is acyclic). Let us examine the way the cycle could be
obtained. If two consecutive edges of the cycle are due tsuse— x or just— 7, then the cycle can be
shortened as any of these relations is transitive. Morgoyer— x op; —y opy, is not possible forX' # Y,
as each operation is on only one objegi;(—x op; —y op;, would imply thatop; is on bothX andY’).
So let us consider any sequence of edges of the cycle suchhats ;7 op2 — x ops —p op4. We have:

- opl — g op2 = resplopl] <y invl[op2] (definition ofopl —),

- op2 —x op3 = inv[op2] <p resplop3] (asX is linearizable),

- op3 —p opd = resplop3] <y inv|opd] (definition ofopl —).
Combining these statements, we obtednp|opl] <y inv[op4] from which we can conclude thapl —
op4. It follows that any cycle in— can be reduced to a cycleiny. A contradiction as— g is an irreflexive
partial order.End of the proof of the claim O T heorem 1

Considering an execution of a set of processes that accessreently a set of objects, atomicity allows
reasoning as as the operations issued by the processesabjebes were executed one after the other. The
previous theorem is fundamental. It states that when onéoh@sason on sequential processes that access
concurrent atomic objects, one can reason on a per objeist bathout loosing the atomicity property on
the whole computation.

2.5 Alternatives to atomicity

This section discusses alternatives to atomicity, nanselguential consisten@ndserializability.

2.5.1 Sequential consistency

Overview Atomicity stipulates that the witness sequential histSrior a given historyH should respect
the partial order relation- on operations inH (also called the real-time order). Any two operatiops
andop’ suchop — g ¢’ should appear in that order in the witness histSryirrespective of the processes
invoking them and the objects on which they are performed.

A relaxation of atomicity, calledequential consistenonly requires that the real-time order is preserved
if the operations are invoked by the same process,q.& only supposed to respect thecess-order

Definition The definition of the sequential consistency correctnesdition reuses the notions of history,
sequential history, complete history, as in Section 2.2.sifaplify the presentation and without loss of
generality, we only consider complete histories (with nogieg operations).

A history H is sequentially consisteiiftthere is a “withess” historys' such that:

1. H andS are equivalent,

2. Sis sequential and legal. respect process-order).

24

To illustrate sequential consistency, let us consider fei@ui7. There are two procesggsandp, that
share a queu@). At the operation level, the local history pf comprises a single operatio®. Eng(a),
while the local history o2 comprises two operations, firgt Eng(b) and then@.Deq(b). The reader can
easily verify that this history is not atomic: as all the aui@ms are totally ordered according to real-time,
the . Deq() operation issued by, should return the value whose enqueuing was terminated before the
enqueuing of. has started. However, the history is sequentially congisiehe sequential history (described
at the operation level)

S = [Q-Enq(b) by po][Q-Eng(a) by p1][Q.Deq(b) by po]

is legal and respects the process-order relation.

Both consistency criteria, atomicity and sequential cgtasicy, require a witness sequential history, but
sequential consistency has no requirement related to therence order of operations issued by different
processes (and captured by the real-time order). It candre & based only on a logical time (the one
defined by the witness history).

Q.Eng(a)
P1

Q.Enq(b) Q.Deq(b)
D2

Figure 2.7: A sequentially consistent history

Atomicity vs sequential consistency Clearly, any linearizable history is also sequentially sistent. As
shown by the example of Figure 2.7 however, the contrary ismie. It is then natural to ask whether
sequential consistency is not good enough to reason aboettwess of concurrent implementations.

A drawback of sequential consistency is that it is not a Igmaperty. To illustrate this, consider the
counter-example described in Figure 2.8. HistArinvolves two processes accessing two concurrent queues
Q@ and(@)'. It is easy to see that, when we consider each object in isnjate obtain the historie# | and
H|Q' that are sequentially consistent. Unfortunately, thenmeoisvay to witness a legal total ordsrthat
involves the six operations: j#; dequeued’ from Q’, Q’.enq(a’) has to be ordered aft&p’.enq(b’) in
a witness sequential history. But this means that (to regpecess-order}).eng(a) by p; is necessarily
ordered beforé&).enqg(b) by pe: consequently).Deq() by ps should returng for S to be legal. A similar
reasoning can be done starting from the operafo®eq(b) by p,. It follows that there can be no legal
witness total order: even thoudhi|Q and H|Q' are sequentially consistent, the whole histéfys not.

2.5.2 Serializability

Overview Both atomicity and sequential consistency guarantee fhatations appear to execute instan-
taneously at some point of the time line. The difference & #iomicity requires that, for each operation,
this instant lies between the occurrence times of the irimtand response events associated with the
operation, which is not the case for sequential consistency

25

Q.Eng(a) Q' .Eng(V') Q'.Degq(V)
D1 = > =

Q'.Eng(a) Q.Enq(b) Q.Deq(b)

P2

Figure 2.8: Sequential consistency is not a local property

Sometimes, it is important to ensure tlgabupsof operations appear to execute as if they have been
executed without interference with any other group of ofj@na. The concept diransactionis then the
appropriate abstraction that allows grouping operations.

A transaction is a sequence of operations that might compgletcessfully (commit) or abort. In short,
the execution of a set of concurrent transactions is coif@mmitted transactions appear to execute at
some indivisible point in time and aborted transactions dbappear to have been executed at all. This
correctness criteria is calleskrializability (sometimes it is also called atomicity). The point (agasja
reduce the difficult problem of reasoning about concurnemdactions into the easier problem of reasoning
about transactions that are executed one after the otheringtance, if some invariant predicate on the
set of shared objects is preserved by every individual cdtachtransaction, then it will be preserved by a
serializable execution of transactions.

Definition To define serializability, the notion of history needs tasded. Events are now associated with
objects and transactions. In short, processes are refdigdehsactions. For each transaction, in addition to
the invocation and response events, two new events comé&mfuicture:commitandabort events. These
are associated with transactions. At most one such evessis@ted with every transaction in a history. A
transaction without such event is called pending; otherttis transaction is said to be complete (committed
or aborted). Adding a commit (resp., abort) event after #tileo events of a pending transaction is called
committing (resp., aborting) the transaction. A sequéhigtory is a sequence of committed transactions.
We say that a history is complete if all its transactions amulete.

Let 4 be a complete history is serializableif there is a “witness” historys such that:
1. For each transactidhi, S|T7' = H|T.
2. Sis sequential and legal, and

Let H be a history that is not completél is serializableif we can derive fromH a complete serializable
history H' by completing or removing pending transactions frém

Atomicity vs serializability ~Again, correctness is defined according to the equivaleme@ewitness se-
guential history. No real-time ordering is required. Irsteense, serializability can be viewed as the exten-
sion of sequential consistency to several operations. $ékgiential consistency, serializability is not a local
property either. Replacing in Figure 2.8 processes withstiations gives a counter-example that proves
that.

26

2.6 Summary

We introduced in this chapter the basic elements that ardeket® reason about executions of a distributed
system made up of concurrent processes interacting thshayked objects. More specifically, we introduced
the elements that are needed to introduce the atomicityepbnc

The fundamental element is that of a history: a sequence aftewdepicting the interaction between
processes and objects. An event represents the invocdtionabject or the return of a response. A history
is atomic if, despite concurrency, it appears as if proceaseess the objects of the history in a sequential
manner. In this sense, the correctness of a concurrent datigruis judged with respect to a sequential
behavior, itself determined by the sequential specificatiothe objects.

2.7 Bibliographic notes

The notion of atomic read/write objects (registers), adistlihere, has been investigated and formalized by
Lamport [12] and Misra [15]. The generalization of the atoityi consistency condition to objects of any
sequential type has been developed by Herlihy and Wing uhéarame linearizability [8].

The notion of sequential consistency has been introducedhimport [28]. The relation between atom-
icity and sequential consistency was investigated in [24]] [80] where it was shown that, from a protocol
design point of view, sequential consistency can be seenlasydinearizability. Examples of protocols
implementing sequential consistency can be found in [2332}

The concept of transactions is part of every textbook onkdea systems. Books entirely devoted
to transactions are [25, 26, 27]). The theory of serialiitgbivas the main topic of the following books
[26, 29].

27

28

Chapter 3

Wait-freedom: A Progress Property for
Shared Object Implementations

3.1 Introduction

The previous chapter focused on #temicity property of shared objects.This property requires oparati
to appear as if executed one after the other. Basically, iattynstipulates that certain behaviors should be
precluded, namely those that do not hide concurrent oparatiecutions on the same object.

Atomicity is a safetyproperty. It states what shoutibt happen in an execution involving processes
and shared objects (namely, an execution that is not liregalé must never happen). Clearly, this could be
achieved by a trivial algorithm that would not return any igtien of the object to be implemented, i.e., one
that would never return any result: an empty history wouldikigvial linearization of every execution of
this algorithm.

However, one would also require the implemented shareccbljealso perform its operations when
it is asked to do so by an application process making use oftbjact. In other words, one would also
require that the algorithm implementing the object satisiemeprogressproperty. Not surprisingly, this
also depends on the process invoking the operation andticydar on how this process is scheduled by the
operating system.

For instance, if a process invokes an operation and imnedgiatashes or is paged out by the operating
system, then it makes little sense to require that the psogletains a reply matching its invocation. In fact,
one might require that the shared object satisfies somegs®groperty, provided that the process invoking
an operation on the shared object is scheduled by the unmitgperating system to execute enough steps
of the algorithm implementing that operation. Performingls steps reflect the ability of the process to
invoke primitives objects used in the implementation inesrtb eventually obtain a reply to the high-level
operation being implemented.

One might, for example, require that if a process invokes f@aration and keeps executing steps of
the algorithm implementing the operation, then the openativentually terminates and the process obtains
a reply. Sometimes one might even require that, after imglin operation, the process should obtain a
response to the operation withirsteps of the process.

To express such requirements, we need to carefully defin@dtien of objectimplementationand
zoom into the way processes execute the algorithm impleéntgetite object, in particular how their steps
are scheduled by the operating system. We will in particdataoduce the notion aimplementation history
this is alower levelnotion than that describing the interaction between thegsses and the object being

29

implemented (previous chapter). Accordingly, the firstallexd ahigh level historywhereas the second is
called alow level history This will be used to introduce progress properties of shalgect implementa-
tions, the strongest of these beingit-freedom

We will focus on asingleobject implementation. As discussed in Chapter 1, whengmphting atomic
objects, it is enough to consider each object separatety fhe other objects. This is because the atomicity
consistency criterion is a local property (i.e. the compasiof objects, that individually satisfy atomicity,
provides a system that, as a whole, does satisfy the atgromitsistency criterion).

3.2 Implementation

3.2.1 High Level Object and Low Level Object

To distinguish the shared object to be implemented from tuetlying objects used in the implementation,
we typically talk about digh levelobject and underlyingpw levelobjects. (The latter are sometimes also
calledbaseobjects.) Similarly, to disambiguate, we will talk abqarimitivesinstead of operations as far
as low level objects are concerned. That is, a process isvgperationson a high level object and the
implementation of these operations requires the process/ode primitives of the underlying low level
objects. When a process invokes such a primitive, we saytibgirocess performssaep

The very notions of high level and low level are relative aegehd on the actual implementations. An
object type might be considered high level in a given impletaton and low level in another one. The
object to be implemented is the high level one and the objeszd in the implementation are the low level
ones. In general, the intuition is that the low level objentght typically capture basic synchronization ab-
stractions provided in hardware whereas the high level arethose we want to emulate in software (what
we callimplement Such emulations are strongly motivated by the desiredititite the programming of
concurrent applications, i.e. to provide the programmeh wowerful synchronization abstractions encap-
sulated by high-level objects. Another motivation is toseprograms initially devised with the high level
object in mind in a system that does not provide such an objelcardware. Indeed, multiprocessor ma-
chines do not all provide the same basic synchronizatiotradi®ns. For instance, some modern machines
provide compare&swap as a base object in hardware. Others do not and might prongleadtest&zset
or simply some form ofegisters. Providing an implementation abmpare&swap usingtest&set would,
for instance, make it possible to directly reuse, within &hroachine, an application written for a modern
machine.

An example is detailed in Figure 3.2 (Section 3.4.2) thatdess the implementation of a FIFO queue
(the high level object) from atomic low level objects dermbféE X T, Q[1], Q[2], etc. The low level object
NEXT provides the processes with the primitifesch&add() andread(), while each)[i] low level object
provides the processes with the primitiwesp() andwrite(). So, a high level history is made up Bfq()
and Deq() operations, while a low level history is made up of invocasiof the primitivesfetch&add()
andread() on the low level objectV EXT', andswap() andwrite() on the low level objects)[x]. This is
schematically represented in the Figure 3.1.

Sometimes the low level objects are assumed to be atomics@nédtimes not. As shown later in the
book, it is sometimes useful to first implement intermeddigects that are not atomic, then implement the
desired high level atomic objects on top of them.

30

Eng(a)bypr Eng(b) by ps Deq() by p3
High level history

Low level history

Primitive invocations on low level objects generated byttieeinvocation®ng(a) issued byp;

—_—
Primitive invocations on low level objects generated byttieinvocationEng(b) issued byps

Primitive invocations on low level objects generated byttieeinvocationDeq() issued byps

Figure 3.1: High level and low level histories

3.2.2 Zooming into histories

When reasoning about the atomicity of an object to be impidatk i.e., a high-level object, the executions
of the processes accessing the object are represented istithids. As defined in the previous chapter,
a history is a sequence of events, each representing amatimomr a reply on the high-level object in

guestion.

History of an implementation Reasoning about progress properties requires to zoomhatovocations
and replies of the lower level objects on top of which the Higel object is built. Hencelower level
histories are needed that depict events at the interfageebatthe processes and the low level objestd
in the implementation, i.e., the primitive events. Withsuth a zooming, it is not possible, for instance,
to distinguish a process that crashes right after invokirnigh level object operation and stops invoking
low-level objects, from one that keeps executing the allgoriimplementing that operation and invoking
primitives of low level objects. We might want to require ttkfze later obtains a matching reply and exempt
the former from having to obtain a reply. So, when we talk aliba history of an implementatiorwe
implicit assume such a low level history, which is a refinetradrihe higher level history involving only the
invocations and replies of the high level object to be imm@ated.

Considering the example of a FIFO high level object devaldpeSection 3.4.2, a high level history is
a sequence built from invocation and reply events assatiateperationgsng() and Deq(), while a low
level history (or implementation history) is a sequencdtiitom the primitivesfetch&add() andread()
associated with théV EXT low level object, and the primitivesvap() andwrite() associated with each
Q[i] low level object, that are generated from the invocationthefnq() and Deq() operations.

The two faces of a process To better understand the very notion of a low level histdris important to
distinguish the two roles of a process. On the one hand, agsdtas the role of @dient that sequentially
invokes operations on the high level object and receivelgeseOn the other hand, the process has also the
role of aserverimplementing the operations. While doing so, the proceaskies primitives on lower level
objects in order to obtain a reply to the high-level invooati

It might sometimes be convenient to think of the two roles pf@cess as executed by different entities.
As a client, a process invokes object operations but doesamtol the way the low level primitives imple-

31

menting these operations are executed. It even does not lkovvan object operation is implemented. Dif-
ferently, as a server, a process executes the algorithme(oqadf invocations of low level object primitives)
associated with the high level object operation. Such aoriggn is typically described by an automaton
(possibly with an unbounded number of states). The exatofia low level object primitive is calledstep
and it typically represents an atomic unit of computation.

Scheduling and asynchrony The interleaving of steps in an implementation is specifig@ bcheduler
(itself part of an operating system). This is outside of tbatmwl of processes and, in our context, it is
convenient to think of a scheduler asadversary This is because, when devising a distributed algorithm,
one has to cope with worst-case strategies of a scheduterahla defeat the algorithm.

Strictly speaking, a process is said to d@rectin a low-level history when it executes an infinite
number of steps, i.e., when the scheduler schedules arnténditgips of that process. This “infinity” notion
models the fact that the process executes as many stepsdesirisethe implementation. Otherwise, the
process is said to bulty. Sometimes it is convenient to see a faulty processes ascagythat crashes
and prematurely quits the computation. In the context af llwiok, we assume that processes might indeed
crash and permanently stop performing steps but do not teefriam the algorithm assigned to them. In
other words, they are not malicious (we also say they are ppamine).

Unless explicitly stated otherwise, the system is assumodaetasynchronousvhich means that the
relative speeds of the processes are unbounded: fobdhgre is an execution in which a process takes
steps while another not crashed process takes only oneBsirally, an asynchronous system progresses
is controlled by a very weak scheduler, i.e., a schedulersefumly restriction lies in the fact that it cannot
prevent forever a correct (never crashing) process froroutixe) steps.

3.3 Progress properties

As pointed out above, a trivial way to ensure atomicity wdoddto do nothing, i.e., not return any reply to
any operation invocation. This would preclude any histbat violates linearizability by simply precluding
any history with a reply.

Besides this (clearly, meaningless) approach, a populatav@nsure atomicity is to usitical sections
(say usingocks, preventing concurrent accesses to the same object. kirtiest case, every operation
on a shared object is executed as a critical section. Wheocags invokes an operation on an object, it first
requests the corresponding lock, and the algorithm of tlegadion is executed by the process only when
the lock is acquired. If the lock is not available, the pracesits until the lock is released. After a process
obtains the reply to an operation, it releases the correipgrock.

As we discussed in the introduction of this book, such an é@mantation of a shared object has an
inherent drawback: the crash of the process holding thedoc&n object prevents any other . In practice,
this might correspond to the situation where the procesditglhe lock is preempted for a long period of
time, and all processes contending on the same object arkelloWhen processes are asynchronous (i.e.,
the scheduler can arbitrarily preempt processes) whicheigdefault assumption we consider, there is no
way for a process to know whether another process has créshecs preempted for a long while) or is
only very slow.

This book focuses on shared object implementations withness properties that preclude the use of
critical sections and locks. Informally, we say an impletation is lock-based if it allows for a situation in
which a process running in isolation from some point on isen@ble to complete its operation. Taking a
negation of this property, we state that an implementatimesdot employ locks if starting after any finite

32

execution, every process can complete its operation in & fimimber of its solo steps. Intuitively, this
property, callecbbstruction-freedonfor solo terminatiof), must be satisfied by any implementation where
the crash of some processes does not prevent other profesaanaking progress. Several such progress
properties, including obstruction-freedom, are preskbtdow.

3.3.1 Solo, partial and global termination

e Obstruction-freedom (also calledSolo terminatiop An implementation of a concurrent object is
obstruction-free, if any of its operations is guaranteetétminate if it is eventually executed without
concurrency (assuming that the invoking process does ashigr

An operation is “eventually executed without concurrendythere is a time after which the only
process to take steps is the process that invoked that @mperatote that this does not prevent other
processes from having started and not yet finished opesatinrthe same object (this is for example
the case of a process that crashed in the middle of an opei@iithe object).

Note that obstruction-freedom allows executions in whietesal processes invoking operations on
the same object forever contend on the internal represemtat the object without terminating.

As we observed earlier, obstruction-freedom precludesisieeof locks.

e Non-blockingness. This is apartial terminationproperty that is strictly stronger than obstruction-
freedom. It states the following: despite asynchrony amndess crashes, if several processes execute
operations on the same object and do not crash, at least dhnemofterminates its operation.

So, non-blocking meardeadlock-freedordespite asynchrony and crashes.

e Wait-freedom. This is aglobal terminatiorproperty that states the following: despite asynchrony and
process crashes, any process that executes an operatios abject (and does not crash), terminates
its operation [7]. Wait-freedom is strictly stronger thamrblockingness.

So, wait-freedom meargtarvation-freedondespite asynchrony and crashes.

3.3.2 Bounded termination

Wait-freedom, the strongest among the liveness propestinsidered above, does not stipulate a bound on
the number of steps that a process needs to execute befaiainfpta matching reply when it invokes a
high level object operation. Typically, this number canelggpon the behavior of the other processes. For
example, it can be small if no other process performs any, steg increases when all processes perform
steps (or the opposite), while remaining always finite, rélgas of the number and timing of crashes.

e An implementation satisfies tHmunded wait-free property if there is a bound such that in any
low level history every procegsthat invokes an operation receives a matching reply withiof its
own steps. (Thé3 steps ofp are not required to be consecutive.)

In other words, there is no prefix of a low level history in whig process invokes an operation and
executesB steps without obtaining a matching reply.

Showing that an implementation is bounded wait-free ctssis exhibiting an upper bound on the
number of steps needed to return from any operation. Thatruppund is usually defined by a functigi)

!Let us recall that “a process does not crash” means thatéitiges an infinite number of steps”.

33

on the number of processes (e@(n?)). One can similarly define notions like bounded solo or baahd
partial termination.

3.4 Atomicity and wait-freedom

Just as it is meaningless to ensure atomicity alone, witAoyfprogress guarantee, it is also meaningless to
ensure any progress guarantee alone. Meaningful impletiems are those that ensure both: ideal ones are
those that ensure atomicity and wait-freedom.

Before diving into such implementations in the next chagptiéis important to ask whether every atomic
object has an implementation that ensures wait-freedonatmmaicity. In fact, itis easy to see that this would
not be the case for objects wiglartial operations (previous chapter). By definition, the progessuch
operations may depend on concurrent invocations of otheratipns. That is, if an object’s specification
requires that a process does not return from an operati@ssisbme other process completes some other
operation first, then it would be impossible to come up witkrea solo-terminating implementation of
this object, regardless of how powerful underlying baseecisj are. As we discuss below however, an
implementation that ensures wait-freedom and atomicigvisys possible for objects witbtal operations.

3.4.1 Operation termination and atomicity

Besides being #ocal property, which we discussed in the previous chapter, aityris alsonon-blocking
meaning that a pending invocation of a total operation issnegquired to wait for another operation to
complete and yet preserve atomicity. This property has ddomental consequence. It means that, per se,
atomicity never forces a pending total operation to blockother words, atomicityper se cannot prevent
wait-freedom. Blocking (or even deadlock and starvatiar) occur as an artifact of a particular implemen-
tation of atomicity, but is not inherent to atomicity. Théléaving theorem captures this idea by stating that
any (linearizable) history with a pending operation intamacan be extended with a reply to that operation.

Theorem 2 Letinv|op(arg)] be the invocation event of a total operation that is pendim@ linearizable
history H. There exist a matching reply evenitsp[op(res)| such that the historfl’ = H.resplop(res)] is
linearizable.

Proof Let S be a linearization of the partial histoy. By definition of a linearizationS has a matching
reply to every invocation. Assume first th&iincludes a reply eventesp|op(res)] matching the invocation
eventinv|op(arg)]. In this case, the theorem trivially follows as th&rs also a linearization off’.

If S does not include a matching reply event, tttfedoes not includénv|op(arg)] either. Because the
operationop() is total, there is a reply eventsplop(res)] matching the invocation evemtv|op(arg)] in
every state of the shared object. L¥tbe the sequential histor§ with the invocation eveninv|op(arg)]
and a matching reply eventsp|op(res)] added in that order at the end.8f S’ is trivially legal. It follows
that .S’ is a linearization offf’. O heorem 2

3.4.2 Example

To illustrate the inherent non-blocking feature of atotyicand indirectly illustrate implementations that
ensure atomicity and wait-freedom, consider a simple FIE€ug that can contain an unbounded number
of items. The sequential specification of this object hasilgeen in Section 2.1 of Chapter 2.

34

The example is simple. (More sophisticated examples wiljileen in the next chapters.) The system
we consider here is made up of producers (clients) and cosrsufeervers) that cooperate through an un-
bounded FIFO queue. A producer process repeats foreveoltbeihg two statements: it first computes a
new itemo, and then invokes the operatiding(v) to depositsv in the queue. Since we assume that the
queue is unbounded, the operatiBng(v) is total.

Similarly, a consumer process repeats forever the follgvtimo statements: it first withdraws an item
from the queue by invoking the operatideq(), and then consumes that item. If the queue is empty, then
the default valuel is returned to the invoking process. (This default value daamnot be deposited by a
producer process.) Since we do not preclude the possibflitgturning_L, the Deq() operation also is total.
We assume that no processing by the consumer is associatethevi_ value.

The algorithm implementing the shared queue relies on ay §/0..c0) used to store the items of the
gueue. Each entry of the array is initialized to

To enqueue an item to the queue, the producer first locatésdbr of the next empty slot in the array
Q, reserves it, and then stores the item in that slot. To degaetalue, the consumer first determines the
last entry of the array) that has been reserved by a producer. Then, it scans the@iregscending order
until it finds an item different from the default value. If it finds one, it returns it. Otherwise, the default
value is returned.

The algorithm is given in Figure 3.2. Thieturn() statement terminates the operation (it corresponds to
the reply event associated with that operation). Lowertetsers are used for identifiers of local variables.
Uppercase letters are used for shared variables. The ireptation uses the following shared variables:
NEXT (initialized to 1) and the array), used to contain the values that have been produced and ot ye
consumed. The variabl& EX T is a pointer to the next slot of the arréy that can be used to deposit a
new value. (This implementation could be optimized by rietliag the slots from which items have been
dequeued. But this is not the point here.)

The variableNEXT is provided with two primitives denote@ad() andfetch&add(). The invocation
NEXT fetch&add(z) returns the value oNEXT before the invocation and addsto NEXT'. Similarly,
each entryQ[i] of the the array is provided with two primitives denotedte() andswap(). The invocation
Q[i].swap(v) writesv in Q[:] and returns the value @}[:i| before the invocation.

The execution of theead(), write(), fetch&add() andswap() primitives on the shared base objects
(NEXT and each variabl€)[i]) are assumed to be atomic. The primitivesd() andwrite() are implicit
in the code of Figure 3.2 (they are in the assignment stattnaemoted +-").

The algorithm does not use locks, so no process can block ptbeesses forever by crashing inside a
critical section. Furthermore, each value deposited irmathey by a producer will be withdrawn bysaap()
operation issued by a consumer (assuming that at least oseroer is correct).

To better understand the algorithm, let us explore the tWowing situations.

e The first situation is when a producer crashes al&tX T is increased byl and before the corre-
sponding item is deposited in the arr@y That is, the producer reserves an index without ever using
the corresponding slot. This conveys the fact tNatX 7' represents an upper bound (and not a tight
bound) on the number of items that are deposite@.in This can force consumers to explore more
entries of() than necessary. However, all these additional entriesatieatisited are equal ta. This
means that, when a producer crashes in such a scenariothéngrgppears as if the producer has not
issued the enqueue operation at all.

e The second situation is when during a dequeue operatiomsunwer crashes right after having exe-
cuted the statemen[i].swap(aux). If auz = L, from an external observer point of view, everything

35

operation Eng(v):
in «— NEXT fetch&add (1);
Qlin] « v;

return()

operation Deq():
last «— NEXT —1;
for ¢ from O until last do
auz — Q[i].swap (L);
if (auz # L) then return(auz) end.if
end_do;
return(L)

Figure 3.2: Enqueue and dequeue implementations

appears as if the dequeue operation has never been issued. H v # |, everything appears as if
that valuev has been obtained by the dequeue operation, the consursbingrgust after using it.

3.4.3 On the power of low level objects

The previous example shows that a FIFO queue, shared by grmgrimumber of processes, can be wait-
free implemented from two types of base atomic objects, harae atomic objectV EX T whose type is
defined by then pair of primitiveietch&add() andread(), as well as an arra§) of atomic objects, the type
of these objects being defined by the pair of primitiveie() andswap().

This means that these base types are “powerful enough” tefsgaiimplement a FIFO queue shared by
any number of processes. The investigation of the power s lohject types to wait-free implemegny
shared object constitutes the topic addressed in the thitcbpthe book.

3.4.4 Non-determinism

Before concluding this chapter, it is worthwhile to higliligsome sources of non-determinism in a concur-
rent system that need to be considered when devising a sblajextt implementation.

1. The scheduler of a concurrent system can orchestratagpe af the processes in all kinds of ways
and this is a source of non-determinism that any wait-frggémentation has to cope with.

2. Finally, when seeking for a linearization of a concurrkistory, we can also choose among several
possible sequential histories. First, there might indeeddveral ways of completing the original
history, especially when non-deterministic objects avelwed. Second, there might be several ways
of ordering concurrent operations in the equivalent lirzedion.

3.5 Summary

We defined in this chapter three progress properties: solohhation, partial-termination and wait-freedom.
A wait-free implementation of an atomic object is inhengmtibust in the following sense.

e It is inherently starvation-free. (This is an immediate sequence of the definition of the wait-free
property.)

e Itis (n — 1)-resilient. This expresses the fact it naturally copes wfiho (n — 1) process crashes.

36

Bibliographic notes

Atomicity is a safety property whereas wait-freedom is &riess property. The notions of safety and
liveness were introduced by Lamport [39] and refined by Adpand Schneider [32]. A safety property
(such as mutual exclusion or never deciding on conflictinges) stipulates that “nothing bad happens”
and is consequently expressed as a property on all the meaifixa computation. In contrast, a liveness
property (such as eventually entering a critical sectiorew@ntually reaching agreement) stipulates that
“something eventually happens”. A liveness property imgslconsequently the whole computation. More
on the liveness notion can be found in [32].

The notion of wait-freedom originated in the work of Lampdri]. An associated theory was developed
by Herlihy [7].

The notion of solo-termination was presented implicitly{34]. It has been introduced as a progress
property in [37] under the nanmbstruction-freesynchronization. That notion has been formalized in [33].
More developments on obstruction-freedom can be found %). [3The minimal knowledge on process
failures needed to transform any solo-terminating impletaiton into a wait-free one was investigated in
[36]. Other liveness properties (also called progress itiond) are presented in [38].

37

38

Chapter 4

Safe, regular and atomic registers

4.1 Introduction

This part of the book is devoted to the construction of thepsst linearizable objects that are usually
considered, namely sharetiorageobjects that provide their users with two basic operatiomsd and
write. These objects are usually callemhisters and linerarizable registers are callemic registers In
particular, we focus on how to wait-free implement such atoragisters using “weaker” registers. Again,
the picture to have in mind is one where the weak registerpiréded in hardware and the strongest
registers are emulated in software to facilitate the jothefapplication’s developer.

This chapter defines different sorts of registers and thiéfeeahces depend on three dimensions: (a) the
capacity of a register, (b) the access pattern to a registe(@ the behavior of a register in face of concur-
rency. The capacity of a register conveys the range of vétlgas store and we will in particular distinguish
registers that can store a binary value from those than cae ahy number (possibly an infinite number)
of values. The access pattern or a register conveys the mwhpeocesses that can read (resp. write) in a
register. Finally, we will distinguish registers that da poovide any guarantee if accessed concurrently at
one extreme, from those that ensure linearizability at thercextreme (i.e., atomic registers).

The weakest kind of a shared register is one that can onlg stoe bit of information, can be read by a
single procesp, can be written by a single procegsand does not ensure any guarantee on the value read
by p whenp andq access it concurrently. We will show how, using multiplelsuegisters, we can construct
an atomic register that can store an arbitrary number ofegaind be read and written by any number of
processes. This construction will be presented increrigngaing through intermediate kinds of registers,
interesting in their own right.

An algorithm used to implement a register of a given kind frmme of another kind is sometimes called
transformationor reduction the first high-level register being “reduced” to the secosgister used as a
base object in the implementation. We also say that the leiggdl-register is emulated by the second one.

4.2 The many faces of registers

The capacity of a register According to the operations on a register issued by the pease read opera-
tions on the register can return different values at diffetanes. So, the first dimension that characterizes
a register is related to its capacity, i.e., how much infdromeit can contain.

The simplest kind of register is th@nary register: it can only store a single itor 1. We talk about a
shared bif or simply abit.

39

More generally, anulti-valuedregister may store two or more distinct values. A multi-ealuegister
can be bounded or unbounded. bAundedregister is one whose value range contains exactljstinct
values (e.g., the values frobruntil b — 1) whereb is typically a constant known by the processes. Otherwise
the register is said to henbounded

A register that can contaih distinct values is said to bievalued Its binary representation requires
B = [log, b] bits. Its unary representation is more expensive as it regibits (the valuev being then
represented with a bit equal tdollowed byv — 1 bits equal td)).

Access patterns This dimension concerns the sets of processes that carrosadf write into the register.
A register is calleagsingle-writer, denoted 1W, (respsingle-reader noted 1R) if only one specific process,
known in advance, and called theiter (resp., thereadel) can invoke the write (resp., read) operation
on the register. A register that can be written (resp., régddny process is called raulti-writer (resp.,
multi-reade) register. Such a register is denoted MW (resp., MR).

For instance, a binary 1IWMR register is a register that (a)ozentain onlyo or 1, (b) can be read by all
the processes but (c) written by a single process.

The concurrent behavior of a register When accessed sequentially, the behavior of a registemislei
to define: a read invocation returns the last value writterheiaccessed concurrently, the semantics is
more involved and several variants have been considereadv@/giew these variants in the following.

4.3 Safe, regular and atomic registers

We consider three kinds of registers that vary accordindhéir tbehavior in the presence of concurrent
accesses. The differences are depicted in the value rdtloyna@ read operation invoked on the register
concurrently with a write operation. When there is no corenry, the behavior is the same in all cases. For
the one-writer case, all the registers defined below preséerfollowing invariant:

e Aread that is not concurrent with a write (i.e., their exémng do not overlap) returns the last written
value.

4.3.1 Safe registers

A saferegister is the weakest traditionally considered in distiéd computing. It has a single writer, and,
since we assume that every process is sequential, allowsofaoncurrent writes. A safe register only
guarantees that:

e A read that is concurrent with one or several writes retums element of the value range of the
register.

It is important to see that, in the presence of concurrer®y,value returned by a read operation can
possibly be a value that has never been written. The onlytiginsis that the value needs to be in the range
of the register. To illustrate this, consider a safe regigtat can contain only = 3 values, e.g.], 2 and3.
The register is bounded. Assuming that the current valieadsnsider a write of valu@ that is concurrent
with a read operation. That read operation can retliyr2sor even3. It cannot returri as that value is not
in the range of the safe register.

An interesting particular case is the binary 1IWMR (one-gvritne-reader) safe register. This can contain
only 0 and1 and can be seen as modeling a flickering bit. Whatever itsquswalue, the value of the

40

register can flicker during a write operation and only whem white finishes the register stabilizes to its
final value (the value just written) and keep that value uhglnext write.

Duw 7 i I = =
i

pr%%»

/ by 1 y v P vy
History H of the invocation/response events

Figure 4.1: History of a register

| Valuereturned a [b | ¢ |
Safe 1/0 | 1/0 | 1/0
Regular 1/0 1 1/0| 0O
Atomic 1 11/0] 0
0 0 0

Table 4.1: Safe, regular and atomic registers

An example of the behavior of a binary safe register (i.eafa bit) is depicted in Figure 4.1 and Table
4.1. We consider there a 1W1R safe register: only one readevdlved. The writer process is denoted
whereas the reader process is dengtedv(v) stands for a write operation that writes the valuigimilarly,

r(v) stands for a read operation that obtains the va)ué\s the first and the fourth read operations do not
overlap a write, they return the last written value nameligr the first read an@ for the fourth one. The
values returned by the other read operations are dengteahdc. All these read operations overlap a write
and can consequently return any of the values that the eegiah contain (this is denoteéd0 as the register

is binary in Table 4.1). So, the last read can retumwven if the previous value wasand the concurrent
operation writes the very same val@ieThis gives8 possible correct executions, assuming indeed a binary
safe register.

w(l)\7w(0)\ / .
—r(b) r(0) r(c)

r(1) —r(a)

Figure 4.2: History of a safe register
Figure 4.2 depicts the corresponding history at the opmrdgivel (i.e., the partial order on the operations
denoted—pg). The transitive dependencies are not indicated. The eneddoperations (e.g., the second
w(0) operation issued by,, andr(c) issued byp,) are concurrent.

41

4.3.2 Regular registers

A regularregister is also defined for the case of a single writer. Itsafa register that satisfies the following
additional property:

e Aread that is concurrent with one or several writes retunesvalue written by a concurrent write or
the value written by the last preceding write.

To illustrate the regular register notion, let us again aersFigure 4.1. The values that can be possibly
returned by a regular register are described in Table 4.2 sEeond read operation can return either the
previous value or the value of the concurrent write, nantedy, 1. It is the same for the third read operation.
In contrast, as the last write does not change the value attiister, the last read can return only the value
0. This means that possible correct executions can be determined for Figure 4.

It is important to see that a read that overlaps several wgtgations can return any value among the
values written by these writes as well as the value of thestegbefore these writes. This is depicted in
Figure 4.3 where value returned by the second read can be any,@f 3, 4 or 5.

. w(1) w(QL w(SL w(4L w(5)

r(1) r(a)

Dr _— e

Figure 4.3: History of a regular register

4.3.3 Atomic registers

An atomicregister is a MWMR register whose execution histories arediizable. This means that it is
possible to totally order all its read and write operatiamsuch a way that this total ordgTrespects their
real-time occurrence order and each read returns the vaitterwby the last write operation that precedes
itin S (legality property).

Again, Figure 4.1 illustrates the atomicity notion for theesific case of a register. The second re@d
is concurrent with thev(0) operation. Given that the previous value of the registér, the returned value
a can be eithed or 0. If it returns1 (the value written by the last preceding write), then thedthead can
return eitherl or 0. In contrast, if the second read retufh@he value written by the concurrent write), only
value0 can be returned by the third read as the second read inditaiiethe valud is now overwritten by
the “new” value0. Finally, the last read can only return the valuét is easy to see that there e&@ossible
executions when the registers are binary and atomic. Asquely, the possible values returned by the three
read operations concurrent with a write operation are suimediin Table 4.1.

4.3.4 Regularity and atomicity: a reading function

One important difference between regularity and atomiistyhat a regular register allows forew/old
inversion in case two read operations are concurrent with a writefitbieread may return the concurrently
written value while the second read may still return the @aluitten by a preceding write. Such a history is

42

not allowed by an atomic register, since the second read sngseed the first one in any linearization, and
thus must return the same or a “newer” value.

For example, the history depicted in Figure 4.1 and Tablgthelhistory is correct with = 0 andb = 1
with respect to regularity and incorrect with respect tavatity. In that history, and considering the two
consecutive read operationée) andr(b), the first’, namelyr(a), obtains the “new” valued = 0) while
the second’, namely(b), obtains the “old” valuely(= 1).

Formally, we capture the difference bwtween (one-writegular and atomic registers using the notion
of areading function A reading function is associated with a given history angbsnevery returned read
operation-(z) to somew(x) in that history. Without loss of generality, we assume tlvairg history starts
with a sequential operation(z) that writes the initial value:.

We say that a reading functianassociated with a histor§f is regular if (here r andw with indices
denote read and write operationsHhb):

A0 :Vr:=(r —g m(r)). (No read returns a value not yet written.)

Al :VrwinH: (w—pgr)= (7(r) =w V w —g 7(r)). (No read obtains an overwritten valje
We say that a reading functionasomicif it is regular and satisfied the following additional profye

A2 1V rl,r2: (rl g r2) = (7(rl) = n(r2) V w(rl) —x n(r2)). (No new/old inversion.)

We show now determining a regular reading function is eyagtiat we need to show that a history can
be produced by a regular register.

Theorem 3 Let H be an execution history of a 1IWMR registéf.can be a history of a regular register if
and only if it allows for a regular a reading functiom.

Proof Suppose thaf{ is a history of a regular register. We defineas follows: for any read For any
r(x), a complete read operation i, we definer(r) as the last write operatiow(x) in H such that
—(r(z) — g w(z). Itis easy to see that is a regular reading function.

Now suppose thaH allows for a regular reading function. Lefz) be a complete read operation in
H. Then there exists a write’(z) in H that either precedes or is concurrent witfx) in H (A0) and
is not succeeded by a write that precedés) in H (A1). Thus,r(x) returns either the last written or a
concurrently written value. OTheorem 22

Theorem 4 Let H be an execution history of a 1WMR registAr.is linearizable if and only if it allows for
an atomic a reading function.

Proof Given a linearizable histor§f, it is straightforward to construct an atomic reading fiorct take any
S, a linearization off and definer(r) as the last write that precedeén S. By constructionsr(r) satisfies
propertiesA0, A1 and A2.

Now suppose thakl allows for an atomic reading function We user to constructS, a linearization
of H, as follows.

We first constructS as the sequence of all writes that took placédin the order of appearance. Since
we have only one writer, the writes are totally ordered. @eecthe last write is incomplete, we addstits
complete version.) Then we put every complete operationmediately afterr(r), making sure that:

if 7(rl) = w(r2) andrl — g r2, thenrl —g r2.

43

Clearly, S is legal: the reading function guarantees that) writes the value read by, and thus every
read inS returns the last written value.

To show that— C—g, we consider the following four possible cases (@andw2 (resp.,r1 andr2)
denote here write (resp., read) operations):

e wl —p w2. By the very construction of (that considers the order on write operations performed
by the writer), we havevl —g w?2.

e 1l —p r2. By A2, we haver(rl) = n(r2) or m(rl) — g m(r2).

If 7(rl) = m(r2), asrl started before2 (case assumption), due to the wélys constructeds1 is
ordered before2 in S, and we have consequentty —g 2.

If 7(rl) —p =(r2), as (1)r1 andr2 are placed just after(r1) and«(r2), respectively, and (2)
m(rl)l —g m(r2) (see the first item), the construction $fensures1 —g r2.

e 1l —p w2. By A0, eithern(rl) is concurrent with-1 or 7(r1) — g r1. Sincerl —y w2 and all
writes are totally ordered, we hawér1l) — 5 w2. By construction of5, sincer(r1) is the last write
preceding-lin S, rl —g w2.

e wl —p r2. By A1 we haver(r2) = wl orwl —pg m(r2).
Caser(r2) = wl. Asr2is placed just afterr(r2) in S, we haver(r2) = wl —g r2.

Casewl — g 7(r2). As Qwl —pg 7(r2) = wl —g w(r2) (firstitem), and (2)r(r2) —g r2 (r2
is ordered just afterr(2) in S), we obtain (by transitivity of->g) wl —g 2.

Finally, sinceS contains all complete operations Bf and preserves-, H is indistinguishable from
S for every reader, modulo the last incomplete read opergii@my).
Thus,S is a legal sequential history that is equivalent to a conuletf H and preserves: ;7. Orpeorem 22

Now we can say that a history of a regular register suffersifrew/old inversion if it allows for no
atomic reading function. Theorems 3 and 4 imply that an atoegjister can be seen as a regular register
that never suffers from new/old inversion.

It follows from the fact that atomicity (linearizability)sia local property that a set of 1IWMR regular
registers behave atomically if each of thardependently from the otheiswritten by a single process and
satisfies the “no new/old inversion” property.

4.3.5 From very weak to very strong registers

To summarize, there are different kinds of registers andlifierences depend on several dimensions. It is
appealing to ask whether registers of strong kinds can bstreaned in software (emulated) using registers
of weak kinds. As pointed out in the introduction of this cteapand this might look surprising, it is indeed
possible to emulate a multi-valued MWMR atomic registengdiinary 1W1R safe registers. Next sections
are devoted to proving that.

In general, what we call a (registeransformationis here an algorithm that builds a regist@rwith
certain properties, called a high-level register, fromeotregisters featuring different properties. These
registers, used in the implementation, are called lowtevédase registers. These low level registers are
called base registers Of course, for a transformation to be interesting, the ragesters it uses have to
provide weaker properties than the high level register watwaconstruct. Typically:

44

e The base registers are safe (resp., regular) while the bigt tegister is regular (resp., atomic).
e The base registers are 1W1R (resp., IWMR) while the cortetiuegister is IWMR (resp., MWMR).

e The base registers are binary whereas the high level regsteulti-valued.
The transformations also vary according to the number areddfibase registers considered. Basically:

e The number of base registers needed to build the high legiltee might or not depend on the total
number of processes in the system, i.e., readers and writers

e The amount of information used to build the high level reggishight be bounded or not. Some-
times, the transformation algorithm uses sequence nurtitegrean arbitrarily grow and is inherently
unbounded. In general, and except for few constructionantbed transformations are much more
difficult to design and prove correct than unbounded onemmFr complexity point of view, bounded
ones are better.

In the following, we proceed as follows.

1. We illustrate the notion of transformation algorithm byegenting first two simple (bounded) algo-
rithms. The first constructs a IWMR safe register out of a remob1W1R safe registers. The second
builds a binary 1IWMR regular register out of a binary 1WMResadgister. The combination of these
algorithms already shows that we can implement a binary 1Wa#tRilar register using a number of
binary 1W1R safe registers.

2. We then show how to transform a binary 1WMR register thaviges certain semantics (safe, regular
or atomic) into a multi-valued 1WMR register that presertresssame semantics. The three transfor-
mations we present here are all bounded. The combinatiomeasécond of these with those above
shows that we can implement a multi-valued 1WMR regularstegiusing a number of binary 1IW1R
safe registers.

3. We finally show how to transform a 1W1R regular registeo imatMWMR atomic register. We go
through three intermediate (unbounded) transformatifmsn a 1W1R regular register into a IW1R
atomic register, then to a 1IWMR atomic register, and finallya tMWMR register. These, with the
combination pointed out above, shows that we can constroaila-valued MWMR atomic register
using binary 1W1R safe registers.

4.4 Two simple bounded transformations

This section describes two very simple bounded transfoomst We focus on safe and regular registers.
(Recall that these kinds of registers are defined for systsitisa single writer for each register.) The
first transformation extends a single-reader registendosafe or regular, to multiple readers. The second
transformation transforms a shared safe bit into a reguiar o

45

4.4.1 Safe/regular registers: from single reader to multife readers

We present here an algorithm that implements a 1WMR saf@.(resgular) register using 1W1R safe
(regular) registers. In short, the transformation alloasrhultiple readers instead of single readers. Not
surprisingly, the idea is to emulate the multi-reader tegissing several single-reader registers.

The transformation, described in Figure 4.4, is very simplee constructed registét is built fromn
1WI1R base registers, denot&EG[1 : n], one per reader process. (We consider a systempmbcesses
and all are potential readers.) A reagemreads the base regist&EG|i] it is associated with, while the
single writer writes all the base registers (in any order).

It is important to see that this transformation is boundedusies no additional control information
beyond the actual value stored, and each base register adrnh®esame size (measured in number of bits)
as the multi-readers register we want to build.

Interestingly, with the same algorithm, if the base 1W1Rstegs are regular, than the resulting IWMR
register we then obtain is regular.

operation R.write(v):
for_all jin {1,...,n} do REG[i] «+ v end.do;
return()

operation R.read() issued byp; :
return(REG/i])

Figure 4.4: From 1W1R safe/regular to 1IWMR safe/regulaufioed transformation)

Theorem 5 Given one base safe (resp., regular) 1IW1R register per retftealgorithm described in Fig-
ure 4.4 implements a 1IWMR safe (resp., regular) register.

Proof Assume first that base registers are safe 1W1R registemlolvt directly from the algorithm that a
read ofR (i.e., R.read()) that is not concurrent with &.write() operation obtains the last value deposited
in the registerz. The obtained registeR is consequently safe while being 1IWMR.

Let us now consider the case where the base registers adarreffye will argue that the high-level
registerR constructed by the algorithm is a 1IWMR regular one. The tzatR allows for multiple readers
is by construction. Because a regular register is safe, srtidbargument above (for the case where the
base registers are safe), we only need to show that a readtiopeR.read() that is concurrent with one
or more write operation®.write(v), R.write(v'), etc., returns one of the valuesy’, ... written by these
concurrent write operations, or the valuefdbefore these write operations.

Let p; be any process that reads some value fi@mWhenp; reads the base regist&EG[i|, while
executing operatiomR.read(), p; obtains (a) the value of a concurrent write on this base teglRBEG|i]
(if any) or (b) the last value written oREG|i] before such concurrent write operations. This is because
the base registeREG]:] is itself regular. In case (a), the valweobtained is from aR.write(v) that is
concurrent with theR.read() of p;. In case (b), the value obtained can either be (b.1) fromRawrite(v)
that is concurrent with th&.read() of p; , or (b.2) from the last value written by &.write() before the
R.read() of p;. It follows that the constructed registéris regular. Orheorem 5

It is important to see that the algorithm of Figure 4.4 doesimplement a IWMR atomic register
even when every base registBEG[i] is a IW1R atomic register. Roughly speaking, this is bectuse
transformation can cause a new/old inversion problem, évitie base registers preclude these. To show

46

REGIl] «— 2 REG[2] « 2

—_— _—
pu} ! ! \ !
: retur{ REG[1))
moo =
! L returf REG|2)) !
i A S S M G P
inv[R.write(2)] resp|R.write(2)]

Figure 4.5: A counter-example

this, let us consider the counter-example described inreigub. The example involves one writgy,

and two readerp; andps. Assume the registeR implemented by the algorithm contains initially the
valuel (which means that we initially havB EG[1] = REG[2] = 1). To write value2 in R, the writer
first executesREG|1] « 2 and thenREG[2] < 2. The duration of these two write operations on base
registers can be arbitrarily long. (Remember that prosessmasynchronous and there is no bound on their
execution speed). Concurrently, readsREG|[1] and return® while later (as indicated on the figurg)
readsREG[2] and returnsl. The linearization order on the two base atomic registedefscted on the
figure (bold dots). It is easy to see that, from the point ofwi the constructed registek, there is a
new/old inversion ap; reads first and obtains the new value, whilereads aftep; and obtains the old
value. The constructed register is consequently not atomic

4.4.2 Binary multi-reader registers: from safe to regular

The aim is here to build a regular binary register from a safarly register, i.e., to construct a regular bit out
of a safe one. As we shall see, the algorithm is very simpéxipely because the register to be implemented,
R, can only contain one out of two valugsdr 1).

The difference between a safe and a regular register is dsilyler in the face of concurrency. That is,
the value to be returned in the regular case has to be a vaheircently written or the last value written,
whereas no such restriction exists for safe semantics. ddtettiat we only consider a shared bit means
however that the issue to be addressed is restricted: oelywohof two values can be returned anyway. To
illustrate the issue, assume that the regular registerésttli implemented using a safe base register: every
read (resp. write) on the high-level register is directhnslated into a read (resp. write) on the base (safe)
register. Assume this register has valuand there is a write operation that writes the very same u@&lue
As the base register is only safe, it is possible that a coentiread operation obtains valliewhich might
have never been written.

The way to fix this problem is to preclude the actual writingtia base register if the value to be written
in the high-level register is theameas the value previously written. If the value to be writterlierent
from the previous value, then it is okay to write the valuehia base register: a concurrent read can obtain
the other value (remember that only two values are possitnid)this is fine with the regularity semantics.
With this strategy, a read operation concurrent with one orenwrite operations obtains the value before
these write operations or the value written by one of theseadjns.

47

The transformation algorithm is described in Figure 4.6si8es a safe registdt £'G shared between
the reader and the writer, the algorithm requires that themises a local registerev_val that contains
the previous value that has been written in the base safstee@¢iZG. Before writing a valuev in the
high-level regular register, the writer checks if this \eluis different from the value iprev_val and, only
in that casey is written in REG.

operation R.write(v):
if (prev_val # v)then REG « v;
prev_val «— v end.if;
return()

operation R.read() issued byp; :
return(REG)

Figure 4.6: From a binary safe to a binary regular registeuifided transformation)

Theorem 6 Given a 1IWMR binary safe register, the algorithm descrilveEigure 4.6 implements a IWMR
binary regular register.

Proof The proof is an immediate consequence of the following falt¥ As the underlying base register
is safe, a read that is not concurrent with a write obtaindasewritten value. (2) As the underlying base
register always alternate betwe@mnd1, a read concurrent with one or more write operations obties
value of the base register before these write operationseobthe values written by such a write operation.
DThem"em 6

As we pointed out in the overview description above, thesi@mnation heavily exploits the fact that the
constructed registeR can only contain one out of two possible value®f 1). It does not work for multi-
valued registers. The transformation does not implemerttamic register either as it does not prevent a
new/old inversion. Notice also that If the safe base binagyster is 1W1R, then the algorithm implements
a 1W1R regular binary register.

4.5 From binary to b-valued registers

This section presents three transformations from binagisters to multi-valued registers. These are called
b-valued registers in the sense that their value range ewitalistinct values; we assume that> 2. Our
transformations have three characteristics.

1. Although we assume that the base binary registers (bgs)\WMR registers and we transform these
into IWMR b-valued registers, our algorithms can also be used to semsitW1R bits into 1IW1R
b-valued registers; i.e., if the base bits allow only a simglder, then the same algorithm implements
ab-valued bit.

2. Our transformations preserve the semantics of the bassars in the following sense: if the base
bits have semanticX (safe, regular or atomic), then the resulting high-leveldlued) registers also
have semanticX (safe, regular or atomic).

3. The transformations are bounded. There is a bound on thberuof base registers used, as well as
on the amount of memory needed within each register.

48

4.5.1 From safe bits to safé-valued registers

Overview The first algorithm we present here uses a number of safenbatgler to implement &-valued
registerR. We assume thdtis an integer power o, i.e.,b = 25 whereB is an integer. It follows that
(with a possible pre-encoding if thiedistinct values are not the consecutive values ftoumtil b — 1) the
binary representation of tHevalued registe? we want to build consists of exactly bits. In a sense, any
combination ofB bits defines a value that belongs to the rang& @hotice that this would not be true if
was not an integer power @j.

The algorithm relies on this encoding for the values to bétemiin R. It uses an arra)R EG|[1 : B] of
1WMR safe bit registers to store the current valugofGiven; = REG(i], the binary representation of
the current value oR is 111 . .. up. The corresponding transformation algorithm is given igure 4.7.

operation R.write(v):
let 11 ... up be the binary representation af
for_all jin {1,..., B} do REG[j] « u; end.do;
return()

operation R.read() issued byp;:
for_all jin {1,...,B}dou; — REG[j] end.do;
let v be the value whose binary representatiomis . . i 5;
return(v)

Figure 4.7: Safe register: from bits kevalued register

Space complexity As B = log,(b), the memory cost of the algorithm is logarithmic with redpecthe
size of the value range of the constructed regi&teT his follows from the binary encoding of the values of
the high level register.

Theorem 7 Givenb = 28 and B 1WMR safe bits, the algorithm described in Figure 4.7 imglets a
1WMRb-valued safe register.

Proof A read of R that does not overlap a write &f obtains the binary representation of the last value that
has been written int& and is consequently safe to return. A readiahat overlaps a write oR can obtain
any ofb possible values whose binary encoding uBdsits. As every possible combination of thebase bit
registers represents one of the thealues that? can potentially contain (this is because- 27), it follows

that a read concurrent with a write operation returns a viidaebelongs to the range &f. Consequently,

R is ab-valued safe register. OTheorem 7

It is interesting to notice that this algorithm does not ierpent a regular registét even when the base
bits are regular. A read that overlaps a write operationd¢hahges the value @ from0...0to1...1(in
binary representation) can return any value, i.e., evertmtavas never written. The reader (the human, not
the process) can check that requiring a specific order aicgptd which the arrayR EG|1 : B] is accessed
does not overcome this issue.

4.5.2 From regular bits to regular b-valued registers

Overview A way to build a IWMR regulab-valued registerR from regular bits is to employ unary
encoding. Considering an arr&/E'G|1 : b] of IWMR regular bits, the value € [1..b] is represented bys
in bits 1 throughv — 1 and1 in the vth bit.

49

The algorithm is described in Figure 4.8. The key idea is tiewinto the arrayREG]1 : b] in one
direction, and to read it in the opposite direction. To wiitethe writer first setsR EG[v] to 1, and then
“cleans” the arrayR EG. The cleaning consists in setting the lR&G[v — 1] until REG[1] to 0. Toread, a
reader traverses the arr®F G|[1 : b] starting from its first entryR EG[1]) and stops as soon as it discovers
an entry;j such thatR EG[j] = 1. The reader then returgsas the result of the read operation. Itis important
to see that a read operation starts reading first the “clégragtiof the array. On the other hand, the writing
is performed in the opposite direction, fram- 1 until 1.

It is also important to notice that, even when no write openais in progress, it is possible that several
entries of the array be equal to The value represented by the array is then the vakuech thatR EG[v] =
1 and for all the entrie$ < j < v we haveREG][j] = 0. Those entries are then the only meaningful entries.
The other entries can be seen as a partial evidence on pass\@lthe constructed register.

The algorithm assumes that the regiskhas an initial value, say. The arrayREG](1 : b] is accord-
ingly initialized, i.e., REG[j] = 0for1 < j < v, REG[v] = 1, andREG[j] = 0orlforv < j <b.

operation R.write(v):
REG] < 1,
for j from v — 1 step—1 until 1 do REG([j] — 0 end.do;
return()

operation R.read() issued byp;:
je 1
while (REG[j] = 0)doj < j + 1 end.do;
return(y)

Figure 4.8: Regular register: from bitstevalued register

Two observations are in order:

1. In the writer’s algorithm, once set 19 the “last” base registeR EG[b] keeps that value forever. In a
sense, setting this register tanakes it useless: the writer never writes in it again, andntieas to
read it, a reader might by default consider its value ta.be

2. The reader’s algorithm does not write base registers.s f@ans that the algorithm handles any
number of readers. Of course, the base registers have to bdR1iMhere are several readers (as
each reader reads the base registers), and can be 1W1R whemtingle reader is involved.

Space complexity The memory cost of the transformation algorithnmb ibase bits, i.e., it is linear with
respect to the size of the value range of the constructedteed?. This is a consequence of the unary
encoding of these valuks

Lemma 1 Consider the algorithm of Figure 4.8. Ady.read() or R.write() operation terminates. More-
over, the value returned by a read belongs to the 4ét ..., b}.

Proof A R.write() operation trivially terminates (as by definition tfee loop always terminates). For the
termination of theR.read() operation, let us first make the following two observations:

!Let B be the number of bits required to obtain a binary represientaf a value ofR. It is important to see that, & = log, (b),
the cost of the construction is exponential with respechi®number of bits.

50

e At least one entry of the arrall EG is initially equal tol. Then, it follows from the write algorithm
that each time the writer changes the value of a base redidi€r[z] from 1 to 0, it has previously
set tol another entryR EG|[y] such hatr < y < b.

Consequently, if the writer updaté&~G|[z| from 1 to 0 while concurrently the reader rea¥G|x]
and obtains the new valuke we can conclude that a higher entry of the array has the value

e If, while its previous value ig, the reader read8 EG[x| and concurrently the writer updat&F G[x]
to the same valug, the reader obtains value as the base register is regu?ar

It follows from these observations that a sequential scanof the arrayR EG (starting atR EG|1]) neces-

sarily encounters en entfy EG[v] whose reading returris As the running index of thevhile loop starts at

1 and is increased by each time the loop body is executed, it follows that the ldeggs terminates, and
the valuej it returns is such that < j < b. O Lemma 1

Remark The previous lemma relies heavily on the fact that the hayell registerk can contain only
distinct values. The lemma would no longer be true if the @alinge ofR was unbounded. A&R.read()
operation could then never terminate in case the writerimoatisly writes increasing values. To illustrate
that, consider the following scenario. L& write(z) be the last write operation terminated before the
operationR.read(), and assume there is no concurrent write operalianrite(y) such thaty < x. Itis
possible that, when it read3EG|z], the reader find® EG[z] = 0 because anothd®.write(y) operation
(with y > z) updatedREG|[z] from 1 to 0. Now, when it readsR EG|y], the reader findREG[y] = 0
because anotheé®.write(z) operation (withz > y) updatedREG|y] from 1 and so on. The read can then
never terminate.

Theorem 8 Givenb 1WMR regular bits, the algorithm described in Figure 4.8 iempents a 1IWMR-
valued regular register.

Proof Let us first consider a read operation that is not concurrétht any write, and let the last written
value. It follows from the write algorithm that, whe® write(v) terminates, the first entry of the array that
equalsl is REGv] (i.e., REG[x] = 0 for 1 <z < v — 1). Because a read traverses the array starting from
REG]1], thenREG|2], etc., it necessarily reads unfIEG[v] and returns accordingly the value

R.write(vy) R.write(vy) R.write(vs) R.write(v,,)

R.read()

Figure 4.9: A read with concurrent writes

Let us now consider a read operati®wead() that is concurrent with one or more write operations
R.write(vy), ..., Rawrite(vy,) (as depicted in Figure 4.9). Moreover, gt be the value written by the
last write operation that terminated before the operaftoread() starts (or the initial value if there is no
such write operation). As a read operation always terminftemma 1), the number of write operations

2If the base register was only safe, the reader could obtdire Ga

51

concurrent with thek.read() operation is finite. We have to show that the vatueturned byR.read() is
one of the valuesy, v1, ...,v,,. We proceed with a case analysis.

1. v <wg.
No value that is both smaller thag and different fromv,. (1 < z < m) can be output. This is because
(1) R.write(vp) has set t® all entries fromw — 1 until the first one, and only a write of a valug can
setREG[v,] to 1; and (2) as the base registers are regulaR AfG[v'] is updated by &.write(v,,)
operation fromD to the same valu®, the reader cannot concurrently redIEG[v'] = 1. It follows
from that observation that, iR.read() returns a value smaller thany,, thenv has necessarily been
written by a concurrent write operation, and consequeRthead() satisfies the regularity property.

2. v =1y.
In this case,R.read() trivially satisfies the regularity property. Notice thatist possible that the
corresponding write operation be soRavrite(v,) such that, = vy.

3. v > .
Fromv > v, we can conclude that the read operation obtaifeshen it readREG[vg]. As
REG][vy)] was set tol by R.write(uvy), this means that there isRwrite(v') operation, issued af-
ter R.write(vg) and concurrent withR.read(), such that’ > vy, and that operation has executed
REG[V'] < 1, and has then set toat least all the registers froREG[v' — 1] until REG|[vg]. We
consider three cases.

(@) vo<v <.
In this case, aREG[v] has been set t6 by R.write(v’), we can conclude that there is a
R.write(v), issued afteR.write(v') and concurrent wittk.read(), that updated? EG[v] from
0 to 1. The value returned byR.read() is consequently a value written by a concurrent write
operation. The regularity property is consequently satistiy R.read().

(b) vo <v="1".
The regularity property is then trivially satisfied Bread(), asR.write(v') and R.read() are
concurrent.

(€) vog <V <.
In this caseR.read() missed the valué in REG[v']. This can only be due to B.write(v”)
operation, issued afteR.write(v’) and concurrent wittR.read(), such thaw” > ¢/, and that
operation has executeREG|[v"] <« 1, and has then set 0 at least all the registers from
REG[V" — 1] until REG[v].
We are now in the same situation as the one described at tinbegof item 3, whereyy and
R.write(v') are replaced by’ and R.write(v”). As (a) the number of values betweanandb
is finite and (b) the read operatidtiread() terminates, if follows that this operation eventually
terminates in 3a or 3b, which completes the proof of the mor

I:ITheorem 8

A counter-example for atomicity Figure 4.10 shows that, even if all base registers are atdh@calgo-
rithm we just presented (Figure 4.8) does not implement amiath-valued register.

Let us assume that= 5 and the initial value of the registét is 3, which means that we initially have
REG[1] = REG[2] = 0, REG[3] = 1 andREG[4] = REG[5] = 0. The writer issues firsR.write(1)

52

and thenR.write(2). There are concurrently two read operations as indicateti@figure. The first read
operation returns valugwhile the second one returns valuethere is a new/old inversion. The last line of
the figure depicts a linearization ordgrof the read and write operations on the base binary regisfass
we can see, each base object taken alone is linearizabls.fdllows from the fact that linearizability is a
local property, see the first chapter).

R.write(1) R.write(2)
REGI] « 1 REG[2] — 1, REG[1] <0
\ ' Rread() /
—=< T : - =
REGI=0 | REGE -1
‘ e | \R.reaﬂ()
REG[l] =1

Figure 4.10: A counter-example for atomicity

4.5.3 From atomic bits to atomicb-valued registers

As just seen, the algorithm of Figure 4.8 does not work if tbalds to build ab-valued atomic register
from atomic bits. Interestingly, a relatively simple modéfiion of its read algorithm makes that possible by
preventing the new/old inversion phenomenon.

Overview The idea consists in decomposingraread() operation in two phases. The first phase is the
same as in the read algorithm of Figure 4.8 : base registenead in ascending order, until an entry equal
to 1 is found; let; be that entry. The second phase traverses the array in theseeglirection (frony to

1), and determines the smallest entry that contains valubis is then returned. So, the returned value is
determined by a double scanning of a “meaningful” part of fieG array.

The new algorithm is given in Figure 4.11. To understand thdedying idea, let us consider the first
R.read() operation depicted in Figure 4.10. After it find&&~G[2] = 1, the reader changes its scanning
direction. The reader then find8EG[1] = 1 and returns consequently valte In the figure, the second
read obtaind in REG[1] and consequently returris This shows that, in the presence of concurrency, this
construction does not strive to eagerly return a value.ebhtvaluev returned by a read operation has to
be “validated” by an appropriate procedure, namely, all“greceding” base registetBEG[v — 1] until
REG]1] have to be found equal towhen rereading them.

Theorem 9 Givenb 1IWMR atomic bits, the algorithm described in Figure 4.11lements a IWMR atomic
b-valued register.

Proof The proof consists in two parts: (1) we first show that the enpénted register is regular, and then
(2) we show that it does not allow for new/old inversions. Ajpg Theorem 10 proves then that the con-

53

operation R.write(v):
REG[v] < 1,
for j from v — 1 step—1 until 1 do REG]j] < 0 end.do;
return()

operation R.read() issued byp;:

J-up — 1;

(1) while (REG]j-up] = 0)do j-up « j_up + 1 end_do;

(2) j« j-up;

(3) for j_down from j_up — 1 step—1 until 1 do

4) if (REG[j-down] =1)thenj < j_down end.if
end_do;
return(y)

Figure 4.11: Atomic register: from bits tevalued register

structed register is a IWMR atomic register.

Let us first show that the implemented register is regulat. R.eead() be a read operation anjdthe
value it returns. We consider two cases:

e j = j_up (j is determined at line 2).
The value returned is then the same as the one returned bigtivétam described in Figure 4.8. It
follows from theorem 8 that the value read is then either #ilaesof the last preceding write or the
new value of an overlapping write.

e j < j_up (j is determined at line 4; let us observe that, due to the aact&in, the casg > j up
cannot happen).
In that case, the read foudEG[j] = 0 during the ascending loop (line 1), al¥F'G[j] = 1 during
the descending loop (line 4). Due to the atomicity of the Ha&k~ ;] register, this means that a write
operation has writte® EG[j] = 1 between these two readings of that base atomic registetldifs
that the valugj returned has been written by a concurrent write operation.

R.write(v) R.write(v/)

Pw

rl = R.read() r2 = R.read()
br - > < ==

Figure 4.12: There is no new/old inversion

To show that there is no new/old inversion, let us considgufe 4.12. There are two write operations,
and two read operationsl and2 that are concurrent with the second write operation. (Thetfaat the
read operations are issued by the same process or diffex@ggses is unimportant for the proof.) As the
constructed registeR is regular, both read operations can retuir v’. If the first read operationl returns
v, the second read can return eitheor v" without entailing a new/old inversion. So, let us consider t
case where1 returnsy’. We show that the second rea2l returnsv”, wherev” is v’ or a value written by
a more recent write concurrent with this read.vf = +/, then there is no new/old inversion. So, let us

54

considen” # . Asr1 returnsv’, r1 has sequentially reaBEG[v'] = 1 and thenREG[v' — 1] = 0 until
REG(1] = 0 (lines 2-4). Moreovery2 starts after1 has terminatedr({ —x 2 in the associated history
H).

1. " <4/, In that case, a write operation has writB& G[v"] = 1 afterr1 has readR EG[v"] = 0 (at
line 4) and before:2 readsREG[v"] = 1 (at line 2 or 4) withl < v” < ¢'. It follows that this write
operation is aftelR.write(v') (there is a single sequential writer, antireturnsv’). Consequently,
r2 obtains a value newer thar, hence newer tham there is no new/old inversion.

2. v" >4/, Inthat casey2 has read from REG[v"] and therd from REG[v'] (line 4). Asr1 terminates
(readingREG[v'] = 1 and returning’) beforer2 starts, and write operations are sequential, it follows
that there is a write operation, issued affetrite(v’), that has update® EG[v'] from 1 to 0.

(a) If that operation ifR.write(v”), we conclude that the valué read byr2 is newer than’, and
there is no new/old inversion.

(b) If that operation is noRR.write(v”), it follows that there is another operatidtwrite(v”),
such thaw” > ¢/, that has update® FG[v'] from 1 to 0, and that update has been issued after
R.write(v') (that setREG[v'] to 1), and before 2 readsREG[v'] = 0.

Moreover, R.write(v”) is beforeR.write(v”) (otherwise, the update dEG[v'] from 1to 0
would have been done by.write(v”)).

It follows that R.write(v”) is after R.write(v') and beforeR.write(v”), from which we con-
clude that” is newer than’, proving that there is no new/old inversion.

DTheorem 9

4.6 Three (unbounded) atomic register implementations

So far, none of our algorithms implements an atomic registérof a non-atomic register. (Moreover, the
one that implements atomic registers implementsvalued register out of a binary atomic on.) In the
following, we present algorithms that implemamniboundedatomic registers. Such registers can contain
any number of distinct values.

We present three algorithms. All use the notiorsefluence numbein short, this notion represents a
concept of logical time. The sequence numbers are assoaidtie each write operation and induce a total
order on these operations: the total order is then expléo@eshsure atomicity. These numbers are written
in the base registers, which also means that such registesnhounded, because the space of sequence
numbers is the set of natural numbers.

More specifically, in the algorithms presented in this setta base register is made up of several fields,
namely:

e A data part intended to contain the valuef the constructed high-level regist&r

e A control part containing a sequence number and possiblpeeps identity. The sequence number
values increase proportionally with the number of writeraiens, and is consequently bounded.

Two observations are in order before diving into the detfilhese algorithms.

55

1. As we pointed out, the high-level register we construet ba unbounded and might contain, at
different points in time, an arbitrary number of distinclugs. In fact, the fact that the high-level
register can be unbounded does not mean it has to. This depenthe application that uses this
high-level register and the operations that access it.

2. The base registers are unbounded for they contain ailyitexge sequence numbers. In fact, there
are techniques to recycle sequence numbers and bound thesteuctions. These techniques are
however pretty involved and we do not present them here.

4.6.1 1WIR registers: From unbounded regular to atomic

We show in the following how to implement an 1W1R atomic regjisising a 1IW1R regular register. The use
of sequence numbers make such a construction easy and hglpgicular prevent the new/old inversion
phenomenon. Preventing this, while preserving regulantgans, by Theorem 10, that the constructed
register is atomic.

The algorithm is described in Figure 4.13. Exactly one bagelear registeR EG is used in the imple-
mentation of the high-level registét. The local variablen at the writer is used to hold sequence numbers.
It is incremented for every new write iR. The scope of the local variabtei.x used by the reader spans a
read operation; it is made up of two fields: a sequence nunaher {n) and a valueduzx.val).

Each time it writes a value in the high-level registerR, the writer writes the paifsn, v] in the base
regular registeR £ G. The reader manages two local variabliesit_sn stores the greatest sequence number
it has even read iR £'GG, andlast_val stores the corresponding value. When it wants to ieathe reader
first readsREG, and then compardast_sn with the sequence number it has just reaiEG. The value
with the highest sequence number is the one returned by dlderand this prevents new/old inversions.

operation R.write(v):
sn «— sn+1;
REG « [sn,v];
return()

operation R.read():
auxr — REG,
if (auzx.sn > last_sn) then last_sn «— aux.sn;
last_val « aux.val end.if;
return(last_val)

Figure 4.13: From regular to atomic: unbounded constroctio

Theorem 10 Given an unbounded 1W1R regular register, the algorithntidlesd in Figure 4.13 constructs
a 1W1R atomic register.

Proof The proof is similar to the proof of Theorem 10. We associdth @ach read operationof the high-
level registerR, the sequence number (denotedr)) of the value returned by. this is possible as the base
register is regular and consequently a read always retuvagua that has been written with its sequence
number, that value being the last written value or a valuegoently written -if any-. Considering an
arbitrary historyH of registerR?, we show thatH is atomic by building an equivalent sequential histsry
that is legal and respects the partial order on the opesatefined by— ;.

56

S is built from the sequence numbers associated with the tpesa First, we order all the write
operations according to their sequence numbers. Then, dex each read operation just after the write
operation that has the same sequence number. If two readsiops have the same sequence number, we
order first the one whose invocation event is first. (Remertitzrwe consider a 1W1R register)

The historyS is trivially sequential as all the operations are placed afiter the other. Moreover§
is equivalent toH as it is made up of the same operatiorts.is trivially legal as each read follows the
corresponding write operation. We now show tRaespects— ;.

e For any two write operations1 andw2 we have eithetvl — w2 orw2 —y wl. This is because
there is a single writer and it is sequential: as the variablis increased by between two consecutive
write operations, no two write operations have the sameesagunumber, and these numbers agree
on the occurrence order of the write operations. As the twi@ér on the write operations ifi is
determined by their sequence numbers, it consequentlywisitheir total order irf .

e Letopl be a write or a read operation, angR be a read operation such thatl — 5 op2. It follows
from the algorithm thatn(opl) < sn(op2) (Wheresn(op) is the sequence number of the operation
op). The ordering rule guarantees that is ordered beforep2 in S.

e Letopl be aread operation, ang?2 a write operation. Similarly to the previous item, we thenéha
sn(opl) < sn(op2), and consequentlypl is ordered beforep2 in S (which concludes the proof).

I:ITheorem 10

One might think of a naive extension of the previous algaritto construct a 1IWMR atomic register
from base 1W1R regular registers. Indeed, we could, at fiastcg, consider an algorithm associating one
1WI1R regular register per reader, and have the writer wiritef of them, each reader reading its dedicated
register. Unfortunately, a fast reader might see a new coswetly written value, whereas a reader that
comes later sees the old value. This is because the secatat deses not know about the sequence number
and the value returned by the first reader. The latter sttiew tocally. In fact, this can happen even if
the base 1W1R registers are atomic. The construction of a Rvaddmic register from base 1W1R atomic
registers is addressed in the next section.

4.6.2 Atomic registers: from unbounded 1W1R to IWMR

We presented in Section 4.4.1 an algorithm that builds a 1\W&die/regular register from similar IW1R
base registers. We also pointed out that the correspondinstraction does not build a IWMR atomic
register even when the base registers are 1W1R atomic @eetimter-example presented in Figure 4.5).

This section describes such an algorithm: assuming 1W1Riategisters, it shows how to go from
single reader registers to a multi-reader register. Thyerdhm uses sequence numbers, and requires un-
bounded base registers.

Overview As there are now several possible readers, actuallye make use of severat) base 1W1R
atomic registers: one per reader. The writer writes in athefn. It writes the value as well as a sequence
number. The algorithm is depicted in Figure 4.14.

We prevent new/old inversions (Figure 4.5) by having thelees “help” each other. The helping is
achieved using an arral ELP[1 : n,1 : n] of IW1R atomic registers. Each register contains a pair (se-
quence number, value) created and written by the writerdibtise registers. More specifically £ L P[i, j|

57

is a 1IW1R atomic register written only lpy and read only by;. Itis used as follows to ensure the atomicity
of the high-level 1WMR registeR that is constructed by the algorithm.

e Help the othersJust before returning the valwet has determined (we discuss how this is achieved
in the second bullet below), readgr helps every other process (readgf)by indicating top; the
last valuep; has read (hamely) and its sequence numbet. This is achieved by having; update
HELPIi, j] with the pair[sn, v]. This, in turn, prevents; from returning in the future a value older
thanv, i.e., a value whose sequence number would be smallersthan

e Helped by the othersTo determine the value returned by a read operation, areafiest computes
the greatest sequence number that it has ever seen in a gasgerreThis computation involves all
1W1R atomic registers thaf can read, i.e. REG[i] and H ELP][j,i] for anyj. p;. Reader; then
returns the value that has the greatest sequence numhas computed.

The corresponding algorithm is described in Figure 4.14ia\#e aux is a local array used by a reader;
its jth entry is used to contain the (sequence number, valuejt@ip; has written inH ELP|j,] in order
to helpp;; aux[j].sn andauz[j].val denote the corresponding sequence number and the asdo@hie,
respectively. Similarlyyeg is a local variable used by a readgrto contain the last (sequence number,
value) pair thap; has read fronrREG(i] (reg.sn andreg.val denote the corresponding fields).

RegisterH ELPJi,1i] is used only by;, which can consequently keep its value in a local variabkés T
means that the 1W1R atomic registé# L P|[i, i] can be used to contain the 1W1R atomic regi&erG|:].
It follows that the protocol requires exactlyf base 1W1R atomic registers.

operation R.write(v):
sn «— sn+ 1,
for_all jin {1,...,n} do REGJi] « [sn,v] end.do;
return()

operation R.read() issued byp;:

reg <— REG]i];
for_all jin {1,...,n} doauzlj] — HELP[j,i] enddo;
let snomax be max(reg.sn, auz(1].sn, ..., auz[n].sn);

let val be reg.val or auz[k].val such thatthe associated seq numbesismax;
for_all jin {1,...,n} do HELPJi, j| < [sn-max,val] enddo;
return(val)

Figure 4.14: Atomic register: from one reader to multipladers (unbounded construction)

Theorem 11 Givenn? unbounded 1W1R atomic registers, the algorithm describefigure 4.14 imple-
ments a IWMR atomic register.

Proof As for Theorem 10, the proof consists in showing that the segelnumbers determine a linearization
of any historyH.
Considering an history of the constructed registdt, we first build an equivalent sequential history

S by ordering all the write operations according to their ssme numbers, and then inserting the read
operations as in the proof of Theorem 10. This history igatly legal as each read operation is ordered
just after the write operation that wrote the value that &lreA similar reasoning similar as the one used in
Theorem 10, but based on the sequence numbers provided byrdysREG[1 : n| andHELP[1 : n, 1 :

n], shows thatS respects— . Orheorem 11

58

4.6.3 Atomic registers: from unbounded 1WMR to MWMR

This section shows how to use sequence numbers to build a M\AtglRic register froom IWMR atomic
registers (where: is the number of writers). The algorithm is simpler than thevppus one. An array
REGI]1 : n] of n IWMR atomic registers is used in such a way thais the only process that can write
in REG]i], while any process can read it. Each regigtgtG[i] stores a (sequence number, value) pair.
Variables X.sn and X.val are again used to denote the sequence number field and threefiatlof the
registerX, respectively. Eaclik EG([i] is initialized to the same pair, namel9, vy] whereuy is the initial
value ofR.

The problem we solve here consists in allowing the writetstally order their write operations. To that
end, a write operation first computes the highest sequenobenthat has been used, and defines the next
value as the sequence number of its write. Unfortunately,dibes not prevent two distinct concurrent write
operations from associating the same sequence numberhgitiréspective values. A simple way to cope
with this problem consists in associatingimestampwith each value, where a timestamp is a pair made up
of a sequence number plus the identity of the process thasgbie corresponding write operation.

The timestamping mechanism can be used to define a total ondat the timestamps as follows. Let
tsl = [snl,i] andtsl = [sn2, j] be any two timestamps. We have:

tsl < ts2 & ((snl < sn2)V (snl =sn2Ai < j)).

The corresponding construction is described in Figure.4THe meaning of the additional local variables
that are used is, we believe, clear from the context.

operation R.write(v) issued byp;:
for_all jin {1,...,n} doreglj] — REG|j] end.do;
let sn-max bemax(reg[1].sn,...,reg[n].sn) + 1;
REG]i] « [sn-max,v];
return()

operation R.read() issued byp;:
for_all jin {1,...,n} doreglj] — REG|j] end.do;
let k bethe process identitguch that[sn, k] is the greatest times-tamp
among the: time-stampsgreg[1].sn, 1], ...and[reg[n].sn,n];
return(reg[k].val)

Figure 4.15: Atomic register: from one writer to multipleiters (unbounded construction)

Theorem 12 Givenn unbounded 1WMR atomic registers, the algorithm describefigure 4.15 imple-
ments a MWMR atomic register.

Proof Again, we show that the timestamps define a linearizatiomgpféstory H .

Considering an historyd of the constructed registét, we first build an equivalent sequential histdty
by ordering all the write operations according to their thtaenps, then inserting the read operations as in
Theorem 10. This history is trivially legal as each read apien is ordered just after the write operation that
wrote the read value. Finally, a reasoning similar to the wsed in Theorem 10 but based on timestamps
shows thatS respects— . OTheorem 12

59

4.7 Concluding remark

We have shown in Section 4.6 how to build a MWMR atomic regiftem unbounded 1W1R regular
registers. All these use sequence numbers. The only tramafion from safe to regular that has been
presented concerns the case of binary registers (Sectid®) 4At least three questions are natural to ask:

e How to implement a 1W1R atomic bit from a bounded number of R/¢&fe bits? This question is
of independent interest and is addressed in Chapter 4.

e How to implement a 1W1R atomic register from a bounded nurob@wW1R safe bits? This question
is also of independent interest and is addressed in Chapter 5

e How to implement a MWMR atomic register from bounded 1W1Rvdtoregisters. This question is
not addressed in this book.

4.8 Bibliographic notes

The notions of safe, regular and atomic registers have bgmudiiced by Lamport [12].

Theorem 10, and the algorithms described in Figure 4.4 rEigL6, Figure 4.7 and Figure 4.8 are due to
Lamport [12]. The algorithm described in Figure 4.11 is du¥idyasankar [43]. The algorithms described
in Figure 4.14 and 4.15 are due to Vityani and Awerbuch [47].

The wait-free construction of stronger registers from vegakgisters has always been an active research
area. The interested reader can consult the following éxraustive!) list where numerous algorithms are
presented an analyzed [48, 49, 50, 51, 52, 40, 41, 42, 44635, 4

60

Chapter 5

From safe bits to atomic bits: an optimal
construction

5.1 Introduction

In the previous chapter, we introduced the notions of safgular and atomic (linearizable) read/write
objects (also called registers). In the case of IW1R (on&emwoine reader) register, assuming that there
is no concurrency between the reader and the writer, themobf safety, regularity and atomicity are
equivalent. This is no longer true in the presence of coeausr. Several bounded constructions have been
described for concurrent executions. Each constructiggiements a stronger register from a collection of
weaker base registers. We have seen the following conistngct

e From a safe bit to a regular bit. This construction improvegte quality of the base object with
respect to concurrency. Contrarily to the base safe bitad operation on the constructed regular bit
never returns an arbitrary value in presence of concurreite wperations.

e From a bounded number of safe (resp., regular or atomic)tdits safe (resp., regular or atomic)
b-valued register. These constructions improve on the tyuafieach base object as measured by
the number of values it can store. They show that “small” lmgects can be composed to provide
"bigger” objects that have the same behavior in the preseficencurrency.

To get a global picture, we miss one bounded constructianintii@roves on the quality in the presence
of concurrency, namely, a construction of an atomic bit fregular bits. This construction is fundamental,
as an atomic bit is the simplest nontrivial object that caddfned in terms ofequentialexecutions. Even
if an execution on an atomic bit contains concurrent aceggbe execution still appears as its sequential
linearization

In this chapter, we first show that to construct a 1IW1R atoritjod® need at least three regular bits,
two written by the writer and one written by the reader. Thenpresent an optimal three-bit construction
of an atomic bit.

5.2 A Lower Bound Theorem

In Section 4.6.1 of Chapter 4, we presented the construofianl W1R atomic register from ambounded
regular register. The base regular register had to be unlealinecause the construction was using sequence

61

numbers, and the value of the base register was a pair madethp data value of the register and the
corresponding sequence number. The use of sequence numddegs sure that new/old inversions of read
operations never happen.

A fundamental question is the following: Can we build a 1W18hac register from a finite number of
regular registers that can store only finitely many valued,@an be written only by the writer (of the atomic
register)?

This section first shows that such a construction is impéssile., the reader must also be able to write.
In other words, such a construction must involve two-way camication between the reader and the writer.
Moreover, even if we only want to implement one atomic big writer must be able to write itwo regular
base bits.

5.2.1 Digests and Sequences of Writes

Let A be any finite sequence of values in a given sedligestof A is a shorter sequendethat “mimics” A:
A and B have the same first and last elements; an element appearstabmee inB; and two consecutive
elements of3 are also consecutive iA. B is called adigestof A.

As an example lel = vy, v9,v1,v3, V4, 2,04, v5. The sequencd = vy, v3, v, v5 IS a digest ofA.
(there can be multiple digests of a sequence).

Every finite sequence has a digest:

Lemma?2 Let A = aq,a9,...,a, be a finite sequence of values. For any such sequence thets axi
sequencd3 = by, ..., b, of values such that:

e by =a /\bm:an,
o (bi=0b;) = (i=1j)
e Vj:1<j<m:di: 1<i<n:bj=a; N\ bjj1=ai41.

Proof The proof is a trivial induction om. If n = 1, we haveB = a;. If n > 1, letB = by,...,b,, be a

digest ofA = aq, as, ..., a,. Adigest ofay, as, ..., a,,a,+1 can be constructed as follows:

-Ifvie{l,...,m} :b; # any1,thenB = by, ... by, anqq iSs adigest ofug, ag, ..., ay.

-If 35 € {1,...,m} : bj = an41, there is a singlg such thab; = a,,; (this is because any value appears

at most once i3 = by,...,by,). Itis easy to check thaB = b,...,b; is a digest ofay, ..., an, ani1.
I:ILemma 2

Consider now an implementation of a bounded atomic 1W1Rstegk from a collection of base
bounded1W1R regular registers. Clearly, any execution of a writerafonw that changes the value
of the implemented register must consist of a sequence ¢ésvan base registers. Such a sequence of
writes triggers a sequence of state changes of the baseersgisom the state before to the state aftew.

Assuming thatr is initialized to0, let us consider an executidhwhere the writer indefinitely alternates
R.write(1) and R.write(0). Letw;, ¢ > 1, denotes thé-th R.write(v) operation. This means that= 1
wheni is odd andv = 0 wheni is even. Each prefix of/, denoted byE’, unambiguously determines the
resultingstateof each base object, i.e., the value that the reader would obtain if it readight after £,
assuming no concurrent writes. Indeed, since the resudtiegution is sequential, there exists exactly one
reading function and we can reason about the state of eaebt@tjany point in the execution.

Each write operationvs; 1 = R.write(1), i = 0,1,..., contains a sequence of writes on the base
registers. Letvy,...,w, be the sequence of base writes generatedfyy;. Let A; be the corresponding

62

sequence of base-registers states defined as follows: sitefamenta is the state of the base registers
beforew;, its second elemenit; is the state of the base registers just afierand beforevs, etc.; its last
elementa, is the state of the base registers after

Let B; be a digest derived from,; (by Lemma 2 such a digest sequence exists).

Lemma 3 There exists a digedt = by, ..., b, (y > 1) that appears infinitely often iB3;, Bo,

Proof First we observe that every digeBt (i = 1,2,...) must consists of at least two elements. Indeed if
B; is a singletorbg, then the read operation dhapplied just beforev; and the read operation ddapplied
just afterw; observe the same state of base regigtgrd herefore, the reader cannot decide when exactly
the read operation was applied and must return the same-valgentradiction with the assumption that
changes the value dt.

Since the base registers are bounded, there are finitely ditiayent states of the base registers that
can be written by the writer. Since a digest is a sequenceatdssbf the registers written by the writer in
which every state appears at most once, we conclude that ¢heronly be finitely many digests. Thus, in
the infinite sequence of diges8;, Bo, ..., some digesB (of two or more elements) must appear infinitely
often. OLemma 3

Note that there is no constraint on the numbeintérnal states of the writer. Since there may be no
bound on the number of steps taken within a write operatiirtha sequences!; can be different, and
the writer may never perform the same sequence of basdeaegjserations twice. But the evolution of the
base-register states in the coursedpitan be reduced to its diges.

5.2.2 The Impossibility Result and the Lower Bound

Theorem 13 It is not possible to build a 1W1R atomic bit from a finite numiiferegular registers that can
take a finite number of values and are written only by the write

Proof By contradiction, assume that it is possible to build a 1Wistréc bit R from a finite setS of
regular registers, each with a finite value domain, in whighreader does not update base registers.

An operationr = R.read() performed by the reader is implemented as a sequence of peaations on
base registers. Without loss of generality, assumertreddsall base registers. Consider again the execution
E in which the writer performs write operations, wo, . . ., alternatingR.write(1) and R.write(0).

Since the reader does not update base registers, we cartlireseomplete execution efbetween every
two steps inE without affecting the steps of the writer. Since the basésters are regular, the value read
in a base registek by the reader performing after a prefix ofE' is unambiguously defined by the latest
value written toX before the beginning of. Let A\(r) denote the state of all base registers observed by

By Lemma 3, there exists a digeBt= b, ...,b, (y > 1) that appears infinitely often il;, Bs, . . .,
whereB; is a digest ofvo; 1. Since each state ifbo, . .., b, } appears irf infinitely often, we can construct
an executiorE’ by inserting inE a sequence of read operations. . ., r, such that for each = 0,...,y,
A(rj) = by—;. In other words, inE’, the reader observes the states of base registers evolewmgwards
from b, to by.

By induction, we show that if’, eachr; (j = 0, ..., y) must returnl. Initially, since\(ry) = b, and
b, is the state of the base registers right after sdtnerite(1) is complete;,o must returnl. Inductively,
suppose that; (for somej, 0 < j <y — 1) returnsl in E’.

Consider read operationg andr; 1 (j = 0,...,y — 1). Recall that\(r;) = b,—; and A(rj;1) =
by—j—1. Since digestB appears inBi, Bs, ... infinitely often, E’ contains infinitely many base-register

63

A(rj) = by A(rjn) = by—j1

Ty Tj+1

from by,j,1 to by,]‘

R.write(1) operation

Figure 5.1: Two read operatioms andr; + 1 concurrent withR.write(1)

writes by which the writer changes the state of base regiftemb, ; 1 to b,_;. Let X be the base
register changed by these writes.

SinceX is regular, we can construct an executibfi which is indistinguishable to the reader frai,
wherer; are concurrent with a base-register write performed withinrite(1) in which the writer changes
the state of the base registers from ;_; to b, — j (Figure 5.1).

By the induction hypothesis;; returnsl in £’ and, thus, in”. Since the implemented regist&ris
atomic and-; returns the concurrently written valden E”, r;,; must also returr in E”. But the reader
cannot distinguistE” and E” and, thusy; returnsl also inE’.

Inductively, r, must returnl in E’. But A(r,) = by, whereby is the state of base registers right after
someR.write(0) is complete. Thus;, must returr)—a contradiction. OTheorem 13

Therefore, to implement a 1IW1R atomic register from bourrégdlar registers, we must establish two-
way communication between the writer and the reader. Inélyt the reader must inform the writer that it
is aware of the latest written value, which requires at leastbase bit that can be written by the reader and
read by the writer. But the writer must be able to react to tiiermation read from this bit. In other words:

Theorem 14 In any implementation a 1W1R atomic bit from regular bitg writer must be able to write
to at least 2 regular bits.

Proof Suppose, by contradiction, that there exists an implertientaf a 1IW1R atomic bif? in which the
writer can write to exactly one base bit.

Note that every write operation aR that changes the value &f and does not overlap with any read
operation must change the state f Without loss of generality assume that the first write opena
wy = R.write(1) performed by the writer in the absence of the reader chahgegalue ofX from 0 to 1
(the corresponding digest(s1).

Consider an extension of this execution in which the readegiopmsr, = R.read() right after the end
of wy. Clearly,r; must returnl. Now addws = R.write(0) right after the end of;. Since the state ok’
at the beginning ofuvs is 1, the only digest generated s is 1, 0.

Now addry = R.read() right after the end ofve, and letE be the resulting execution. Now must
return0 in E. But sinceX is regular,F is indistinguishable to the reader from an execution in Whicand
ro take place within the interval afi; and thus both must returi—a contradiction. O heorem 14

As we have seen in the previous chapter, there is a triviah@ed algorithm that constructs a regular bit
from a safe bit. This algorithm only requires one additidoahl variable at the writer. The combination of
this algorithm with Theorem 14 implies:

64

Corollary 1 The construction of a 1W1R atomic bit from safe bits requateleast 3 1W1R safe bits, two
written by the writer and one written by the reader.

As the construction presented in the next section useslgx@@W1R regular bits to build an atomic
bit, it is optimal in the number of base safe bits.

5.3 From three safe bits to an atomic bit

Now we present an optimal construction of a high level 1WdRrat bit R from three base 1W1R safe bits.
The high level bitR is assumed to be initialized to It is also assumed that eaé¢hwrite(v) operation
invoked by the writer changes the value Bf This is done without loss of generality, as the writerfof
can locally keep a copy’ of the last written value, and apply the néktwrite(v) operation only when it
modifies the current value d@t.

The construction of? is presented in an incremental way.

5.3.1 Base architecture of the construction

The three base registers are initializedtd hen, as we will see, the read and write algorithms defirieg t
construction, are such that, any write applied to a basstexg{ changes its value. So, its successive values
are0, then1, then0, etc. Consequently, to simplify the presentation, a witeration on a base registéf,
is denoted “chang&™. As any two consecutive write operations on a baseXbiwrite different values, it
follows that X behaves as regular register.

The 3 base safe bits used in the construction of the high &wehic registerr are the following:

e REG: the safe bit that, intuitively, contains the value of thenaic bit that is constructed. It is written
by the writer and read by the reader.

e WWR: the safe bit written by the writer to pass control inforroatio the reader.

e RR: the safe bit written by the reader to pass control infororatd the writer.

5.3.2 Handshaking mechanism and the write operation

As we saw in the previous section, the reader should inforenwhter when it read a new value in

the implemented register. Otherwise, the uninformed writay subsequently repeat the same digest of
state transitions executing.write(v) so that the reader would be subject to new/old inversion réfbee,
whenever the writer is informed that a previously writtettueais read by the reader, it should change the
execution so that critical digests are not repeated.

The basic idea of the construction is to use the control Bi#® and RR to implement théhandshaking
mechanism. Intuitively, the writer informs the reader ab@unew value by changing the value @fR so
that WR # RR. Respectively, the reader informs the writer that the néwevss read by changing the value
of RR sothatWR = RR. With these conventions, we obtain the following handshgldrotocol between
the writer and the reader:

e After the writer has changed the value of the base regidtefs, if it observesWR = RR, it changes
the value of WR.

As we can see, setting the predicdt®? = RR equal to false is the way used by the writer to signal
that a new value has been writtenRE'G. The resulting is described in Figure 5.2.

65

operation R.write(v): %Change the value dt %

i changeREG;

i if WR = RR thenchangelWVR end. if; % Strive to establisSitVR # RR %
return()

Figure 5.2: TheR.write(v) operation

e Before readingREG, the reader changes the value BR, if it observes thatWR # RR. This
signaling is used by the writer to updak8R when it discovers that the previous value has been read.

As we are going to see in the rest of this chapter, the exchaihgjgnals throughW R and RR is also used
by the reader to check if the value it has foundd'G can be returned.

5.3.3 Anincremental construction of the read operation

The reader’s algorithm is much more involved than the wsitalgorithm. To make it easier to understand,
this section presents the reader’s code in an incrementalfi@an simpler versions to more involved ones.
In each stage of the construction, we exhibit scenarios iictwa simpler version fails, which motivates a
change of the protocol.

The construction: step 1 We start with the simplest construction in which the readgaldishesRR =
WR and returns the value found REG.

3 if WR # RR thenchangeRR end. if; % Strive to establist#R = RR %
4 wval — REG,
5 return(val)

We can immediately see that this version does not reallyhesedntrol information: the value returned
by the read operation does not depend on the stat&Radnd IWR. Consequently, this version is subject
to new/old inversions: suppose that while the writer chantpe value of REG from 0 to 1 (line ii in
Figure 5.2), the reader performs two read operations. Téieréiad returns (the “new” value ofR) and the
second read returris(the “old” value), i.e., we obtain a new/old inversion.

The construction: step 2 An obvious way to prevent the new/old inversion describeithéprevious step
is to allow the reader to return the current valueR#HG only if it observes that the writer has updatédr
to makeWR # RR since the previous read operation.

1 if WR = RR then return(val) end. if;

3 changeRR; % Strive to establisitVR = RR %
4 wal — REG,

5 return(val)

Here we assume that the local variabdé initially contains the initial value of? (0). Checking whether
WR # RR before changing?R in line 3 looks unnecessary, since the reader does not touch thedshare
memory between reading/R in line 1 and in line 3, so we dropped it for the moment.

66

Unfortunately, we still have a problem with this constranti When a read is executed concurrently
with a write, it may happen that the read returns a concuyrewntitten value but a subsequent read finds
RR # WR and returns an old value found REG.

Indeed, consider the following scenario (Figure 5.3):

1. w1 = R.write(1) completes.
2. r1 readsWR, finds WR # RR and change®R.

3. we = R.write(0) begins, change®FG to 0, readsRR, finds WR = RR, changesiWR, restoring
the predicatedVR # RR, and completes.

4. ws = R.write(1) begins and starts changidtfG from 0 to 1.
5. r1 concurrently read® £G and returns the new valude

6. ro = R.read() begins, findsRR # WR, readsREG and returns the old valu@ (which is perfectly
possible since the write operation &EG performed byws is not yet finished).

In other words, we obtain ta new-old inversion for read ofi@na r; andrs.

wi=write(1) wo=write(0) wsg=write(1)
changeREG
Writer ‘ ‘
r returnl o return O
RR#WR readl in REG read0 in REG
Reader ’—lhageRR — RR Z‘VR —

Figure 5.3: Counter example to step 2 of the constructiow-old inversion forr; andrs

The construction: step 3 The problem with the scenario above is that a read operagioooi quick to
return the new value oREG without noticing that the writer has meanwhile chandé®. A subsequent
read operation may obsenieR = WR and thus return the value read REG (line 4) which may, in case
of a slow concurrent write, still be the old value.

One solution to circumvent this is to evaluatd/G before changing?R. If the predicateRR = WR
does not hold afteRR was changed (line’Band REG was read again (line 4), then the reader returns the
older (conservative) value dtEG.

1 if WR = RR then return(val) end. if;

auxr <— REG; % Conservative value %
changeRR; % Strive to establisitVR = RR %
val — REQG,

if WR = RR then return(val) end_ if
return(aux)

W N

~N o b~

67

Unfortunately, there is still a problem here. The variahiéevaluated in line 4 may be too conservative
to be returned by a subsequent read operation that fidtls= R in line 1.

Again, suppose that; = R.write(1) is followed a concurrent execution of = R.read() andw, =
R.write(0) as follows (Figure 5.4):

1. wy = R.write(1) completes.
2. wy = R.write(0) begins and starts changif® G from 1 to 0.

3. r1 finds WR # RR, readd) from REG and stores it imux (line 2), change®R, readsl from REG
and stores it inval (the write operation ol EG performed byws is still going on).

4. wo completes its write oREG, finds RR = WR and starts changin@/R.

5. r; finds WR # RR (line 5), concludes that there is a concurrent write openaénd returns the
“conservative” valué (read in line 2).

6. 7o = R.read() begins, findsRR = WR (the write operation orfiWR performed byws is still going
on), and returng previously evaluated in line 4 of;.

That is,r; returned the new (concurrently written) valtigvhile r, returned the old valug.

wy=write(1) wy=write(0)
change REG RR=WR change WR
Writer ‘ [‘
el return 0 ro return 1
RRZWR changeRR RR#AWR| | RR=WR
Reader R [] []
o3 v

Figure 5.4: Counter example to step 3 of the constructiow-old inversion forr; andrs

The construction: step 4 Intuitively, the problem with the algorithm above is thatdid not realize that
the “conservative” value evaluated in line 2 is in fact theaarrently written value, while the “new” value
evaluated in line 4 is outdated. To fix this, before the rea@eides to be conservative and return in line 7,
we add one more read @tE'G to update the local variablenl. This way, a subsequent read would also
return the new value.

operation R.read():
1 if WR = RR then return(val) end. if;
2 auxr — REG,
3’ changeRR,
4 val — REG,
5 if WR = RR then return(val) end._ if;
6 wval — REG,
7 return(auz)

68

But still there is a problem here. Changifgr in line 3 without previously checking itW R = RR may
create an illusion to the reader that it has established ibdiqgateRR = WR, while in fact the predicate
was invalidated by a concurrent write.

Consider the following execution (Figure 5.5):

1. w; = R.write(1) begins, changeBEG to 1, findsRR = WR, and starts changin@/R to 1.

2. 11 = R.read() begins, observeBR # WRinline 1, reads from REG in line 2, changesiR to 1,
readsl from REG in line 4, and returng in line 5.

3. o = R.read() begins and find$VR = RR (the write onWR performed byw; is still going on).
4. w finishes changingVR to 1 and completes.
5. wy = R.write(0) begins and starts changif¥ G to 0.

6. ro reads0 in REG, (unconditionally) change&R back to0, finds WR # RR, readsl in REG in
line 6 (the write onREG performed byws is still going on), and returns the conservative valua
line 7.

7. r3 = R.read() begins, observeRR # WR inline 1, readsl REG, changeskR to 1, readsl from
REG again (recall that the write oREG performed byws is still going on) and returns the old value
linline 5.

Again, we have a new-old inversiom; returns the value concurrently written ly while r3 returns
the old value.

wy=write(1) wy=write(0)
change WR change REG
Writer [‘
r return1 return 0 ., return 1
RRAWR read 1 RRAWR [€3d0 oo wr read 1
Reader L1 L1 TV W1 10101 e
change RR RR=WR change RR RRWR

Figure 5.5: Counter example to step 4 of the construction-old inversion forr, andrs

The construction: last step The complete read algorithm is presented in Figure 5.6. Asavein this
chapter, safe base registers allow for a multitude of ptesssikecution scenarios, so an intuitively correct
implementation could be flawed because of an overlooked CBs&e convinced that our construction is
indeed correct, we provide a rigorous proof below.

5.3.4 Proof of the construction

Theorem 15 Let H be an execution history of the 1W1R regisieconstructed by the algorithm in Fig-
ures 5.2 and 5.6. TheH is linearizable.

69

operation R.read():

1 if WR = RR then return(val) end. if;
aux — REG,
if WR # RR thenchangeRR end. if;
val — REG,
if WR = RR then return(val) end. if;
val — REG,;
return(auz)

~No b~ wnN

Figure 5.6: TheR.read() operation

Proof Let H be an execution history. By Theorem 4,to show tHais linearizable (atomic), it is sufficient
to show that there exists a reading functiosatisfying the assertion40, A1 and A2.

In order to distinguish the operatior®.read() and R.write(v), denoted byr andw, from the read
and write operations on the base registers (e.g., “chd@@é “auzr — REG", etc.), the latter ones are
calledactions The history defined from the action invocation and respewseats is denotefl (<;, denotes
the total order on its events and;, the corresponding relation induced on its operations; auithoss of
generality,<, is assumed to contain all the invocation and response egefitsng H).

Moreover,r being a read operation amak the local variable {ux or val) whose value is returned by
(inline 1, 5 or 7),p,- denotes the last read actiolv¢ — REG” executed before returns. More explicitly,
we have:

e If r returns in line 7p, is the read actiondur <— REG” executed in line 2 of,
e If r returns in line 5p, is is the read actiom/al +— RFEG” executed in line 4 of, and finally

e If rreturnsinline 1p, is is the read actiondal < REG” executed in line 4 or 6 of some previous
read operation.

For each read actiop. we can determine the corresponding write action, dengted) and defined as
the latest write action that writes the value returned - lapnddoes nosucceed,. in L.

Finally, given a read operatianand its associated read actipn we definer(r) to be the write opera-
tion that includes the write actiaf(p,). This means that the value returned by the read operatias been
written in the base registe2 EG by the “changeR EG” action of the write operatiom (r). For notational
convenience we write € A whena is an action of the operatioA.

Proof of AQ.

Let r be a complete read operation Hi. By the definition ofr, the invocation of the write action
¢(pr) occurs before the responsemfand, thus, the responseoin L, i.e.,inv[r(p,)] <r resp[r]. Thus,
inv[r(r)] <p, inv[r(p,)] <r resp[r] and—(resp[r] <r, inv[r(r)]).

By contradiction, suppose that0 is violated, i.e.,r —py =(r). Thus, at the action event level,
resplr] <r inv[m(p,)])—a contradiction. Consequently,satisfiesA0.

Proof of A1.

Since there is only one writer, all writes are totally ordea@dw — ;; 7(r) is equivalent to~(r(r) — g w).
By contradiction, suppose that there is a write operatiog 7 (r) such thatr(r) —g w —pg r. If

there are several such write operationsyldie the last one befong i.e.,? w': w —p W' — g r.

70

We first claim that, in such a context, cannot be a read action of the read operatidre., p, ¢ 7).
Proof of the claim (see Figure 5.7). Recall that(p,) € =(r) (by definition). Letw be the “change
REG” action of the operationv (w € w). Combined with the case assumptiofr) — 5 w, we obtain
é(pr) —1 w. By the definition ofg(p,), we have—(¢(p,) —1 pr) and, thus~(w —r p,). Therefore,
invlp,] <p resplw|. Asw € wandw — g r, we haveinv(p,| <p, resplw] < inv[r]. As p, started before
r, and both are executed by the same process, wehage . End of the proof of the claim

Sincep, ¢ r, by the algorithm in Figure 5.6, the read operatiorturns a value in line 1, which means
that it has previously seeWWR = RR. On the other hand, after the writer has executedthin 7 (r), it read
RR in order to setWR different from RR if they were seen equal. A8 — g randAw’: w —g v’ —pg r
(assumption), it follows thakR R has been modified before the read operatiatarts. MoreoverRR can
only be modified by a read operation in line 3. lLétbe that read operation; as there is a single process
executingR.read(), we haver’ —p r.
Now we claim thaf, ¢ .
Proof of the claim Let r” be the read operation that contains We showr” # r/. We observe that
(Figure 5.7):
- If ¥ updateskR, it does it in line 3, i.e., before executing (in line 4 or 6),
- invlp,] <1, resplw] (this has been shown above; it is indicated by a dotted amdwigure 5.7),
- w readsR R after having executed (code of the write operation).
It follows from these observations thatyif writes into R R, it does it beforav readsRR. Hencey” cannot
change the value aR R (to establishRR = WR) afterw has readkR R or while it is reading it (to establish
RR # WR). Thereforey” # +" and, thusp, ¢ r’. End of the proof of the claim

As the reader modifieR R within 7/, it also executes line 4 of (val «— REG) before executing (this
follows from the code of the read operation). Butpast +/, this read ofREG action withinr’ contradicts
the definition ofp, (according whicty, is the last actiontal «— REG” executed before starts), which
completes the proof of the assertidn.

m(r)

w readRRR
-

write RR! p,
_—— =
< = = =

r T
,,,//

Figure 5.7:p, belongs neither te nor tor’

Proof of A2.

The proof is again by contradiction. Suppose that therd ekiandr2, two complete read operations i,
such thatrl —p r2 andn(r2) — g w(rl). Without loss of generality, let us assume that, for a givgn

r1 is the first such read operation. This means that ifeturns in line 5 or 7p,1 is a read action belonging
to r1, and if r1 returns at line 1, thep,; is a read action in the immediately preceding read operation
Moreover, asr(r2) # w(rl), we havep,1 # p,2. SO, we have eithes,y — 1, py2 OF pro —1 pri.

® Or2 —L Pril-
As p,1 precedes or belongs td, andrl — g r2, we haveresp|p,1] <r, inv[r2]. Combining this

71

with the case assumption we obtain, — 7, p,1 — 1 2, which contradicts the fact that is the last
“loc +— REG" action executed before2 started, wheréoc is val or auz. So, the casg,o — 1, pr1 1S
not possible.

Pr1 —L Pr2-
By definitionm(p,1) € w(rl) andn(py2) € w(r2). Asnw(r2) — g w(rl), we haver(py2) —r 7(pr1).

m(pr2) 7(pr1)

- > @ ==
iprl 3 3 Pr2 |

invlr(pn)] resplon] invlpra] resplm(pn)]
WR is not modified

Figure 5.8: A new/old inversion on the regular regis&r'G;

Thus we obtaint(p,2) —1 7(pr1) @andp,1 — 1 pre (Figure 5.8) which implies a new/old inversion
for the base regular registét£G. Therefore, bottp,; andp,2 have to overlapr(p,1) in order to
have a new/old inversion. Figure 5.8nhv[r(p,1)] <r resplpi] andinv|ps] <r, resp[m(pr1)]. As
7(pr1) is @ base action that updat&¥ G, and as it is the same process that upd&es;’ and WR,
this means that the value of the base regi$iék does not change while it is updatimgF'G, from
which we conclude that:

Property P: R does not change betweeasp[p;] andinv|ps]

We consider three cases according to the line at whiateturns.

— rlreturnsinline 7.
Then,p, is “aux — REG" in line 2 of r1. We have the following:
- Sincep,1 — 1, pr2 @andrl returns in line 7,4 can only be the read in line 6 ofl or a later
read action.
- Sincer1 executes all the actions of the read operation, in line 3 kes® R equal toWR if
they were not. On another side, as it returns in lineI7necessarily seeBR different from
WR in line 5 (otherwise, it would have returned in line 5).
It follows from these two observations thEtR has been modified between line 2 (execution of
pr1) @and line 6 ofr1 (that is or precedeg,»). This contradicts property P above.

— rlreturnsinline 5.
Then,p,1 is “val +— REG” inline 4 of r1, andr1 seesRR = WRinline 5. Sincep,1 — 1, pro,
r2 does not return in line 1 (far2 to return in line 1, we need to haveR = WR at line 1 ofr2,
which means that we would then hawg = p,2). Thus,r2 seesRR # WR when it executes
line 1, andp,2 isin line 2 or line 4 ofr2. It follows that WR has been modified betweep, and
pro—a contradiction with property.

72

— rlreturnsinline 1.
In that casep, is line 4 or line 6 of the read operation that precegdesThe reasoning is the
same as in the previous case. Sipge —1 p-2, 72 does not return in line 1, from which we
conclude that it seeBR # WR when it executed line 1. It follows thal’R has been modified
betweery,1 andp,», which contradicts property and concludes the proof.

I:ITheorem 15

5.3.5 Cost of the algorithms

The cost of theR.read() and R.write(v) operations is measured by the the maximal and minimal nusnber
of accesses to the base registers. Let us remind that ther \wesp., reader) does not reddR (resp.,RR)
as it keeps a local copy of that register.

e R.write(v): maximal cost: 3; minimal cost: 2.
e R.read(): maximal cost: 7; minimal cost: 1.

The minimal cost is realized when the same type of operatien ¢ead or write) is repeatedly executed
while the operation of the other type is not invoked.

Let us remark that we have assumed thaRifvrite(v) and R.write(v’) are two consecutive write
operations, we have # v'. This means that if the upper layer issues two consecutiVie wperations
with v = ¢/, the cost of the second one(sas it is skipped and consequently there is no accessesdo bas
registers.

5.4 Bibliographic notes

Tromp 1989

Lamport 86 (1W2R, but very inefficient)

73

74

Bibliography

(1]

(2]

(3]
(4]
(5]

(6]

[7]

(8]

9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

Gene Amdahl. Validity of the Single Processor ApproaghAthieving Large-Scale Computing Capabilities.
AFIPS Conference Proceedin(3)): 483485, 1967.

Afek Y., Attiya H., Dolev D., Gafni E., Merritt M. and ShavN. Atomic snapshots of shared memadgurnal
of the ACM 40(4):873-890, 1993.

Brinch Hansen P. (Editor), The Origin of Concurrent Prargming.Springer Verlag534 pages, 2002.
Dahl O.-J., Dijkstra E.W.D. and Hoare C.A.R., StructdiffrogrammingAcademic Pres220 pages, 1972.

Dijkstra E.W.D., Solution of a problem in concurrent gramming control.Communications of the ACM
8(9):569, 1965.

Fisher M.J., Lynch N.A. and Paterson M.S., Impossipiliff distributed consensus with one faulty-process.
Journal of the ACM32(2): 374-382, 1985.

Herlihy M.P., Wait-free synchronizationACM Transactions on Programming Languages and Systems
13(1):124-149,1991.

Herlihy M.P. and Wing J.M, Linearizability: a corrects®condition for concurrent objec&CM Transactions
on Programming Languages and Syste#{3):463-492, 1990.

Hoare C.A.R.,, Monitors: an Operating System StructgiConceptCommunications of the ACM 7(10):549-
557, 1974.

Jayanti P., Chandra T. and Toueg S., Fault-toleranitime¢ shared objectdournal of the ACM45(3):451-500,
1998.

Lamport L., Concurrent reading and writingommunications of the ACNM0(11):806-811, 1977.

Lamport. L., On interprocess communication, part lsibdormalism, Part II: algorithm®istributed Comput-
ing, 1(2):77-101, 1986.

Liskov B. and Zilles S., Specification Techniques fort®&bstractionlEEE Transactions on Software Engi-
neering SE1:7-19, 1975.

Loui M.C. and Abu-Amara H.H. Memory requirements foragment among unreliable synchronous processes.
Advances in Computing Researdl63-183, 1987.

Misra J., Axioms for memory access in asynchronousWward systemsACM Transactions on Programming
Languages and Systen&§1):142-153, 1986.

Owicki S. and Gries D., Verifying Properties of Parbfeograms: An Axiomatic ApproaclZommununications
of the ACM 19(5): 279-285, 1976.

75

[17] ParnasD.L., A Technique for Software Modules with Exd@s.Commununications of the AGNI5(2):220-336,
1972.

[18] ParnasD.L., On the Criteria to be Used in DecomposirgieSys in to ModulesCommununications of the AGM
15(12):1053-1058, 1972.

[19] Pease L., Shostak R. and Lamport L., Reaching agreemprasence of faultslournal of the ACM27(2):228-
234, 1980.

[20] Peterson G.L., Concurrent reading while writiddCM Transactions on Programming Languages and Systems
5(1):46-55, 1983.

[21] Raynal M., Algorithms for mutual exclusioithe MIT PressISBN 0-262-18119-3, 107 pages, 1986.

[22] Taubenfeld G., Synchronization algorithms and corentrprogrammingPearson Prentice-HalllSBN 0-131-
97259-6, 423 pages, 2006.

[23] Afek Y., Brown G. and Merritt M., Lazy CachindACM Transactions on Programming Languages and
Systems15(1):182-205, 1993.

[24] Attiya H. and Welch J.L., Sequential Consistency verkinearizability. ACM Transactions on Com-
puter Systemd2(2):91-122, 1994.

[25] Bernstein A., Hagzilacos V. and Goodman N., Concurye@ontrol and Recovery in Database Sys-
tems.Addison Wesley1986.

[26] Fekete A., Lynch N., Merritt M. and Weihl W., Atomic Trasctions.Morgan Kaufmann Publishing
1994.

[27] Gray J. and Reuter A., Transactions Procesing: Cos@pt TechniquedJorgan Kaufmann Publish-
ing, 1070 pages, 1992.

[28] Lamport L., How to Make a Multiprocessor Computer that@ctly Executes Multiprocess Programs.
IEEE Transactions on ComputerS28(9):690-691, 1979.

[29] Papadimitriou C., The Theory of Database Concurrenagtfdl. Computer Science Presk988.

[30] Raynal M., Sequential Consistency as Lazy LinearipabProc. 14th ACM Symposium on Parallel
Algorithms and Architectures (SPAA'Qp. 151-152, Winnipeg, 2002.

[31] Raynal M., Token-Based Sequential Consisteirtyl Journal of Computer Systems Science and En-
gineering 17(6):359-366, 2002.

[32] Alpern B. and Schneider F.B., Defining livenessformation Processing Letters21(4):181-185,
18985.

[33] Attiya H., Guerraoui R. and Kouznetsov P., Computinghwieads and writes in the absence of step
contentionProc. 19rd Int'l Symposium on Distributed Computing (DISE), Springer-Verlag #3724,
pp. 122-136, 2005.

[34] Fich F., Herlihy H. and Shavit N., On the space complegitrandomized synchronizatiodournal of
the ACM 45(5):843-862. 1998.

76

[35] Fich F., Luchangco V., Moir M. and Shavit N., Obstructiree algorithms can be practically wait-
free. Proc. 23rd Int'l Symposium on Distributed Computing (DISE), Springer-Verlag #3724, pp.
78-92, 2005.

[36] Guerraoui R., Kapalka M. and Kouznetsov P., The weakailire detector to boost obstruction-
freedom.Proc. 20rd Int'l Symposium on Distributed Computing (DISE), Springer-Verlag #4167,
pp. 399-412, 2006.

[37] Herlihy M., Luchangco V., Moir M., Obstruction-free sghronization: double-ended queues as an
example.Proc. 23rd IEEE Int'l Conference on Distributed Computings@ms I(CDCS '03)IEEE
Computer Press, pp. 522-529, 2003.

[38] Herlihy M. and Shavit N., The Art of Multiprocessor Pragnming.Morgan Kaufmann Pubglsevier,
508 pages, 2008.

[39] Lamport. L., Proving the correctness of multiprocessgpams.|EEE Transaction on Software Engi-
neering SE-3(2):125-143, 1977.

[40] Jayanti P., Burns J. and Peterson G., Almost optimallsireader single writer atomic registdournal
of Parallel and Distributed Computing0:150-168, 2000.

[41] Li M., Tromp J. and Vityani P., How to share concurrentitWieee variables.Journal of the ACM
43(4):723-746, 1996.

[42] Singh A.K., Anderson J.H. and Gouda M., The elusive ataeygisterJournal of the ACM41(2):331-
334, 1994.

[43] Vidyasankar K., Converting Lamport’s Regular Regidte Atomic Registerinformation Processing
Letters 28(6):287-290, 1988.

[44] Vidyasankar K., An elegant 1-writer multireader mudtiued atomic registeiformation Processing
Letters 30(5):221-223, 1989.

[45] Vidyasankar K., A very simple cosntruction of 1-writetultireader multivalued atomic variablim-
formation Processing Letter87:323-326, 1991.

[46] Vityani P., Simple wait-free multireader registeBsoc. 16th Int'l Symposium on Distributed Comput-
ing (DISC’02) Springer-Verlag LNCS #2508, pp. 118-132, 2002.

[47] Vityani P. and Awerbuch B., Atomic shared register ascby asynchronous hardwakroc. 27th
IEEE Symposium on Foundations of Computer Science (FOELSBEE Computer Press, 223-243,
1986.

[48] Bloom B., Constructing two-writer atomic regsitelSEE Transactions on Computei37:1506-1514,
1988.

[49] Burns J. and Peterson G., Constructing multireadenmiatvalues from non-atomic valudsroc. 7th
ACM Symposium on Principles of Distributed Computing (PCEIY; ACM Press, pp. 222-231, 1987.

[50] Chaudhuri S., Kosa M.J. and Welch J., One-write algani for multivalued regular and atomic regis-
ters.Acta Informatica 37:161-192, 2000.

77

[51] Chaudhuri S. and Welch J., Bounds on the cost of mulie@lregister implementationSIAM Journal
of Computing 2”(2):33(-354, 1994.

[52] Haldar S. and Vidyasankar K., Constructing 1l-writerltingader multivalued atomic variables from
regular variablesJournal of the ACM42(1):186-203, 1995.

78

