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Chapter 1

Introduction

1.1 A broad picture

The field of concurrent computing has gained a huge importance after major chip manufacturers announced
their switch of focus from increasing the speed of individual processors to increasing the number of proces-
sors on a chip. The old good times where nothing needed to be done to boost the performance of programs,
besides changing the underlying processors, are over. To exploit multi-core architectures, programs have to
be devised in a parallel manner. For instance, a single-threaded application can exploit at most 1/100 of the
potential throughput of a 100-core chip and such a chip mightbe available before this book is edited. Chip
manufacturers are calling for a new software revolution: the concurrency revolution.

This might look surprising at first glance for concurrency isalmost as old as computer science. The
famous computer scientists that shaped up the field of computing have devoted a large amount of their
time studying concurrency, including mainly Dijkstra and Hoare. In fact, the revolution is more than about
concurrency alone: it is aboutconcurrency for the masses. In short, concurrency is going out of the small
box of specialist programmers and is conquering the masses.The challenge is to come up with abstractions
that such programmers can easily use for general purpose concurrent programming. In particular, designing
and implementing abstractions to enable inter-process synchronization is crucial. Moreover, given that the
contribution of synchronization mechanisms to the costs ofconcurrent computations is deciding [1], these
implementations should also be efficient. In a way, whereasforking threadsis relatively easy,synchronizing
their activities is usually much more complicated. This is precisely the topic of this book.

1.2 The topic

In concurrent computing, a problem is solved through a set ofprocesses that execute relatively independent
tasks. Except in embarrassingly parallel programs, the tasks need sometimes to synchronize their activities
through shared elements. It is good practice to view these elements as instances of abstract data types, acces-
sible through some interface exporting a set of operations.This interface is itself defined by a specification
that captures the semantics of the operations and the way these have to be used.

This book studies algorithms that implement suchsharedobjects in arobustmanner. Roughly speaking,
“robustness” means the following:

• No processp ever prevents any other processq from making progress whenq executes an object
operation on shared objectX. This means that, provided it remains alive and kicking,q terminates
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its operation onX despite the speed or the failure of any other processp. Processp could be very
fast and might be permanently accessing shared objectX, or could have been swapped out by the
operating system while accessingX. None of these situations should preventp from executing its
operation. This aspect of robustness is calledwait-freedom. As we will explain later in this chapter,
this property transforms the difficult problem of reasoningabout a failure-prone concurrent system
where processes can be arbitrarily delayed and swapped-out(or paged-out), into the simpler problem
of reasoning about a failure-free concurrent system where every process progresses at its own pace
and runs to completion.

• Despite concurrency, the operations issued on each object appear as if they are executed sequentially.
In fact, each operationop on an objectX appears to take effect at some indivisible instant between
the invocation and the reply times ofop. This robustness property is calledatomicity.

In short, this property transforms the difficult problem of reasoning about a concurrent system into
the simpler problem of reasoning about a sequential one.

This book focuses mainly onwait-free implementations of atomic objects. Basically, given certain shared
objects ofbasetypes, say provided in hardware, we study how and whether it is at all possible to wait-free
implement (i.e., in software) an atomic object of amore powerfultype. In fact, and strictly speaking, when
we talk about implementing an object, we actually mean implementing its type. As we shall see, ensuring
each of atomicity or wait-freedom alone is trivial. The challenge is to ensure both.

The material of the book is presented in an incremental manner. We first define atomicity and wait-
freedom, and then we show how to implement simple shared objects from even simpler ones, and more
progressively how to use the resulting objects to build evenmore powerful objects.

1.3 Content of the book

1.3.1 Shared objects as concurrency abstractions

Defining and implementing appropriate programming abstractions are among the main challenges of com-
puter science. A file, a stack, a record, a list, queue and a set, are well-known examples of abstractions that
have proved to be valuable in traditional sequential and centralized computing.

In modern computing, an abstraction is usually captured by an object representing a server program that
offers a set of operations to its users. These operations andtheir specification define the behavior of the
object, also called thetypeof the object. The way an abstraction (object) is implemented is usually hidden
to its users who can only rely on its operations and their specification to design and produce upper layer
software, i.e., software using that object. Such a modular approach is key to implementing provably correct
software that can be reused by subsequent programmers.

The aim of the book is to study abstractions forconcurrentcomputing, in the form ofsharedobjects,
i.e., objects that can be accessed by concurrent processes.That is, the operations exported by the shared
object can be accessed by concurrent processes. Each process accesses the shared object in a sequential
manner. Roughly speaking, sequentiality means here that, after it has invoked an operation on an object,
a process waits to receive a reply indicating that the operation has terminated, and only then is allowed to
invoke another operation on the same or a different object. The fact that a processp is executing an operation
on a shared objectX does not however preclude other processesq from invoking an operations on the same
objectX.
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1.3.2 Atomicity

Atomicity, also calledlinearizability, means that each object operation appears to execute at someindivisible
point in time, also calledlinearizationpoint, between the invocation and reply time events of the operation.
Atomicity provides the illusion that the operations issuedby the processes on the shared objects are executed
one after the other. To program with atomic objects, the developer simply needs thesequential specification
of each object, called also its sequential type or simply itstype, which specifies how the object behaves
when accessed sequentially by the processes.

Most interesting synchronization problems are best described as atomic objects. Examples of popular
synchronization problems are thereader-writerand theproducer-consumerproblems. In the reader-writer
problem, the processes need to read or write a shared data structure such that the value read by a process at
a given point in timet is the last value written beforet. Solving this problem boils down to implementing
an atomic object exportingread() andwrite() operations. Such an object type is usually called an atomic
read-write variable or aregister. It abstracts the very notions of shared file and disk storage.

In the producer-consumer problem, the processes are usually split into two camps: the producers which
create items and the consumers which use the items. It is typical to require that the first item produced is
the first to be consumed. Solving the producer-consumer problem boils down to implementing an atomic
object type, called a FIFOqueue (or simply a queue) that exports two operations:enqueue() (invoked by a
producer) anddequeue() (invoked by a consumer).

1.3.3 Wait-freedom

Traditional synchronization algorithms rely onmutual exclusion(typically based on somelocking primi-
tives): critical shared objects (or critical sections of code within shared objects) are accessed by processes
one at a time. No process can enter a critical section if some other process is in that critical section. We also
say that a process has acquired alock on that object (resp., critical section). This technique issafein the
sense that it ensures atomicity and protects the program from inconsistencies due to concurrent accesses to
shared variables.

However, coarse-grained mutual exclusion does not scale and fine-grained mutual exclusion can easily
lead to violate atomicity. Indeed, atomicity is automatically ensured only if all related variables are pro-
tected by the same critical section. This significantly limits the parallelism and thus the performance of the
program, unless the program is devised with minimal interference among processes. This, on the other hand,
is nevertheless hard to expect from common programmers and precludes most legacy programs.

Maybe more importantly, mutual exclusion hampers progresssince a process delayed in a critical section
prevents all other processes from entering that critical section. Delays could be significant and especially
when caused by crashes, preemptions and memory paging. For instance, a process paged-out might be
delayed for millions of instructions, and this would mean delaying many other processes if these want to
enter the critical section held by the delayed process.

Lock-freeimplementations of atomic objects provide an alternative to mutual exclusion-based imple-
mentations. In particularwait-freedomprecludes any form of blocking. In short, wait-freedom stipulates
that, unless it stops executing (say it crashes), any process that invokes an object operation eventually ob-
tains a reply. That is, the process calling the operation on the object (to be implemented), should obtain a
response for the operation, in a finite number of its own steps, independently of concurrent steps from other
processes. The notion of step means here a local instructionof the process, say updating a local variable, or
an operation invocation on a base object used in the implementation. Sometimes, we will assume that the
object to be implemented should tolerate a certain number ofbase object failures. That is, we will seek to
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implement objects that are resilient in the sense that they eventually return from process invocations, even if
the underlying base objects fail and do not return, or returnuseless replies.

1.3.4 Object implementation

This book studies how to wait-free implement certain atomicobjects out of certain base objects. The notion
of implementation has to be considered here in thealgorithmicsense (there is no promise of C or Java code
in this book).

An object to be implemented is typically calledhigh-level, in comparison with the objects used in the
implementation, considered at alower-level. It is common to talk aboutemulationsof the high-level object
using the low-level ones. Unless explicitly stated otherwise, we will by default meanwait-free implementa-
tion when we writeimplementation, andatomic objectwhen we writeobject.

It is often assumed that the underlying system model provides some form ofregistersas base objects.
These provide the abstraction of read-write storage elements. Message-passing systems can also, under
certain conditions, emulate such registers. Sometimes thebase registers that are supported are atomic but
sometimes not. As we will see in this book, there are algorithms that implement atomic registers out of
non-atomic base registers that might be provided in hardware.

Some multiprocessor machines also provide objects that aremore powerful that registers liketest&tet
objects orcompare&swapobjects. Intuitively, these are more powerful in the sense that the writer process
does not systematically overwrite the state of the object, but specifies the conditions under which this can be
done. Roughly speaking, this enables more powerful synchronization schemes than with a simple register
object. We will capture the notion of “more powerful” more precisely later in the book.

Not surprisingly, a lot of work has been devoted to figure out whether certain objects can wait-free
implement other objects. As we have seen, focusing on wait-free implementations clearly excludes mutual
exclusion based approaches, with all its drawbacks. From the application perspective, there is a clear gain
because relying on wait-free implementations makes it lessvulnerable to failures and dead-locks. However,
the desire for wait-freedom makes the design of atomic object implementations subtle and difficult. This is
particularly so when we assume that processes have noa priori information about the interleaving of their
steps: this is the model we will assume by default in this book.

1.3.5 Reducibility

In its abstract form, the question we address in this book, namely of implementing high level objects using
lower level objects, can be stated as a generalreducibility question in the parlance of the classical theory of
computing. Given two object typesX1 andX2, can we implementX2 using any number of instances of
X1 (we simply say usingX1)? In other words, is there an algorithm that implementsX2 usingX1? The
specificity of concurrent computing here lies in the very fact that under the term ”implementing”, lies the
notions of atomicity and wait-freedom These notions encapsulate the smooth handling of concurrency and
failures.

If the answer to the reducibility question is negative, thenit is also interesting to ask what is needed
(under some minimality metric) to add to the base objects in order to implement the desired high level
object. For instance, if the base objects provided by a givenmultiprocessor machine are not enough to
implement a particular object, knowing that extending the base objects with another specific object (or
many of such objects) is sufficient, might give some useful information to the designers of the new version
of the multiprocessor machine in question.
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1.4 Content and organization

The book is organized in an incremental way, going from implementing simple objects from even simpler
ones, to implementing more powerful objects. After precisely defining the notions of atomicity and wait-
freedom, we go through the following steps.

1. We first study how to implement atomic registers objects out of non-atomic base registers. Roughly
speaking, assuming as base objects registers that provide weaker guarantees than atomicity, and we
show how to wait-free implement atomic registers from theseweak registers. Furthermore, we also
show how to implement registers that can contain an arbitrary large range of values, and be read and
written by any process in the system, from single bit registers (i.e., that contain only0 or 1) that can
be accessed by only one writer processp and only one reader processq.

2. We then discuss how to use registers to implement seemingly more sophisticated objects than regis-
ters, likecountersandsnapshotobjects. We contrast this with the inherent limitation of registers in
implementing more powerful objects likequeues. This limitation is highlighted through the seminal
consensus impossibilityresult.

3. We then discuss the importance ofconsensus as an object type, by explaining itsuniversality. In
particular, we describe a simple algorithm that uses registers and consensus objects to implement any
other object. Then, we turn to the question on how to implement a consensus object from other objects.
In particular, we describe an algorithm to implement a consensus object in a system of two processes,
using registers and either a test&set or a queue objects, as well as an algorithm that implements a
consensus object using a compare&swap object in a system with an arbitrary size. The difference
between these implementations is highlighted to introducethe notion ofconsensus number.

4. We then study a complementary way of implementing consensus: using registers and some additional
assumptions about the way processes access these registers. More precisely, we make use of an oracle
that reveals information about the operational status of the processes accessing the shared registers.
We discuss how even an oracle that is unreliable most of time can help devise a consensus algorithm,
and hence any other object. We also discuss the implementation of such an oracle assuming that the
computing environment satisfies additional assumptions about the scheduling of the processes. This
may be viewed as a slight weakening of the wait-freedom requirement which requires progress no
matter how processes interleave their steps.

5. We then consider the question of implementing objects outof base objects that can fail. This issue can
be of practical relevance in a distributed multi-core architecture where it is reasonable to assume that
certain base objects might fail. It also abstracts the problem of implementing a highly available storage
abstraction in a storage area network where basic units (files or disks) can fail. Not surprisingly, the
general way to achieve resilience is replication, but the underlying approach depends on the failure
model. We distinguish two canonical failure models. First,we consider a failure model where a base
object that fails keeps on returning a specific value⊥ whenever it is invoked. This model is called
the responsivefailure model. Then we look at another failure model where a base object that fails
stops replying. This model is called thenon-responsivefailure model. As we will see, algorithms
that tolerate the first form of failures are usually sequential algorithms whereas those that tolerate the
second form of failures are usually parallel ones.
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6. Finally, we revisit some of the implementations given in the book by giving up the assumption that
processes do have unique identities. We study hereanonymousimplementations. We give anonymous
implementations of a weak counter object and a snapshot object based on registers.

1.5 Bibliographical notes

The fundamental notion of abstract object type has been developed in various textbooks on the theory or
practice of programming. Early works on the genesis of abstract data types were described in [4, 13, 17, 18].
In the context of concurrent computing, one of the earliest work was reported in [9, 16]. More information
on the history concurrent programming can be found in the book [3].

The notion of register (as considered in this book) and its formalization are due to Lamport [12]. A
more hardware-oriented presentation was given in [15]. Thenotion of atomicity has been generalized to any
object type by Herlihy and Wing [8] under the name linearizability. The concept of snapshot object has been
introduced in [2]. A theory of wait-free atomic objects was developed in [10].

The mutual exclusion problem has been introduced by Dijkstra [5]. The problem constituted a basic
chapter in nearly all textbooks devoted to operating systems. There was also an entire monograph solely
devoted to the mutual exclusion problem [21]. Various synchronization algorithms are also detailed in [22].

The notion of wait-free computation originated in the work of Lamport [11], and was then explored
further by Peterson [20]. It has then generalized and formalized by Herlihy [7].

The consensus problem was introduced in [19]. Its impossibility in asynchronous message-passing sys-
tems prone to process crash failures has been proved by Fischer, Lynch and Paterson in [6]. Its impossibility
in shared memory systems was proved in [14]. The universality of the consensus problem and the notion of
consensus number were investigated in [7].
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Chapter 2

Atomicity: A Correctness Property for
Shared Objects

2.1 Introduction

Before diving into how to implement shared sequential objects, we first address in this chapter the following
questions:

• What is a sequential object?

• What does it mean for a shared-object implementation to be correct? In particular, how to evaluate
correctness even when one or more processes stop their execution in the middle of an operation?

To give a flavor of the questions we address, let us consider anunbounded FIFO (first in first out) queue.
This is an object of the typequeue defined by the following two operations:

• Enq(v): Add the valuev at the end of the queue,

• Deq(): Return the first value of the queue and suppress it from the queue; if the queue is empty, return
the default value⊥.

Enq (a) Enq (c) Enq (b) Deq (a) Deq (c)

Figure 2.1: A sequential execution an a queue

Figure 2.1 describes a sequential execution of a system madeup of a single process using the queue.
The time-line, going from left to right, describes the progress of the process when it enqueues first the value
a, then the valuec, and finally the valueb. According to the expected semantics of a queue, and as depicted
by the figure, the first invocation ofDeq() returns the valuea, the second returns the valuec, etc.

Figure 2.2 depicts an execution of a system made up of two processes sharing the same queue. Now,
processp1 enqueuesa and thenb whereas processp2 concurrently enqueuesc. On the figure, the execution
of Enq(c) by p2 overlaps bothEnq(a) andEnq(b) by p1. Such execution raises the following questions:

• What values are dequeued byp1 andp2?
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p1

p2

Enq (a) Enq (b) Deq (a|b|c) ?

Deq (a|b|c) ?Enq (c)

Figure 2.2: A concurrent execution on a queue

• What values can be returned by a process if the other process has failed while executing an operation?

• What happens ifp1 andp2 share several queues instead of a single one? Etc.

Addressing these and related questions goes first through defining more precisely our model of compu-
tation.

2.2 Model

2.2.1 Processes and operations

The system we consider consists of a finite set ofn processes, denotedp1, . . . , pn. The processes execute
some common distributed computation and, while doing so, cooperate by accessingshared objects.

Processes synchronize their activities by executing operations exported by shared objects. An execution
by a process of an operation on an objectX is denotedX.op(arg)(res) wherearg andres denote respec-
tively the input and output parameters of the invocation. The output corresponds to the response to the
invocation. Sometimes we simply writeX.op when the input and output parameters are not important. The
execution of an operationop() on an objectX by a processpi is modeled by two events, namely, the events
denotedinv[X.op(arg ) by pi] that occurs whenpi invokes the operation (invocation event), and the event
denotedresp[X.op(res) by pi] that occurs when the operation terminates. (When there is noambiguity, we
talk aboutoperationswhere we should be talking aboutoperation executions.) We say that these events are
generated by the processpi and associated with the objectX. Given an operationX.op(arg)(res), the event
resp[X.op(res) by pi] is called the response event matching the invocation eventinv[X.op(arg by pi].

An execution of a distributed system induces a sequence of interactions between the processes of the
system and the shared objects. Every such interaction corresponds to a computationstepand is represented
by anevent: the visible part of a step, i.e., the invocation or the replyof an operation. A sequence of events
is called ahistoryand this is precisely how we model executions. We will detailthis later in this chapter.

As we pointed out in the introduction of the book, we generally assume that processes aresequential:
a process executes (at most) one operation of an object at a time. That is, the algorithm of a sequential
process stipulates that after an operation is invoked on an object and until a matching response is received,
the process does not invoke any other operation. The fact that processes are individually sequential does not
preclude them from concurrently invoking operations on thesame shared object. Sometimes, we will focus
onsequential executions(modeled bysequential histories) which precisely preclude such concurrency; that
is, only one process at a time invokes an operation on an object in a sequential execution.

14



2.2.2 Objects

An object has a name and a type. A type is defined by (1) the set ofpossible values for (the states of) objects
of that type; (2) a finite set of operations through which the objects of that type can be manipulated; and (3)
a specification describing, for each operation, the condition under which that operation can be invoked, and
the effect produced after it has been executed. Figure 2.3 presents a structural view of a set ofn processes
sharingm objects.

pnp1 p2

op1
1 opk

1 op1
mopℓ

2

ObjectO1 ObjectOmObjectO2

Figure 2.3: Structural view of a system

Sequential specification The object types we consider do generally have a sequential specification. We
talk both about the specification of the object or the specification of the type. A sequential specification
depicts the behavior of the object when accessed sequentially, i.e., in a sequential execution.

One can describe a sequential specification by associating two predicates with each operation. These
predicates are called pre-assertion and post-assertion. Assuming the pre-assertion is satisfied before exe-
cuting the operation, the post-assertion describes the newvalue of the object and the result of the operation
returned to the calling process. We say that an object operation is total if it is defined for every state of the
object; otherwise it ispartial. This means that, differently from the pre-assertion associated with a partial
operation, the pre-assertion associated with a total operation is always satisfied.

We also say that an object operation isdeterministicif, given any state of the object that satisfies the pre-
assertion and input parameters, the output parameters and the final state of the object are uniquely defined.
An object (resp., type) that has only deterministic operations is said to be deterministic; otherwise we say
that the object (resp., type) is non-deterministic.

Example 1: a read/write object (register) To illustrate the notion of sequential specification, we consider
here three examples object types. The first type (called the type register) is a simple read/write abstraction,
that models objects such as a shared memory word, a shared fileor a shared disk.

It has two operations:

• The operationread() has no input parameter. It returns a value of the object.

• The operationwrite(v) has an input parameter,v, a new value of the object. The result of that
operation is a valueok indicating to the calling process that the operation has terminated.
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The sequential specification of the object is defined by all the sequences of read and write operations in
which each read operation returns the value of the last preceding write operation (i.e., the last value written).
Clearly, the read and write operations are always defined: they are total operations.

The problem of implementing a concurrent read/write objectis a classical synchronization problem
known under the namereader/writerproblem.

Example 2: a FIFO queue with total operations The second example is the unbounded (FIFO) queue
described in Section 2.1. Such object has the following sequential specification: every dequeue returns
the first element enqueued and not dequeued yet. If there is not such element (i.e., the queue is empty), a
specific default value⊥ is returned. This definition never prevents an enqueue or a dequeue operation to be
executed: both enqueue and dequeue operations are total.

Example 3: a FIFO queue with a partial operation Let us consider now the previous queue definition
modified as follows: a dequeue operation can be executed onlywhen the queue is not empty. The sequential
specification of this object is then a restriction of the previous specification; all situations where a dequeue
operations returns⊥ have to be precluded. The enqueue operation can always be executed, so it remains
a total operation. On the other hand, the pre-assertion of the dequeue operation states that it can only be
executed when the queue is not empty; consequently, that operation is a partial operation.

The two FIFO queues examples (2 and 3) are two variants of a theclassicalproducer/consumersynchro-
nization problem.

Example 4: an object with no sequential specification Not all object types have a sequential specifi-
cation. To illustrate this, let us consider arendezvousobject that can be accessed by two processesp1 and
p2. Such an object provides the processes with a single operation meeting() with the following semantics:
after it has been invoked by a process, the operation terminates only when the other process has also invoked
the operation. In other words, the key property of this object is that no process can terminate an operation
without a concurrent invocation. It is easy to see that such arendezvous object has no sequential specifi-
cation: the behavior of the object cannot be described simply by stating what happens when the operation
invocations byp1 andp2 would be totally ordered. (A rendezvous object is a typical example of an object
that has no sequential specification. In this book, we are mainly interested in objects that have a sequential
specification.)

2.2.3 Histories

An execution of a set of processes accessing a set of shared objects is captured through the notion of a
history.

Representing an execution as a history of eventsProcesses interact with shared objects viainvocation
andresponseevents. We assume that simultaneous (invocation or response) events do not affect each other.
This is generally the case, in particular for events generated by sequential processes accessing objects with a
sequential specification. Therefore, without loss of generality, we can arbitrarily order simultaneous events.

This makes it possible to model the interaction between processes and objects as an ordered sequence
of eventsH, called ahistory (sometimes also called atrace). The total order relation on the set of events
induced byH is denoted<H . A history abstracts the real-time order in which the eventsdo actually occur.
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Recall that an event includes the name of an object, the name of a process, the name of an operation and
input -or output- parameters). The objects and processes associated with events ofH are said to be involved
in H.

A local history ofpi, denotedH|pi, is a projection ofH on processpi: the subsequenceH consisting
of the events generated bypi.

Equivalent histories Two historiesH andH ′ are said to beequivalentif they have the same local histories,
i.e., for eachpi, H|pi = H ′|pi. That is, equivalent histories cannot be distinguished by any process.

Well-formed histories As we are interested only in histories generated by sequential processes, we restrict
our attention to the historiesH such that, for each processpi, H|pi (the local history generated bypi) is
sequential: it starts with an invocation, followed by a response, called the matching response and associated
with the same object, followed by another invocation, etc. We say in this case thatH is well-formed.

Complete vs incomplete histories An operation is said to becompletein a history if the history includes
both the event corresponding to the invocation of the operation and its response. Otherwise we say that the
operation ispending. A history without pending operations is said to becomplete. A history with pending
operations is said to beincomplete. Note that, being sequential, a process can have at most one pending
operation in a given history.

Partial order on operations A history H induces an irreflexive partial order on its operations as follows.
Let op = X.op1() by pi andop′ = Y.op2() by pj be two operations. Informally, operationop precedes op-
erationop′, if op terminates beforeop′ starts, where “terminates” and “starts” refer to the time-line abstracted
by the<H total order relation. More formally:

(
op→H op′

) def
=

(
resp[op] <H inv[op′]

)
.

Two operationsop andop′ are said tooverlap (we also say areconcurrent) in a historyH if neither
resp[op] <H inv[op′], nor resp[op′] <H inv[op]. Notice that two overlapping operations are such that
¬(op →H op′) and¬(op′ →H op). As a sequential history has no overlapping operations, it follows that
→H is a total order ifH is a sequential history.

Illustrating histories Figure 2.4 depicts a well-formed historyH. The history comprises ten events
e1 . . . e10 (e4, e6, e7 ande9 are explicitly detailed). As all the events inH are on the same object, its
name is omitted. The enqueue operation issued byp2 overlaps both enqueue operations issued byp1. No-
tice that the operationEnq(c) by p2 is concurrent with bothEnq(a) andEnq(b) issued byp1. Moreover,
the historyH has no pending operations, and is consequently complete.

To illustrate the notions of incomplete and complete histories, let us again consider Figure 2.4. The
sequencee1 . . . e9 is an incomplete history where the dequeue operation issuedby p1 is pending. The
sequencee1 . . . e6 e7 e8 e10 is another incomplete history in which the dequeue operation issued byp2 is
pending. Finally, the historye1 . . . e8 has two pending operations. Now we are ready to define what we
mean by asequentialhistory.
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p1

p2

e1 e2 e3 e5 e8 e10History Ĥ

e4 = inv[Enq(b) by p1]

e6 = resp[Enq(ok) by p1]

e9 = resp[Deq(?) by p2]

e7 = inv[Deq() by p2]

Enq (a) Enq (b) Deq (a|b|c) ?

Deq (a|b|c) ?Enq (c)

Figure 2.4: Example of a history

2.2.4 Sequential history

Definition A history is sequentialif its first event is an invocation, and then (1) each invocation event,
except possibly the last, is immediately followed by the matching response event, and (2) each response
event, except possibly the last, is immediately followed byan invocation event. The sentence “except
possibly the last” associated with an invocation event is due to the the fact that a history can be incomplete. A
complete sequential history always ends with a response event. A history that is not sequential isconcurrent.

A sequential history models a sequential multiprocess computation (there are no overlapping operations
in such a computation), while a concurrent history models a concurrent multiprocess computation (there
are at least two overlapping operations in such a computation). Given that a sequential historyS has no
overlapping operations, the associated partial order→S defined on its operations is actually a total order.

Strictly speaking, the sequential specification of an object is a set of sequential histories involving solely
that object. Basically, the sequential specification represents all possible sequential accesses to the object.

Example Considering Figure 2.4,H is a complete concurrent history. On the other hand, the complete
history

H1 = e1 e3 e4 e6 e2 e5 e7 e9 e8 e10

is sequential: it has no overlapping operations. We can thushighlight its sequential nature by separating its
operations using square brackets as follows:

H1 = [e1 e3] [e4 e6] [e2 e5] [e7 e9] [e8 e10].

The following historiesH2 andH3

H2 = [e1 e3] [e4 e6] [e2 e5] [e8 e10] [e7 e9],
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H3 = [e1 e3] [e4 e6] [e8 e10] [e2 e5] [e7 e9].

are also sequential. Let us also notice that historiesH, H1, H2, H3 are equivalent. LetH4 be the history
defined as follows

H4 = [e1 e3] [e4 e6] [e2 e5] [e8 e10] [e7.

H4 is an incomplete sequential history. All these histories have the same local history for processp1:
H|p1 = H1|p1 = H2|p1 = H3|p1 = H4|p1 = [e1 e3] [e4 e6] [e8 e10], and, as farp2 is concerned,H4|p2

is a prefix ofH|p2 = H1|p2 = H2|p2 = H3|p2 = [e2 e5] [e7 e9].

So far, we defined the notion of a history as an abstract way to depict the interaction between a set of
processes and a set of shared objects. In short, a history is atotal order on the set of invocation and response
events generated by the processes on the objects. We are now ready to define what we mean by a correct
shared-object implementation, based on the notion of aatomic(or linearizable) history.

2.3 Atomicity

This section introduces the correctness condition calledatomicity(or linearizability). The aim of atomicity
is to transform the difficult problem of reasoning about a concurrent execution into the simpler problem of
reasoning about a sequential one.

Intuitively, atomicity states that a history is correct if its invocation and response events could have been
obtained, in the same order, by a single sequential process.In an atomic (also called linearizable) history,
each operation has to appear as if it has been executed alone and instantaneously at some point between its
invocation event and its response event. This section defines formally the atomicity concept and presents its
main properties.

2.3.1 Legal history

As we pointed out earlier, shared objects that are usually considered in programming typically have a se-
quential specification defining their semantics. Not surprisingly, a definition of what is a “correct” history
has to refer in one way or another to sequential specifications. The notion oflegalhistory captures this idea.

Given a sequential historyS, let S|X (S at X) denote the subsequence ofS made up of all the events
involving objectX. We say that a sequential historyS is legal if, for each objectX, the sequenceS|X
belongs to the sequential specification ofX. In a sense, a history is legal if it could have been generatedby
processes sequentially accessing objects.

2.3.2 The case of complete histories

We first define in this section atomicity for complete historiesH, i.e., histories without pending operations:
each invocation event ofH has a matching response event inH. The section that follows will extend this
definition to incomplete histories.

Definition A complete historyH is atomic(or linearizable) if there is a “witness” historyS such that:

1. H andS are equivalent,

2. S is sequential and legal, and
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3. →H⊆→S .

The definition above states that for a historyH to be linearizable, there must exist a permutation ofH,
S (witness history), which satisfies the following requirements. First,S has to be indistinguishable fromH
to any process [item 1]. Second,S has to be sequential (interleave the process histories at the granularity
of complete operations) and legal (respect the sequential specification of each object) [item 2]. Notice that,
asS is sequential,→S is a total order. Finally,S has also to respect the real-time occurrence order of the
operations as defined by→H [item 3]. S represents a history that could have been obtained by executing
all the operations, one after the other, while respecting the occurrence order of non-overlapping operations.
Such a sequential historyS is called alinearizationof H.

When proving that an algorithm implements an atomic object,we need to prove that all histories gener-
ated by the algorithm are linearizable, i.e., identify a linearization of its operations that respects the “real-
time” occurrence order of the operations and that is consistent with the sequential specification of the object.

It is important to notice that the notion of atomicity includes inherently a form of nondeterminism. A
historyH, may allow for several linearizations.

Linearization: an example Let us consider the historyH described in Figure 2.4 where the dequeue
operation invoked byp1 returns the valueb while the dequeue operation invoked byp2 returns the value
a. This means that we havee9 = resp[Deq(a) by p2] ande10 = resp[Deq(b) by p1]. To show that this
history is linearizable, we have to exhibit a linearizationsatisfying the three requirements of atomicity. The
reader can check that historyH1 = [e1 e3] [e4 e6] [e2 e5] [e7 e9] [e8 e10] defined in Section 2.2.4 is such a
witness. At the granularity level defined by the operations,witness historyH1 can be represented as follows

[Enq(a) by p1][Enq(b) by p1][Enq(c) by p2][Deq(a) by p2][Deq(b) by p1].

This formulation highlights the intuition that underlies the definition of the atomicity concept.

Linearization points The very existence of a linearization of an atomic historyH means that each op-
eration ofH could have been executed at an indivisible instant between its invocation and response time
events (while providing the same result asH). It is thus possible to associate alinearization pointwith each
operation of an atomic history. This is a point of the time-line at which the corresponding operation could
have been “instantaneously” executed according to its legal linearization.

To respect the real time occurrence order, the linearization point associated with an operation has always
to appear within the interval defined by the invocation eventand the response event associated with that
operation.

Example Figure 2.5 depicts the linearization point of each operation. A triangle is associated with each
operation, such that the vertex at the bottom of a triangle (bold dot) represents the associated linearization
point. A triangle shows how atomicity allows shrinking an operation (the history of which takes some
duration) into a single point of the time-line.

In that sense, atomicity reduces the difficult problem of reasoning about a concurrent system to the
simpler problem of reasoning about a sequential system where the operations issued by the processes are
instantaneously executed.

As a second example, let us consider the complete history depicted in Figure 2.5 where the response
eventse9 ande10 are such thate9 = resp[Deq(b) by p2] ande10 = resp[Deq(a) by p1]. It is easy to
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p1

p2

e10e9e8e7e6e5e4e3e2e1History Ĥ

Enq (a) Enq (b) Deq (b)

Deq (a)Enq (c)

Figure 2.5: Linearization points

see that this history is linearizable: the sequential history H2 described in Section 2.2.4 is one possible
linearization. Similarly, the history wheree9 = resp[Deq(c) by p2] ande10 = resp[Deq(a) by p1] is also
linearizable. It has the following sequential witness history:

[Enq(c) by p2][Enq(a) by p1][Enq(b) by p1][Deq(c) by p2][Deq(a) by p1].

On the other hand, the history in which the two dequeue operations would return the same value is not
linearizable: it does not have any witness history which respects the sequential specification of the queue.

2.3.3 The case of incomplete histories

We show here how to extend the definition of atomicity to partial histories. As we explained, these are
histories with at least one process whose last operation is pending: the invocation event of this operation
appears in the history while the corresponding response event does not. The historyH4 described in Section
2.2.4 is such a partial history. Extending atomicity to partial histories is important as it allows to cope with
process crashes.

Definition A partial historyH is linearizable ifH can becompleted, i.e., modified in such a way that
every invocation of a pending operation is either removed orcompleted with a response event, so taht the
resulting (complete) historyH ′ is linearizable.

Basically, we reduce the problem of determining whether an incomplete historyH is linearizable to
the problem of determining whether a complete historyH ′, extracted fromH, is linearizable. We obtain
H ′ by adding response events to certain pending operations ofH, as if these operations have indeed been
completed, but also removing invocation events from some ofthe pending operations ofH. We require
however that all complete operations ofH be preserved inH ′. It is important to notice that, given a history
H, we can extract several historiesH ′ that satisfy the required conditions.

Example Consider Figure 2.6 where we depict two processes accessinga shared register. Processp1 first
writes the value0. The same process later issues a write for the value1, but p1 crashes during this second
write (this is indicated by a cross on its time-line). Processp2 executes two consecutive read operations. The
first read operation lies between the two write operations ofp1 and returns the value0. A different value
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Read(0) Read(v)

Ĥ1

Ĥ0

p1

p2

Write(0) Write(1)

Figure 2.6: Two ways of completing a history

would clearly violate atomicity. The situation is less obvious with the second value and it is not entirely
clear what valuev has to be returned by the second read operation in order for the history to be linearizable?

As we now explain, both values0 and1 can be returned by that read operation while preserving atomic-
ity. The second write operation is pending in the incompletehistoryH modeling this execution. This history
H is made up of 7 events (the name of the object and process namesare omitted as there is no ambiguity),
namely:

inv[write(0)] resp[write(0)] inv[read(0)] resp[read(0)] inv[read(v)] inv[write(1)] resp[read(v)].

We explain now why both0 and1 can be returned by the second read:

• Let us first assume that the returned valuev is 0.
We can associate with historyH a legal sequential witness historyH0 which includes only complete
operations and respects the partial order defined byH on these operations (see Figure 2.6). To obtain
H0, we construct historyH ′ by removing fromH eventinv[write(1)]: we obtain a complete history,
i.e., without pending operations.

History H with v = 0 is consequently linearizable. The associated witness history H0 models the
situation wherep1 is considered as having crashed before invoking the second write operation: every-
thing appears as if this write has never been issued.

• Let us now assume that the returned valuev is 1.
Similarly to the previous case, we can associate with history H a witness legal sequential historyH1

that respects the partial order on the operations. We actually deriveH1 by first constructingH ′, which
we obtain by adding toH the response eventres[write(1)]. (In Figure 2.6, the part added toH in
order to obtainH ′ -from whichH1 is constructed- is indicated by dotted lines).

The history wherev = 1 is consequently linearizable. The associated witness history H1 represents
the situation where the second write is taken into account despite the crash of the process that issued
that write operation.
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2.4 Locality

This section presents an inherent property of atomicity that makes it particularly attractive. (Another impor-
tant property of atomicity, namelynon-blockingness, is discussed in the next chapters.)

2.4.1 Local properties

Let P be any property that is on a set of objects. The propertyP is said to belocal if the set of objects as a
whole satisfiesP whenever each object taken alone satisfiesP .

Locality is an important concept that promotes modularity.Consider some local propertyP . To prove
that an entire set of objects satisfyP , we only have to ensure that each object -independently fromthe others
satisfiesP . As a consequence, propertyP can be implemented on a per object basis. At one extreme, it
is even possible to design an implementation where each object has its own algorithm implementingP . At
another extreme, all the objects (whatever their types) might use the same algorithm to implementP (each
object using its own instance of the algorithm).

2.4.2 Atomicity is a local property

Intuitively, the fact that atomicity is local comes from thefact that (1) it considers that each operation is on
single object, and (2) it involves the real-time occurrenceorder on non-concurrent operations whatever the
objects and the processes concerned by these operations. Wewill rely on these two aspects in the proof of
the following theorem.

Theorem 1 A historyH is atomic (linearizable) if and only if, for each objectX involved inH, H|X is
atomic (linearizable).

Proof The “⇒” direction (only if) is an immediate consequence of the definition of atomicity: if H is
linearizable then, for each objectX involved inH, H|X is linearizable. So, the rest of the proof is restricted
to the “⇐” direction. We also restrict the rest of the proof to the casewhereH is complete, i.e.,H has no
pending operation. This is without loss of generality, given that the definition of atomicity for an incomplete
history is derived from the definition of atomicity for a complete history.

Given an objectX, let SX be a linearization ofH|X. It follows from the definition of atomicity thatSX

defines a total order on the operations involvingX. Let→X denote this total order. We construct an order
relation→ defined on the whole set of operations inH as the union{

⋃
X →X}∪ →H , i.e.:

1. For each objectX: →X ⊆ →,

2. →H ⊆ →.

Basically, “→” totally orders all operations on the same objectX, according to→X (item 1), while preserv-
ing→H , i.e., the real-time occurrence order on the operations (item 2).
Claim.→ is acyclic.

The claim implies that a transitive closure of→ indeed defines a partial order on the set of all the op-
erations ofH. Since any partial order can be extended to a total order, we construct a sequential historyS
including all events ofH and respecting→. By construction, we have→⊆→S where→S is the total order
on the operations defined fromS. We have the three following conditions: (1)H andS are equivalent (2)S
is sequential (by construction) and legal (due to item 1 above); and (3)→H⊆→S (due to item 2 above and
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the fact that→⊆→S). It follows thatH is linearizable.

Proof of the claim. We show (by contradiction) that→ is acyclic. Assume first that→ induces a cycle
involving the operations on a single objectX. Indeed, as→X is a total order, in particular transitive, there
must be two operationsopi andopj on X such thatopi →X opj andopj →H opi. But opi →X opj ⇒
inv[opi] <H resp[opj] becauseX is linearizable. Given thatopj →H opi ⇒ resp[opj] <H inv[opi],
which establishes the contradiction as<H is a total order on the whole set of events.

It follows that any cycle must involve at least two objects. To obtain a contradiction we show that, in
that case, a cycle in→ implies a cycle in→H (which is acyclic). Let us examine the way the cycle could be
obtained. If two consecutive edges of the cycle are due to just some→X or just→H , then the cycle can be
shortened as any of these relations is transitive. Moreover, opi →X opj →Y opk is not possible forX 6= Y ,
as each operation is on only one object (opi →X opj →Y opk would imply thatopj is on bothX andY ).
So let us consider any sequence of edges of the cycle such that: op1→H op2→X op3 →H op4. We have:

- op1→H op2⇒ resp[op1] <H inv[op2] (definition ofop1→H),
- op2→X op3⇒ inv[op2] <H resp[op3] (asX is linearizable),
- op3→H op4⇒ resp[op3] <H inv[op4] (definition ofop1→H).

Combining these statements, we obtainresp[op1] <H inv[op4] from which we can conclude thatop1→H

op4. It follows that any cycle in→ can be reduced to a cycle in→H . A contradiction as→H is an irreflexive
partial order.End of the proof of the claim. 2Theorem 1

Considering an execution of a set of processes that access concurrently a set of objects, atomicity allows
reasoning as as the operations issued by the processes on theobjects were executed one after the other. The
previous theorem is fundamental. It states that when one hasto reason on sequential processes that access
concurrent atomic objects, one can reason on a per object basis, without loosing the atomicity property on
the whole computation.

2.5 Alternatives to atomicity

This section discusses alternatives to atomicity, namely,sequential consistencyandserializability.

2.5.1 Sequential consistency

Overview Atomicity stipulates that the witness sequential historyS for a given historyH should respect
the partial order relation→H on operations inH (also called the real-time order). Any two operationsop
andop′ suchop →H e′ should appear in that order in the witness historyS, irrespective of the processes
invoking them and the objects on which they are performed.

A relaxation of atomicity, calledsequential consistencyonly requires that the real-time order is preserved
if the operations are invoked by the same process, i.e.,S is only supposed to respect theprocess-order.

Definition The definition of the sequential consistency correctness condition reuses the notions of history,
sequential history, complete history, as in Section 2.2. Tosimplify the presentation and without loss of
generality, we only consider complete histories (with no pending operations).

A history H is sequentially consistentif there is a “witness” historyS such that:

1. H andS are equivalent,

2. S is sequential and legal. respect process-order).
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To illustrate sequential consistency, let us consider Figure 2.7. There are two processesp1 andp2 that
share a queueQ. At the operation level, the local history ofp1 comprises a single operation,Q.Enq(a),
while the local history ofp2 comprises two operations, firstQ.Enq(b) and thenQ.Deq(b). The reader can
easily verify that this history is not atomic: as all the operations are totally ordered according to real-time,
theQ.Deq() operation issued byp2 should return the valuea whose enqueuing was terminated before the
enqueuing ofa has started. However, the history is sequentially consistent: The sequential history (described
at the operation level)

S = [Q.Enq(b) by p2][Q.Enq(a) by p1][Q.Deq(b) by p2]

is legal and respects the process-order relation.
Both consistency criteria, atomicity and sequential consistency, require a witness sequential history, but

sequential consistency has no requirement related to the occurrence order of operations issued by different
processes (and captured by the real-time order). It can be seen as based only on a logical time (the one
defined by the witness history).

Q.Enq(a)

Q.Enq(b) Q.Deq(b)

p1

p2

Figure 2.7: A sequentially consistent history

Atomicity vs sequential consistency Clearly, any linearizable history is also sequentially consistent. As
shown by the example of Figure 2.7 however, the contrary is not true. It is then natural to ask whether
sequential consistency is not good enough to reason about correctness of concurrent implementations.

A drawback of sequential consistency is that it is not a localproperty. To illustrate this, consider the
counter-example described in Figure 2.8. HistoryH involves two processes accessing two concurrent queues
Q andQ′. It is easy to see that, when we consider each object in isolation, we obtain the historiesH|Q and
H|Q′ that are sequentially consistent. Unfortunately, there isno way to witness a legal total orderS that
involves the six operations: ifp1 dequeuesb′ from Q′, Q′.enq(a′) has to be ordered afterQ′.enq(b′) in
a witness sequential history. But this means that (to respect process-order)Q.enq(a) by p1 is necessarily
ordered beforeQ.enq(b) by p2: consequentlyQ.Deq() by p2 should returnsa for S to be legal. A similar
reasoning can be done starting from the operationQ.Deq(b) by p2. It follows that there can be no legal
witness total order: even thoughH|Q andH|Q′ are sequentially consistent, the whole historyH is not.

2.5.2 Serializability

Overview Both atomicity and sequential consistency guarantee that operations appear to execute instan-
taneously at some point of the time line. The difference is that atomicity requires that, for each operation,
this instant lies between the occurrence times of the invocation and response events associated with the
operation, which is not the case for sequential consistency.
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Q.Enq(a) Q′.Enq(b′) Q′.Deq(b′)

Q′.Enq(a′) Q.Enq(b) Q.Deq(b)

p1

p2

Figure 2.8: Sequential consistency is not a local property

Sometimes, it is important to ensure thatgroupsof operations appear to execute as if they have been
executed without interference with any other group of operations. The concept oftransactionis then the
appropriate abstraction that allows grouping operations.

A transaction is a sequence of operations that might complete successfully (commit) or abort. In short,
the execution of a set of concurrent transactions is correctif committed transactions appear to execute at
some indivisible point in time and aborted transactions do not appear to have been executed at all. This
correctness criteria is calledserializability (sometimes it is also called atomicity). The point (again) is to
reduce the difficult problem of reasoning about concurrent transactions into the easier problem of reasoning
about transactions that are executed one after the other. For instance, if some invariant predicate on the
set of shared objects is preserved by every individual committed transaction, then it will be preserved by a
serializable execution of transactions.

Definition To define serializability, the notion of history needs to revisited. Events are now associated with
objects and transactions. In short, processes are replacedby transactions. For each transaction, in addition to
the invocation and response events, two new events come intothe picture:commitandabort events. These
are associated with transactions. At most one such event is associated with every transaction in a history. A
transaction without such event is called pending; otherwise the transaction is said to be complete (committed
or aborted). Adding a commit (resp., abort) event after all other events of a pending transaction is called
committing (resp., aborting) the transaction. A sequential history is a sequence of committed transactions.
We say that a history is complete if all its transactions are complete.

Let H be a complete history.H is serializableif there is a “witness” historyS such that:

1. For each transactionT , S|T = H|T .

2. S is sequential and legal, and

LetH be a history that is not complete.H is serializableif we can derive fromH a complete serializable
historyH ′ by completing or removing pending transactions fromH.

Atomicity vs serializability Again, correctness is defined according to the equivalence to a witness se-
quential history. No real-time ordering is required. In this sense, serializability can be viewed as the exten-
sion of sequential consistency to several operations. Likesequential consistency, serializability is not a local
property either. Replacing in Figure 2.8 processes with transactions gives a counter-example that proves
that.
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2.6 Summary

We introduced in this chapter the basic elements that are needed to reason about executions of a distributed
system made up of concurrent processes interacting throughshared objects. More specifically, we introduced
the elements that are needed to introduce the atomicity concept.

The fundamental element is that of a history: a sequence of events depicting the interaction between
processes and objects. An event represents the invocation of an object or the return of a response. A history
is atomic if, despite concurrency, it appears as if processes access the objects of the history in a sequential
manner. In this sense, the correctness of a concurrent computation is judged with respect to a sequential
behavior, itself determined by the sequential specification of the objects.

2.7 Bibliographic notes

The notion of atomic read/write objects (registers), as studied here, has been investigated and formalized by
Lamport [12] and Misra [15]. The generalization of the atomicity consistency condition to objects of any
sequential type has been developed by Herlihy and Wing underthe name linearizability [8].

The notion of sequential consistency has been introduced byLamport [28]. The relation between atom-
icity and sequential consistency was investigated in [24] and [30] where it was shown that, from a protocol
design point of view, sequential consistency can be seen as alazy linearizability. Examples of protocols
implementing sequential consistency can be found in [23, 24, 31].

The concept of transactions is part of every textbook on database systems. Books entirely devoted
to transactions are [25, 26, 27]). The theory of serializability was the main topic of the following books
[26, 29].

27



28



Chapter 3

Wait-freedom: A Progress Property for
Shared Object Implementations

3.1 Introduction

The previous chapter focused on theatomicityproperty of shared objects.This property requires operations
to appear as if executed one after the other. Basically, atomicity stipulates that certain behaviors should be
precluded, namely those that do not hide concurrent operation executions on the same object.

Atomicity is a safetyproperty. It states what shouldnot happen in an execution involving processes
and shared objects (namely, an execution that is not linearizable must never happen). Clearly, this could be
achieved by a trivial algorithm that would not return any operation of the object to be implemented, i.e., one
that would never return any result: an empty history would bea trivial linearization of every execution of
this algorithm.

However, one would also require the implemented shared object to also perform its operations when
it is asked to do so by an application process making use of that object. In other words, one would also
require that the algorithm implementing the object satisfies someprogressproperty. Not surprisingly, this
also depends on the process invoking the operation and in particular on how this process is scheduled by the
operating system.

For instance, if a process invokes an operation and immediately crashes or is paged out by the operating
system, then it makes little sense to require that the process obtains a reply matching its invocation. In fact,
one might require that the shared object satisfies some progress property, provided that the process invoking
an operation on the shared object is scheduled by the underlying operating system to execute enough steps
of the algorithm implementing that operation. Performing such steps reflect the ability of the process to
invoke primitives objects used in the implementation in order to eventually obtain a reply to the high-level
operation being implemented.

One might, for example, require that if a process invokes an operation and keeps executing steps of
the algorithm implementing the operation, then the operation eventually terminates and the process obtains
a reply. Sometimes one might even require that, after invoking an operation, the process should obtain a
response to the operation withinb steps of the process.

To express such requirements, we need to carefully define thenotion of objectimplementationand
zoom into the way processes execute the algorithm implementing the object, in particular how their steps
are scheduled by the operating system. We will in particularintroduce the notion ofimplementation history:
this is alower levelnotion than that describing the interaction between the processes and the object being
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implemented (previous chapter). Accordingly, the first is called ahigh level historywhereas the second is
called alow level history. This will be used to introduce progress properties of shared object implementa-
tions, the strongest of these beingwait-freedom.

We will focus on asingleobject implementation. As discussed in Chapter 1, when implementing atomic
objects, it is enough to consider each object separately from the other objects. This is because the atomicity
consistency criterion is a local property (i.e. the composition of objects, that individually satisfy atomicity,
provides a system that, as a whole, does satisfy the atomicity consistency criterion).

3.2 Implementation

3.2.1 High Level Object and Low Level Object

To distinguish the shared object to be implemented from the underlying objects used in the implementation,
we typically talk about ahigh levelobject and underlyinglow levelobjects. (The latter are sometimes also
calledbaseobjects.) Similarly, to disambiguate, we will talk aboutprimitives instead of operations as far
as low level objects are concerned. That is, a process invokes operationson a high level object and the
implementation of these operations requires the process toinvoke primitives of the underlying low level
objects. When a process invokes such a primitive, we say thatthe process performs astep.

The very notions of high level and low level are relative and depend on the actual implementations. An
object type might be considered high level in a given implementation and low level in another one. The
object to be implemented is the high level one and the objectsused in the implementation are the low level
ones. In general, the intuition is that the low level objectsmight typically capture basic synchronization ab-
stractions provided in hardware whereas the high level onesare those we want to emulate in software (what
we call implement). Such emulations are strongly motivated by the desire to facilitate the programming of
concurrent applications, i.e. to provide the programmer with powerful synchronization abstractions encap-
sulated by high-level objects. Another motivation is to reuse programs initially devised with the high level
object in mind in a system that does not provide such an objectin hardware. Indeed, multiprocessor ma-
chines do not all provide the same basic synchronization abstractions. For instance, some modern machines
provide compare&swap as a base object in hardware. Others do not and might provide insteadtest&set

or simply some form ofregisters. Providing an implementation ofcompare&swap usingtest&set would,
for instance, make it possible to directly reuse, within an old machine, an application written for a modern
machine.

An example is detailed in Figure 3.2 (Section 3.4.2) that describes the implementation of a FIFO queue
(the high level object) from atomic low level objects denoted NEXT , Q[1], Q[2], etc. The low level object
NEXT provides the processes with the primitivesfetch&add() andread(), while eachQ[i] low level object
provides the processes with the primitivesswap() andwrite(). So, a high level history is made up ofEnq()
andDeq() operations, while a low level history is made up of invocations of the primitivesfetch&add()
andread() on the low level objectNEXT , andswap() andwrite() on the low level objectsQ[x]. This is
schematically represented in the Figure 3.1.

Sometimes the low level objects are assumed to be atomic, andsometimes not. As shown later in the
book, it is sometimes useful to first implement intermediateobjects that are not atomic, then implement the
desired high level atomic objects on top of them.
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Deq() by p3

High level history

Low level history

Enq(a) by p1 Enq(b) by p2

Primitive invocations on low level objects generated by thethe invocationEnq(a) issued byp1

Primitive invocations on low level objects generated by thethe invocationDeq() issued byp3

Primitive invocations on low level objects generated by thethe invocationEnq(b) issued byp2

Figure 3.1: High level and low level histories

3.2.2 Zooming into histories

When reasoning about the atomicity of an object to be implemented, i.e., a high-level object, the executions
of the processes accessing the object are represented with histories. As defined in the previous chapter,
a history is a sequence of events, each representing an invocation or a reply on the high-level object in
question.

History of an implementation Reasoning about progress properties requires to zoom into the invocations
and replies of the lower level objects on top of which the highlevel object is built. Hence,lower level
histories are needed that depict events at the interface between the processes and the low level objectsused
in the implementation, i.e., the primitive events. Withoutsuch a zooming, it is not possible, for instance,
to distinguish a process that crashes right after invoking ahigh level object operation and stops invoking
low-level objects, from one that keeps executing the algorithm implementing that operation and invoking
primitives of low level objects. We might want to require that the later obtains a matching reply and exempt
the former from having to obtain a reply. So, when we talk about the history of an implementation, we
implicit assume such a low level history, which is a refinement of the higher level history involving only the
invocations and replies of the high level object to be implemented.

Considering the example of a FIFO high level object developed in Section 3.4.2, a high level history is
a sequence built from invocation and reply events associated to operationsEnq() andDeq(), while a low
level history (or implementation history) is a sequence built from the primitivesfetch&add() and read()
associated with theNEXT low level object, and the primitivesswap() andwrite() associated with each
Q[i] low level object, that are generated from the invocations oftheEnq() andDeq() operations.

The two faces of a process To better understand the very notion of a low level history, it is important to
distinguish the two roles of a process. On the one hand, a process has the role of aclient that sequentially
invokes operations on the high level object and receives replies. On the other hand, the process has also the
role of aserverimplementing the operations. While doing so, the process invokes primitives on lower level
objects in order to obtain a reply to the high-level invocation.

It might sometimes be convenient to think of the two roles of aprocess as executed by different entities.
As a client, a process invokes object operations but does notcontrol the way the low level primitives imple-
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menting these operations are executed. It even does not knowhow an object operation is implemented. Dif-
ferently, as a server, a process executes the algorithm (made up of invocations of low level object primitives)
associated with the high level object operation. Such an algorithm is typically described by an automaton
(possibly with an unbounded number of states). The execution of a low level object primitive is called astep
and it typically represents an atomic unit of computation.

Scheduling and asynchrony The interleaving of steps in an implementation is specified by a scheduler
(itself part of an operating system). This is outside of the control of processes and, in our context, it is
convenient to think of a scheduler as anadversary. This is because, when devising a distributed algorithm,
one has to cope with worst-case strategies of a scheduler that could defeat the algorithm.

Strictly speaking, a process is said to becorrect in a low-level history when it executes an infinite
number of steps, i.e., when the scheduler schedules an infinite steps of that process. This “infinity” notion
models the fact that the process executes as many steps as needed by the implementation. Otherwise, the
process is said to befaulty. Sometimes it is convenient to see a faulty processes as a process that crashes
and prematurely quits the computation. In the context of this book, we assume that processes might indeed
crash and permanently stop performing steps but do not deviate from the algorithm assigned to them. In
other words, they are not malicious (we also say they are not Byzantine).

Unless explicitly stated otherwise, the system is assumed to be asynchronouswhich means that the
relative speeds of the processes are unbounded: for anyΦ there is an execution in which a process takesΦ
steps while another not crashed process takes only one step.Basically, an asynchronous system progresses
is controlled by a very weak scheduler, i.e., a scheduler whose only restriction lies in the fact that it cannot
prevent forever a correct (never crashing) process from executing steps.

3.3 Progress properties

As pointed out above, a trivial way to ensure atomicity wouldbe to do nothing, i.e., not return any reply to
any operation invocation. This would preclude any history that violates linearizability by simply precluding
any history with a reply.

Besides this (clearly, meaningless) approach, a popular way to ensure atomicity is to usecritical sections
(say usinglocks), preventing concurrent accesses to the same object. In thesimplest case, every operation
on a shared object is executed as a critical section. When a process invokes an operation on an object, it first
requests the corresponding lock, and the algorithm of the operation is executed by the process only when
the lock is acquired. If the lock is not available, the process waits until the lock is released. After a process
obtains the reply to an operation, it releases the corresponding lock.

As we discussed in the introduction of this book, such an implementation of a shared object has an
inherent drawback: the crash of the process holding the lockon an object prevents any other . In practice,
this might correspond to the situation where the process holding the lock is preempted for a long period of
time, and all processes contending on the same object are blocked. When processes are asynchronous (i.e.,
the scheduler can arbitrarily preempt processes) which is the default assumption we consider, there is no
way for a process to know whether another process has crashed(or was preempted for a long while) or is
only very slow.

This book focuses on shared object implementations with progress properties that preclude the use of
critical sections and locks. Informally, we say an implementation is lock-based if it allows for a situation in
which a process running in isolation from some point on is never able to complete its operation. Taking a
negation of this property, we state that an implementation does not employ locks if starting after any finite
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execution, every process can complete its operation in a finite number of its solo steps. Intuitively, this
property, calledobstruction-freedom(or solo termination), must be satisfied by any implementation where
the crash of some processes does not prevent other processesfrom making progress. Several such progress
properties, including obstruction-freedom, are presented below.

3.3.1 Solo, partial and global termination

• Obstruction-freedom (also calledSolo termination). An implementation of a concurrent object is
obstruction-free, if any of its operations is guaranteed toterminate if it is eventually executed without
concurrency (assuming that the invoking process does not crash1).

An operation is “eventually executed without concurrency”if there is a time after which the only
process to take steps is the process that invoked that operation. Note that this does not prevent other
processes from having started and not yet finished operations on the same object (this is for example
the case of a process that crashed in the middle of an operation on the object).

Note that obstruction-freedom allows executions in which several processes invoking operations on
the same object forever contend on the internal representation of the object without terminating.

As we observed earlier, obstruction-freedom precludes theuse of locks.

• Non-blockingness. This is apartial terminationproperty that is strictly stronger than obstruction-
freedom. It states the following: despite asynchrony and process crashes, if several processes execute
operations on the same object and do not crash, at least one ofthem terminates its operation.

So, non-blocking meansdeadlock-freedomdespite asynchrony and crashes.

• Wait-freedom. This is aglobal terminationproperty that states the following: despite asynchrony and
process crashes, any process that executes an operation on the object (and does not crash), terminates
its operation [7]. Wait-freedom is strictly stronger than non-blockingness.

So, wait-freedom meansstarvation-freedomdespite asynchrony and crashes.

3.3.2 Bounded termination

Wait-freedom, the strongest among the liveness propertiesconsidered above, does not stipulate a bound on
the number of steps that a process needs to execute before obtaining a matching reply when it invokes a
high level object operation. Typically, this number can depend on the behavior of the other processes. For
example, it can be small if no other process performs any step, and increases when all processes perform
steps (or the opposite), while remaining always finite, regardless of the number and timing of crashes.

• An implementation satisfies thebounded wait-free property if there is a boundB such that in any
low level history every processp that invokes an operation receives a matching reply withinB of its
own steps. (TheB steps ofp are not required to be consecutive.)

In other words, there is no prefix of a low level history in which a process invokes an operation and
executesB steps without obtaining a matching reply.

Showing that an implementation is bounded wait-free consists in exhibiting an upper bound on the
number of steps needed to return from any operation. That upper bound is usually defined by a functionf()

1Let us recall that “a process does not crash” means that “it executes an infinite number of steps”.
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on the number of processes (e.g.,O(n2)). One can similarly define notions like bounded solo or bounded
partial termination.

3.4 Atomicity and wait-freedom

Just as it is meaningless to ensure atomicity alone, withoutany progress guarantee, it is also meaningless to
ensure any progress guarantee alone. Meaningful implementations are those that ensure both: ideal ones are
those that ensure atomicity and wait-freedom.

Before diving into such implementations in the next chapters, it is important to ask whether every atomic
object has an implementation that ensures wait-freedom andatomicity. In fact, it is easy to see that this would
not be the case for objects withpartial operations (previous chapter). By definition, the progressof such
operations may depend on concurrent invocations of other operations. That is, if an object’s specification
requires that a process does not return from an operation unless some other process completes some other
operation first, then it would be impossible to come up with even a solo-terminating implementation of
this object, regardless of how powerful underlying base objects are. As we discuss below however, an
implementation that ensures wait-freedom and atomicity isalways possible for objects withtotal operations.

3.4.1 Operation termination and atomicity

Besides being alocal property, which we discussed in the previous chapter, atomicity is alsonon-blocking,
meaning that a pending invocation of a total operation is never required to wait for another operation to
complete and yet preserve atomicity. This property has a fundamental consequence. It means that, per se,
atomicity never forces a pending total operation to block. In other words, atomicity,per se, cannot prevent
wait-freedom. Blocking (or even deadlock and starvation) can occur as an artifact of a particular implemen-
tation of atomicity, but is not inherent to atomicity. The following theorem captures this idea by stating that
any (linearizable) history with a pending operation invocation can be extended with a reply to that operation.

Theorem 2 Let inv[op(arg)] be the invocation event of a total operation that is pending in a linearizable
historyH. There exist a matching reply eventresp[op(res)] such that the historyH ′ = H.resp[op(res)] is
linearizable.

Proof Let S be a linearization of the partial historyH. By definition of a linearization,S has a matching
reply to every invocation. Assume first thatS includes a reply eventresp[op(res)] matching the invocation
eventinv[op(arg)]. In this case, the theorem trivially follows as thenS is also a linearization ofH ′.

If S does not include a matching reply event, thenS does not includeinv[op(arg)] either. Because the
operationop() is total, there is a reply eventresp[op(res)] matching the invocation eventinv[op(arg)] in
every state of the shared object. LetS′ be the sequential historyS with the invocation eventinv[op(arg)]
and a matching reply eventresp[op(res)] added in that order at the end ofS. S′ is trivially legal. It follows
thatS′ is a linearization ofH ′. 2Theorem 2

3.4.2 Example

To illustrate the inherent non-blocking feature of atomicity, and indirectly illustrate implementations that
ensure atomicity and wait-freedom, consider a simple FIFO queue that can contain an unbounded number
of items. The sequential specification of this object has been given in Section 2.1 of Chapter 2.
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The example is simple. (More sophisticated examples will begiven in the next chapters.) The system
we consider here is made up of producers (clients) and consumers (servers) that cooperate through an un-
bounded FIFO queue. A producer process repeats forever the following two statements: it first computes a
new itemv, and then invokes the operationEnq(v) to depositsv in the queue. Since we assume that the
queue is unbounded, the operationEnq(v) is total.

Similarly, a consumer process repeats forever the following two statements: it first withdraws an item
from the queue by invoking the operationDeq(), and then consumes that item. If the queue is empty, then
the default value⊥ is returned to the invoking process. (This default value that cannot be deposited by a
producer process.) Since we do not preclude the possibilityof returning⊥, theDeq() operation also is total.
We assume that no processing by the consumer is associated with the⊥ value.

The algorithm implementing the shared queue relies on an array Q[0..∞) used to store the items of the
queue. Each entry of the array is initialized to⊥.

To enqueue an item to the queue, the producer first locates theindex of the next empty slot in the array
Q, reserves it, and then stores the item in that slot. To dequeue a value, the consumer first determines the
last entry of the arrayQ that has been reserved by a producer. Then, it scans the arrayQ in ascending order
until it finds an item different from the default value⊥. If it finds one, it returns it. Otherwise, the default
value is returned.

The algorithm is given in Figure 3.2. Thereturn() statement terminates the operation (it corresponds to
the reply event associated with that operation). Lowercaseletters are used for identifiers of local variables.
Uppercase letters are used for shared variables. The implementation uses the following shared variables:
NEXT (initialized to1) and the arrayQ, used to contain the values that have been produced and not yet
consumed. The variableNEXT is a pointer to the next slot of the arrayQ that can be used to deposit a
new value. (This implementation could be optimized by reclaiming the slots from which items have been
dequeued. But this is not the point here.)

The variableNEXT is provided with two primitives denotedread() andfetch&add(). The invocation
NEXT .fetch&add(x) returns the value ofNEXT before the invocation and addsx to NEXT . Similarly,
each entryQ[i] of the the array is provided with two primitives denotedwrite() andswap(). The invocation
Q[i].swap(v) writesv in Q[i] and returns the value ofQ[i] before the invocation.

The execution of theread(), write(), fetch&add() and swap() primitives on the shared base objects
(NEXT and each variableQ[i]) are assumed to be atomic. The primitivesread() andwrite() are implicit
in the code of Figure 3.2 (they are in the assignment statements denoted “←”).

The algorithm does not use locks, so no process can block other processes forever by crashing inside a
critical section. Furthermore, each value deposited in thearray by a producer will be withdrawn by aswap()
operation issued by a consumer (assuming that at least one consumer is correct).

To better understand the algorithm, let us explore the two following situations.

• The first situation is when a producer crashes afterNEXT is increased by1 and before the corre-
sponding item is deposited in the arrayQ. That is, the producer reserves an index without ever using
the corresponding slot. This conveys the fact thatNEXT represents an upper bound (and not a tight
bound) on the number of items that are deposited inQ.) This can force consumers to explore more
entries ofQ than necessary. However, all these additional entries thatare visited are equal to⊥. This
means that, when a producer crashes in such a scenario, everything appears as if the producer has not
issued the enqueue operation at all.

• The second situation is when during a dequeue operation, a consumer crashes right after having exe-
cuted the statementQ[i].swap(aux). If aux = ⊥, from an external observer point of view, everything
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operation Enq(v):
in← NEXT .fetch&add (1);
Q[in]← v;
return()

operation Deq():
last← NEXT − 1;
for i from 0 until last do

aux← Q[i].swap (⊥);
if (aux 6= ⊥) then return(aux) end if

end do;
return(⊥)

Figure 3.2: Enqueue and dequeue implementations

appears as if the dequeue operation has never been issued. Ifaux = v 6= ⊥, everything appears as if
that valuev has been obtained by the dequeue operation, the consumer crashing just after using it.

3.4.3 On the power of low level objects

The previous example shows that a FIFO queue, shared by an arbitrary number of processes, can be wait-
free implemented from two types of base atomic objects, namely, an atomic objectNEXT whose type is
defined by then pair of primitivesfetch&add() andread(), as well as an arrayQ of atomic objects, the type
of these objects being defined by the pair of primitiveswrite() andswap().

This means that these base types are “powerful enough” to wait-free implement a FIFO queue shared by
any number of processes. The investigation of the power of base object types to wait-free implementany
shared object constitutes the topic addressed in the third part of the book.

3.4.4 Non-determinism

Before concluding this chapter, it is worthwhile to highlight some sources of non-determinism in a concur-
rent system that need to be considered when devising a sharedobject implementation.

1. The scheduler of a concurrent system can orchestrate the steps of the processes in all kinds of ways
and this is a source of non-determinism that any wait-free implementation has to cope with.

2. Finally, when seeking for a linearization of a concurrenthistory, we can also choose among several
possible sequential histories. First, there might indeed be several ways of completing the original
history, especially when non-deterministic objects are involved. Second, there might be several ways
of ordering concurrent operations in the equivalent linearization.

3.5 Summary

We defined in this chapter three progress properties: solo-termination, partial-termination and wait-freedom.
A wait-free implementation of an atomic object is inherently robust in the following sense.

• It is inherently starvation-free. (This is an immediate consequence of the definition of the wait-free
property.)

• It is (n− 1)-resilient. This expresses the fact it naturally copes withup to(n− 1) process crashes.
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Chapter 4

Safe, regular and atomic registers

4.1 Introduction

This part of the book is devoted to the construction of the simplest linearizable objects that are usually
considered, namely sharedstorageobjects that provide their users with two basic operations:read and
write. These objects are usually calledregisters, and linerarizable registers are calledatomic registers. In
particular, we focus on how to wait-free implement such atomic registers using “weaker” registers. Again,
the picture to have in mind is one where the weak registers areprovided in hardware and the strongest
registers are emulated in software to facilitate the job of the application’s developer.

This chapter defines different sorts of registers and these differences depend on three dimensions: (a) the
capacity of a register, (b) the access pattern to a register and (c) the behavior of a register in face of concur-
rency. The capacity of a register conveys the range of valuesit can store and we will in particular distinguish
registers that can store a binary value from those than can store any number (possibly an infinite number)
of values. The access pattern or a register conveys the number of processes that can read (resp. write) in a
register. Finally, we will distinguish registers that do not provide any guarantee if accessed concurrently at
one extreme, from those that ensure linearizability at the other extreme (i.e., atomic registers).

The weakest kind of a shared register is one that can only store one bit of information, can be read by a
single processp, can be written by a single processq, and does not ensure any guarantee on the value read
by p whenp andq access it concurrently. We will show how, using multiple such registers, we can construct
an atomic register that can store an arbitrary number of values and be read and written by any number of
processes. This construction will be presented incrementally, going through intermediate kinds of registers,
interesting in their own right.

An algorithm used to implement a register of a given kind fromone of another kind is sometimes called
transformationor reduction, the first high-level register being “reduced” to the secondregister used as a
base object in the implementation. We also say that the high-level register is emulated by the second one.

4.2 The many faces of registers

The capacity of a register According to the operations on a register issued by the processes, read opera-
tions on the register can return different values at different times. So, the first dimension that characterizes
a register is related to its capacity, i.e., how much information it can contain.

The simplest kind of register is thebinary register: it can only store a single bit0 or 1. We talk about a
shared bit, or simply abit.
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More generally, amulti-valuedregister may store two or more distinct values. A multi-valued register
can be bounded or unbounded. Aboundedregister is one whose value range contains exactlyb distinct
values (e.g., the values from0 until b−1) whereb is typically a constant known by the processes. Otherwise
the register is said to beunbounded.

A register that can containb distinct values is said to beb-valued. Its binary representation requires
B = ⌈log2 b⌉ bits. Its unary representation is more expensive as it requiresb bits (the valuev being then
represented with a bit equal to1 followed byv − 1 bits equal to0).

Access patterns This dimension concerns the sets of processes that can read from or write into the register.
A register is calledsingle-writer, denoted 1W, (resp.,single-reader, noted 1R) if only one specific process,
known in advance, and called thewriter (resp., thereader) can invoke the write (resp., read) operation
on the register. A register that can be written (resp., read)by any process is called amulti-writer (resp.,
multi-reader) register. Such a register is denoted MW (resp., MR).

For instance, a binary 1WMR register is a register that (a) can contain only0 or 1, (b) can be read by all
the processes but (c) written by a single process.

The concurrent behavior of a register When accessed sequentially, the behavior of a register is simple
to define: a read invocation returns the last value written. When accessed concurrently, the semantics is
more involved and several variants have been considered. Weoverview these variants in the following.

4.3 Safe, regular and atomic registers

We consider three kinds of registers that vary according to their behavior in the presence of concurrent
accesses. The differences are depicted in the value returned by a read operation invoked on the register
concurrently with a write operation. When there is no concurrency, the behavior is the same in all cases. For
the one-writer case, all the registers defined below preserve the following invariant:

• A read that is not concurrent with a write (i.e., their executions do not overlap) returns the last written
value.

4.3.1 Safe registers

A saferegister is the weakest traditionally considered in distributed computing. It has a single writer, and,
since we assume that every process is sequential, allows forno concurrent writes. A safe register only
guarantees that:

• A read that is concurrent with one or several writes returns any element of the value range of the
register.

It is important to see that, in the presence of concurrency, the value returned by a read operation can
possibly be a value that has never been written. The only constraint is that the value needs to be in the range
of the register. To illustrate this, consider a safe register that can contain onlyb = 3 values, e.g.,1, 2 and3.
The register is bounded. Assuming that the current value is1, consider a write of value2 that is concurrent
with a read operation. That read operation can returns1, 2 or even3. It cannot return5 as that value is not
in the range of the safe register.

An interesting particular case is the binary 1WMR (one-writer-one-reader) safe register. This can contain
only 0 and1 and can be seen as modeling a flickering bit. Whatever its previous value, the value of the
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register can flicker during a write operation and only when the write finishes the register stabilizes to its
final value (the value just written) and keep that value untilthe next write.

pw
w(0) w(0)

pr

r(0)r(a)r(1) r(c)r(b)

w(1)

History Ĥ of the invocation/response events

Figure 4.1: History of a register

Value returned a b c

Safe 1/0 1/0 1/0
Regular 1/0 1/0 0
Atomic 1 1/0 0

0 0 0

Table 4.1: Safe, regular and atomic registers

An example of the behavior of a binary safe register (i.e., a safe bit) is depicted in Figure 4.1 and Table
4.1. We consider there a 1W1R safe register: only one reader is involved. The writer process is denotedpw

whereas the reader process is denotedpr (w(v) stands for a write operation that writes the valuev; similarly,
r(v) stands for a read operation that obtains the valuev). As the first and the fourth read operations do not
overlap a write, they return the last written value namely,1 for the first read and0 for the fourth one. The
values returned by the other read operations are denoteda, b andc. All these read operations overlap a write
and can consequently return any of the values that the register can contain (this is denoted1/0 as the register
is binary in Table 4.1). So, the last read can return1 even if the previous value was0 and the concurrent
operation writes the very same value0. This gives8 possible correct executions, assuming indeed a binary
safe register.

w(1) w(0) w(0)

r(1) r(a) r(b) r(0) r(c)

Figure 4.2: History of a safe register

Figure 4.2 depicts the corresponding history at the operation level (i.e., the partial order on the operations
denoted→H). The transitive dependencies are not indicated. The unordered operations (e.g., the second
w(0) operation issued bypw andr(c) issued bypr) are concurrent.
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4.3.2 Regular registers

A regular register is also defined for the case of a single writer. It is asafe register that satisfies the following
additional property:

• A read that is concurrent with one or several writes returns the value written by a concurrent write or
the value written by the last preceding write.

To illustrate the regular register notion, let us again consider Figure 4.1. The values that can be possibly
returned by a regular register are described in Table 4.1. The second read operation can return either the
previous value or the value of the concurrent write, namely,0 or 1. It is the same for the third read operation.
In contrast, as the last write does not change the value of theregister, the last read can return only the value
0. This means that4 possible correct executions can be determined for Figure 4.1.

It is important to see that a read that overlaps several writeoperations can return any value among the
values written by these writes as well as the value of the register before these writes. This is depicted in
Figure 4.3 where valuea returned by the second read can be any of1, 2, 3, 4 or 5.

pw
w(1)

r(1) r(a)

w(2) w(3) w(4) w(5)

pr

Figure 4.3: History of a regular register

4.3.3 Atomic registers

An atomic register is a MWMR register whose execution histories are linearizable. This means that it is
possible to totally order all its read and write operations in such a way that this total order̂S respects their
real-time occurrence order and each read returns the value written by the last write operation that precedes
it in Ŝ (legality property).

Again, Figure 4.1 illustrates the atomicity notion for the specific case of a register. The second readr(a)
is concurrent with thew(0) operation. Given that the previous value of the register is1, the returned value
a can be either1 or 0. If it returns1 (the value written by the last preceding write), then the third read can
return either1 or 0. In contrast, if the second read returns0 (the value written by the concurrent write), only
value0 can be returned by the third read as the second read indicatesthat the value1 is now overwritten by
the “new” value0. Finally, the last read can only return the value0. It is easy to see that there are3 possible
executions when the registers are binary and atomic. As previously, the possible values returned by the three
read operations concurrent with a write operation are summarized in Table 4.1.

4.3.4 Regularity and atomicity: a reading function

One important difference between regularity and atomicityis that a regular register allows fornew/old
inversion: in case two read operations are concurrent with a write, thefirst read may return the concurrently
written value while the second read may still return the value written by a preceding write. Such a history is
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not allowed by an atomic register, since the second read mustsucceed the first one in any linearization, and
thus must return the same or a “newer” value.

For example, the history depicted in Figure 4.1 and Table 4.1, the history is correct witha = 0 andb = 1
with respect to regularity and incorrect with respect to atomicity. In that history, and considering the two
consecutive read operationsr(a) andr(b), the first’, namelyr(a), obtains the “new” value (a = 0) while
the second’, namelyr(b), obtains the “old” value (b = 1).

Formally, we capture the difference bwtween (one-writer) regular and atomic registers using the notion
of a reading function. A reading function is associated with a given history and maps every returned read
operationr(x) to somew(x) in that history. Without loss of generality, we assume that every history starts
with a sequential operationw(x0) that writes the initial valuex0.

We say that a reading functionπ associated with a historyH is regular if (here r andw with indices
denote read and write operations inH):

A0 : ∀ r: ¬(r →H π(r)). (No read returns a value not yet written.)

A1 : ∀ r, w in H: (w →H r)⇒
(
π(r) = w ∨ w →H π(r)

)
. (No read obtains an overwritten value.)

We say that a reading function isatomicif it is regular and satisfied the following additional property:

A2 : ∀ r1, r2: (r1→H r2)⇒
(
π(r1) = π(r2) ∨ π(r1)→H π(r2)

)
. (No new/old inversion.)

We show now determining a regular reading function is exactly what we need to show that a history can
be produced by a regular register.

Theorem 3 Let H be an execution history of a 1WMR register.H can be a history of a regular register if
and only if it allows for a regular a reading functionπ.

Proof Suppose thatH is a history of a regular register. We defineπ as follows: for any read For any
r(x), a complete read operation inH, we defineπ(r) as the last write operationw(x) in H such that
¬(r(x)→H w(x). It is easy to see thatπ is a regular reading function.

Now suppose thatH allows for a regular reading function. Letr(x) be a complete read operation in
H. Then there exists a writew(x) in H that either precedes or is concurrent withr(x) in H (A0) and
is not succeeded by a write that precedesr(x) in H (A1). Thus,r(x) returns either the last written or a
concurrently written value. 2Theorem ??

Theorem 4 LetH be an execution history of a 1WMR register.H is linearizable if and only if it allows for
an atomic a reading functionπ.

Proof Given a linearizable historyH, it is straightforward to construct an atomic reading function: take any
S, a linearization ofH and defineπ(r) as the last write that precedesr in S. By construction,π(r) satisfies
propertiesA0, A1 andA2.

Now suppose thatH allows for an atomic reading functionπ. We useπ to constructS, a linearization
of H, as follows.

We first constructS as the sequence of all writes that took place inH in the order of appearance. Since
we have only one writer, the writes are totally ordered. (In case the last write is incomplete, we add toS its
complete version.) Then we put every complete operationr immediately afterπ(r), making sure that:

if π(r1) = π(r2) andr1→H r2, thenr1→S r2.
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Clearly,S is legal: the reading function guarantees thatπ(r) writes the value read byr, and thus every
read inS returns the last written value.

To show that→H⊆→S , we consider the following four possible cases (w1 andw2 (resp.,r1 andr2)
denote here write (resp., read) operations):

• w1 →H w2. By the very construction ofS (that considers the order on write operations performed
by the writer), we havew1→S w2.

• r1→H r2. By A2, we haveπ(r1) = π(r2) or π(r1)→H π(r2).

If π(r1) = π(r2), asr1 started beforer2 (case assumption), due to the wayS is constructed,r1 is
ordered beforer2 in S, and we have consequentlyr1→S r2.

If π(r1) →H π(r2), as (1)r1 andr2 are placed just afterπ(r1) andπ(r2), respectively, and (2)
π(r1)1→S π(r2) (see the first item), the construction ofS ensuresr1→S r2.

• r1 →H w2. By A0, eitherπ(r1) is concurrent withr1 or π(r1) →H r1. Sincer1 →H w2 and all
writes are totally ordered, we haveπ(r1)→H w2. By construction ofS, sinceπ(r1) is the last write
precedingr1 in S, r1→S w2.

• w1→H r2. By A1 we haveπ(r2) = w1 or w1→H π(r2).

Caseπ(r2) = w1. As r2 is placed just afterπ(r2) in S, we haveπ(r2) = w1→S r2.

Casew1 →H π(r2). As (2)w1 →H π(r2) ⇒ w1 →S π(r2) (first item), and (2)π(r2) →S r2 (r2
is ordered just afterπ(r2) in S), we obtain (by transitivity of→S) w1→S r2.

Finally, sinceS contains all complete operations ofH and preserves→H , H is indistinguishable from
S for every reader, modulo the last incomplete read operation(if any).

Thus,S is a legal sequential history that is equivalent to a completion ofH and preserves→H . 2Theorem ??

Now we can say that a history of a regular register suffers from new/old inversion if it allows for no
atomic reading function. Theorems 3 and 4 imply that an atomic register can be seen as a regular register
that never suffers from new/old inversion.

It follows from the fact that atomicity (linearizability) is a local property that a set of 1WMR regular
registers behave atomically if each of themindependently from the othersis written by a single process and
satisfies the “no new/old inversion” property.

4.3.5 From very weak to very strong registers

To summarize, there are different kinds of registers and thedifferences depend on several dimensions. It is
appealing to ask whether registers of strong kinds can be constructed in software (emulated) using registers
of weak kinds. As pointed out in the introduction of this chapter, and this might look surprising, it is indeed
possible to emulate a multi-valued MWMR atomic register using binary 1W1R safe registers. Next sections
are devoted to proving that.

In general, what we call a (register)transformationis here an algorithm that builds a registerR with
certain properties, called a high-level register, from other registers featuring different properties. These
registers, used in the implementation, are called low-level or base registers. These low level registers are
calledbase registers. Of course, for a transformation to be interesting, the baseregisters it uses have to
provide weaker properties than the high level register we want to construct. Typically:
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• The base registers are safe (resp., regular) while the high level register is regular (resp., atomic).

• The base registers are 1W1R (resp., 1WMR) while the constructed register is 1WMR (resp., MWMR).

• The base registers are binary whereas the high level register is multi-valued.

The transformations also vary according to the number and size of base registers considered. Basically:

• The number of base registers needed to build the high level register might or not depend on the total
number of processes in the system, i.e., readers and writers.

• The amount of information used to build the high level register might be bounded or not. Some-
times, the transformation algorithm uses sequence numbersthat can arbitrarily grow and is inherently
unbounded. In general, and except for few constructions, bounded transformations are much more
difficult to design and prove correct than unbounded ones. From a complexity point of view, bounded
ones are better.

In the following, we proceed as follows.

1. We illustrate the notion of transformation algorithm by presenting first two simple (bounded) algo-
rithms. The first constructs a 1WMR safe register out of a number of 1W1R safe registers. The second
builds a binary 1WMR regular register out of a binary 1WMR safe register. The combination of these
algorithms already shows that we can implement a binary 1WMRregular register using a number of
binary 1W1R safe registers.

2. We then show how to transform a binary 1WMR register that provides certain semantics (safe, regular
or atomic) into a multi-valued 1WMR register that preservesthe same semantics. The three transfor-
mations we present here are all bounded. The combination of the second of these with those above
shows that we can implement a multi-valued 1WMR regular register using a number of binary 1W1R
safe registers.

3. We finally show how to transform a 1W1R regular register into a MWMR atomic register. We go
through three intermediate (unbounded) transformations:from a 1W1R regular register into a 1W1R
atomic register, then to a 1WMR atomic register, and finally to a MWMR register. These, with the
combination pointed out above, shows that we can construct amulti-valued MWMR atomic register
using binary 1W1R safe registers.

4.4 Two simple bounded transformations

This section describes two very simple bounded transformations. We focus on safe and regular registers.
(Recall that these kinds of registers are defined for systemswith a single writer for each register.) The
first transformation extends a single-reader register, being safe or regular, to multiple readers. The second
transformation transforms a shared safe bit into a regular one.
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4.4.1 Safe/regular registers: from single reader to multiple readers

We present here an algorithm that implements a 1WMR safe (resp., regular) register using 1W1R safe
(regular) registers. In short, the transformation allows for multiple readers instead of single readers. Not
surprisingly, the idea is to emulate the multi-reader register using several single-reader registers.

The transformation, described in Figure 4.4, is very simple. The constructed registerR is built from n
1W1R base registers, denotedREG[1 : n], one per reader process. (We consider a system ofn processes
and all are potential readers.) A readerpi reads the base registerREG[i] it is associated with, while the
single writer writes all the base registers (in any order).

It is important to see that this transformation is bounded: it uses no additional control information
beyond the actual value stored, and each base register can beof the same size (measured in number of bits)
as the multi-readers register we want to build.

Interestingly, with the same algorithm, if the base 1W1R registers are regular, than the resulting 1WMR
register we then obtain is regular.

operation R.write(v):
for all j in {1, . . . , n} do REG[i]← v end do;
return()

operation R.read() issued bypi :
return(REG[i])

Figure 4.4: From 1W1R safe/regular to 1WMR safe/regular (bounded transformation)

Theorem 5 Given one base safe (resp., regular) 1W1R register per reader, the algorithm described in Fig-
ure 4.4 implements a 1WMR safe (resp., regular) register.

Proof Assume first that base registers are safe 1W1R registers. It follows directly from the algorithm that a
read ofR (i.e.,R.read() ) that is not concurrent with aR.write() operation obtains the last value deposited
in the registerR. The obtained registerR is consequently safe while being 1WMR.

Let us now consider the case where the base registers are regular. We will argue that the high-level
registerR constructed by the algorithm is a 1WMR regular one. The fact thatR allows for multiple readers
is by construction. Because a regular register is safe, and by the argument above (for the case where the
base registers are safe), we only need to show that a read operation R.read() that is concurrent with one
or more write operationsR.write(v), R.write(v′), etc., returns one of the valuesv, v′, ... written by these
concurrent write operations, or the value ofR before these write operations.

Let pi be any process that reads some value fromR. Whenpi reads the base registerREG[i], while
executing operationR.read(), pi obtains (a) the value of a concurrent write on this base register REG[i]
(if any) or (b) the last value written onREG[i] before such concurrent write operations. This is because
the base registerREG[i] is itself regular. In case (a), the valuev obtained is from aR.write(v) that is
concurrent with theR.read() of pi. In case (b), the valuev obtained can either be (b.1) from aR.write(v)
that is concurrent with theR.read() of pi , or (b.2) from the last value written by aR.write() before the
R.read() of pi. It follows that the constructed registerR is regular. 2Theorem 5

It is important to see that the algorithm of Figure 4.4 does not implement a 1WMR atomic register
even when every base registerREG[i] is a 1W1R atomic register. Roughly speaking, this is becausethe
transformation can cause a new/old inversion problem, evenif the base registers preclude these. To show
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REG[2]← 2

return(REG[1])

REG[1]← 2

inv[R.write(2)] resp[R.write(2)]

return(REG[2])

Figure 4.5: A counter-example

this, let us consider the counter-example described in Figure 4.5. The example involves one writerpw

and two readersp1 and p2. Assume the registerR implemented by the algorithm contains initially the
value1 (which means that we initially haveREG[1] = REG[2] = 1). To write value2 in R, the writer
first executesREG[1] ← 2 and thenREG[2] ← 2. The duration of these two write operations on base
registers can be arbitrarily long. (Remember that processes are asynchronous and there is no bound on their
execution speed). Concurrently,p1 readsREG[1] and returns2 while later (as indicated on the figure)p2

readsREG[2] and returns1. The linearization order on the two base atomic registers isdepicted on the
figure (bold dots). It is easy to see that, from the point of view of the constructed registerR, there is a
new/old inversion asp1 reads first and obtains the new value, whilep2 reads afterp1 and obtains the old
value. The constructed register is consequently not atomic.

4.4.2 Binary multi-reader registers: from safe to regular

The aim is here to build a regular binary register from a safe binary register, i.e., to construct a regular bit out
of a safe one. As we shall see, the algorithm is very simple, precisely because the register to be implemented,
R, can only contain one out of two values (0 or 1).

The difference between a safe and a regular register is only visible in the face of concurrency. That is,
the value to be returned in the regular case has to be a value concurrently written or the last value written,
whereas no such restriction exists for safe semantics. The fact that we only consider a shared bit means
however that the issue to be addressed is restricted: only one out of two values can be returned anyway. To
illustrate the issue, assume that the regular register is directly implemented using a safe base register: every
read (resp. write) on the high-level register is directly translated into a read (resp. write) on the base (safe)
register. Assume this register has value0 and there is a write operation that writes the very same value0.
As the base register is only safe, it is possible that a concurrent read operation obtains value1, which might
have never been written.

The way to fix this problem is to preclude the actual writing inthe base register if the value to be written
in the high-level register is thesameas the value previously written. If the value to be written isdifferent
from the previous value, then it is okay to write the value in the base register: a concurrent read can obtain
the other value (remember that only two values are possible)and this is fine with the regularity semantics.
With this strategy, a read operation concurrent with one or more write operations obtains the value before
these write operations or the value written by one of these operations.
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The transformation algorithm is described in Figure 4.6. Besides a safe registerREG shared between
the reader and the writer, the algorithm requires that the writer uses a local registerprev val that contains
the previous value that has been written in the base safe registerREG. Before writing a valuev in the
high-level regular register, the writer checks if this value v is different from the value inprev val and, only
in that case,v is written inREG.

operation R.write(v):
if (prev val 6= v) then REG← v;

prev val← v end if ;
return()

operation R.read() issued bypi :
return(REG)

Figure 4.6: From a binary safe to a binary regular register (bounded transformation)

Theorem 6 Given a 1WMR binary safe register, the algorithm described in Figure 4.6 implements a 1WMR
binary regular register.

Proof The proof is an immediate consequence of the following facts. (1) As the underlying base register
is safe, a read that is not concurrent with a write obtains thelast written value. (2) As the underlying base
register always alternate between0 and1, a read concurrent with one or more write operations obtainsthe
value of the base register before these write operations or one of the values written by such a write operation.

2Theorem 6

As we pointed out in the overview description above, the transformation heavily exploits the fact that the
constructed registerR can only contain one out of two possible values (0 or 1). It does not work for multi-
valued registers. The transformation does not implement anatomic register either as it does not prevent a
new/old inversion. Notice also that If the safe base binary register is 1W1R, then the algorithm implements
a 1W1R regular binary register.

4.5 From binary to b-valued registers

This section presents three transformations from binary registers to multi-valued registers. These are called
b-valued registers in the sense that their value range contains b distinct values; we assume thatb > 2. Our
transformations have three characteristics.

1. Although we assume that the base binary registers (bits) are 1WMR registers and we transform these
into 1WMR b-valued registers, our algorithms can also be used to transform 1W1R bits into 1W1R
b-valued registers; i.e., if the base bits allow only a singlereader, then the same algorithm implements
a b-valued bit.

2. Our transformations preserve the semantics of the base registers in the following sense: if the base
bits have semanticsX (safe, regular or atomic), then the resulting high-level (b-valued) registers also
have semanticsX (safe, regular or atomic).

3. The transformations are bounded. There is a bound on the number of base registers used, as well as
on the amount of memory needed within each register.
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4.5.1 From safe bits to safeb-valued registers

Overview The first algorithm we present here uses a number of safe bits in order to implement ab-valued
registerR. We assume thatb is an integer power of2, i.e., b = 2B whereB is an integer. It follows that
(with a possible pre-encoding if theb distinct values are not the consecutive values from0 until b − 1) the
binary representation of theb-valued registerR we want to build consists of exactlyB bits. In a sense, any
combination ofB bits defines a value that belongs to the range ofR (notice that this would not be true ifb
was not an integer power of2).

The algorithm relies on this encoding for the values to be written inR. It uses an arrayREG[1 : B] of
1WMR safe bit registers to store the current value ofR. Givenµi = REG[i], the binary representation of
the current value ofR is µ1 . . . µB . The corresponding transformation algorithm is given in Figure 4.7.

operation R.write(v):
let µ1 . . . µB be the binary representation ofv;
for all j in {1, . . . , B} do REG[j]← µj end do;
return()

operation R.read() issued bypi:
for all j in {1, . . . , B} do µj ← REG[j] end do;
let v be the value whose binary representation isµ1 . . . µB ;
return(v)

Figure 4.7: Safe register: from bits tob-valued register

Space complexity As B = log2(b), the memory cost of the algorithm is logarithmic with respect to the
size of the value range of the constructed registerR. This follows from the binary encoding of the values of
the high level registerR.

Theorem 7 Given b = 2B and B 1WMR safe bits, the algorithm described in Figure 4.7 implements a
1WMRb-valued safe register.

Proof A read ofR that does not overlap a write ofR obtains the binary representation of the last value that
has been written intoR and is consequently safe to return. A read ofR that overlaps a write ofR can obtain
any ofb possible values whose binary encoding usesB bits. As every possible combination of theB base bit
registers represents one of the theb values thatR can potentially contain (this is becauseb = 2B), it follows
that a read concurrent with a write operation returns a valuethat belongs to the range ofR. Consequently,
R is ab-valued safe register. 2Theorem 7

It is interesting to notice that this algorithm does not implement a regular registerR even when the base
bits are regular. A read that overlaps a write operation thatchanges the value ofR from 0 . . . 0 to 1 . . . 1 (in
binary representation) can return any value, i.e., even onethat was never written. The reader (the human, not
the process) can check that requiring a specific order according to which the arrayREG[1 : B] is accessed
does not overcome this issue.

4.5.2 From regular bits to regular b-valued registers

Overview A way to build a 1WMR regularb-valued registerR from regular bits is to employ unary
encoding. Considering an arrayREG[1 : b] of 1WMR regular bits, the valuev ∈ [1..b] is represented by0s
in bits 1 throughv − 1 and1 in thevth bit.
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The algorithm is described in Figure 4.8. The key idea is to write into the arrayREG[1 : b] in one
direction, and to read it in the opposite direction. To writev, the writer first setsREG[v] to 1, and then
“cleans” the arrayREG. The cleaning consists in setting the bitsREG[v−1] until REG[1] to 0. To read, a
reader traverses the arrayREG[1 : b] starting from its first entry (REG[1]) and stops as soon as it discovers
an entryj such thatREG[j] = 1. The reader then returnsj as the result of the read operation. It is important
to see that a read operation starts reading first the “cleaned” part of the array. On the other hand, the writing
is performed in the opposite direction, fromv − 1 until 1.

It is also important to notice that, even when no write operation is in progress, it is possible that several
entries of the array be equal to1. The value represented by the array is then the valuev such thatREG[v] =
1 and for all the entries1 ≤ j < v we haveREG[j] = 0. Those entries are then the only meaningful entries.
The other entries can be seen as a partial evidence on past values of the constructed register.

The algorithm assumes that the registerR has an initial value, sayv. The arrayREG[1 : b] is accord-
ingly initialized, i.e.,REG[j] = 0 for 1 ≤ j < v, REG[v] = 1, andREG[j] = 0 or 1 for v < j ≤ b.

operation R.write(v):
REG[v]← 1;
for j from v − 1 step−1 until 1 do REG[j]← 0 end do;
return()

operation R.read() issued bypi:
j ← 1;
while (REG[j] = 0) do j ← j + 1 end do;
return(j)

Figure 4.8: Regular register: from bits tob-valued register

Two observations are in order:

1. In the writer’s algorithm, once set to1, the “last” base registerREG[b] keeps that value forever. In a
sense, setting this register to1 makes it useless: the writer never writes in it again, and when it has to
read it, a reader might by default consider its value to be1.

2. The reader’s algorithm does not write base registers. This means that the algorithm handles any
number of readers. Of course, the base registers have to be 1WMR if there are several readers (as
each reader reads the base registers), and can be 1W1R when there a single reader is involved.

Space complexity The memory cost of the transformation algorithm isb base bits, i.e., it is linear with
respect to the size of the value range of the constructed register R. This is a consequence of the unary
encoding of these values1.

Lemma 1 Consider the algorithm of Figure 4.8. AnyR.read() or R.write() operation terminates. More-
over, the valuev returned by a read belongs to the set{1, . . . , b}.

Proof A R.write() operation trivially terminates (as by definition thefor loop always terminates). For the
termination of theR.read() operation, let us first make the following two observations:

1LetB be the number of bits required to obtain a binary representation of a value ofR. It is important to see that, asB = log
2
(b),

the cost of the construction is exponential with respect to this number of bits.
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• At least one entry of the arrayREG is initially equal to1. Then, it follows from the write algorithm
that each time the writer changes the value of a base registerREG[x] from 1 to 0, it has previously
set to1 another entryREG[y] such hatx < y ≤ b.

Consequently, if the writer updatesREG[x] from 1 to 0 while concurrently the reader readsREG[x]
and obtains the new value0, we can conclude that a higher entry of the array has the value1.

• If, while its previous value is1, the reader readsREG[x] and concurrently the writer updatesREG[x]
to the same value1, the reader obtains value1, as the base register is regular2.

It follows from these observations that a sequential scanning of the arrayREG (starting atREG[1]) neces-
sarily encounters en entryREG[v] whose reading returns1. As the running index of thewhile loop starts at
1 and is increased by1 each time the loop body is executed, it follows that the loop always terminates, and
the valuej it returns is such that1 ≤ j ≤ b. 2Lemma 1

Remark The previous lemma relies heavily on the fact that the high-level registerR can contain onlyb
distinct values. The lemma would no longer be true if the value range ofR was unbounded. AR.read()
operation could then never terminate in case the writer continuously writes increasing values. To illustrate
that, consider the following scenario. LetR.write(x) be the last write operation terminated before the
operationR.read(), and assume there is no concurrent write operationR.write(y) such thaty < x. It is
possible that, when it readsREG[x], the reader findsREG[x] = 0 because anotherR.write(y) operation
(with y > x) updatedREG[x] from 1 to 0. Now, when it readsREG[y], the reader findsREG[y] = 0
because anotherR.write(z) operation (withz > y) updatedREG[y] from 1 and so on. The read can then
never terminate.

Theorem 8 Given b 1WMR regular bits, the algorithm described in Figure 4.8 implements a 1WMRb-
valued regular register.

Proof Let us first consider a read operation that is not concurrent with any write, and letv the last written
value. It follows from the write algorithm that, whenR.write(v) terminates, the first entry of the array that
equals1 is REG[v] (i.e.,REG[x] = 0 for 1 ≤ x ≤ v − 1). Because a read traverses the array starting from
REG[1], thenREG[2], etc., it necessarily reads untilREG[v] and returns accordingly the valuev.

R.write(v0) R.write(v1) R.write(v2) R.write(vm)

R.read()

Figure 4.9: A read with concurrent writes

Let us now consider a read operationR.read() that is concurrent with one or more write operations
R.write(v1), ..., R.write(vm) (as depicted in Figure 4.9). Moreover, letv0 be the value written by the
last write operation that terminated before the operationR.read() starts (or the initial value if there is no
such write operation). As a read operation always terminates (Lemma 1), the number of write operations

2If the base register was only safe, the reader could obtain value0.
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concurrent with theR.read() operation is finite. We have to show that the valuev returned byR.read() is
one of the valuesv0, v1, ...,vm. We proceed with a case analysis.

1. v < v0.
No value that is both smaller thanv0 and different fromvx (1 ≤ x ≤ m) can be output. This is because
(1) R.write(v0) has set to0 all entries fromv0−1 until the first one, and only a write of a valuevx can
setREG[vx] to 1; and (2) as the base registers are regular, ifREG[v′] is updated by aR.write(vx)
operation from0 to the same value0, the reader cannot concurrently readsREG[v′] = 1. It follows
from that observation that, ifR.read() returns a valuev smaller thanv0, thenv has necessarily been
written by a concurrent write operation, and consequentlyR.read() satisfies the regularity property.

2. v = v0.
In this case,R.read() trivially satisfies the regularity property. Notice that itis possible that the
corresponding write operation be someR.write(vx) such thatvx = v0.

3. v > v0.
From v > v0, we can conclude that the read operation obtained0 when it readREG[v0]. As
REG[v0] was set to1 by R.write(v0), this means that there is aR.write(v′) operation, issued af-
ter R.write(v0) and concurrent withR.read(), such thatv′ > v0, and that operation has executed
REG[v′] ← 1, and has then set to0 at least all the registers fromREG[v′ − 1] until REG[v0]. We
consider three cases.

(a) v0 < v < v′.
In this case, asREG[v] has been set to0 by R.write(v′), we can conclude that there is a
R.write(v), issued afterR.write(v′) and concurrent withR.read(), that updatedREG[v] from
0 to 1. The value returned byR.read() is consequently a value written by a concurrent write
operation. The regularity property is consequently satisfied byR.read().

(b) v0 < v = v′.
The regularity property is then trivially satisfied byR.read(), asR.write(v′) andR.read() are
concurrent.

(c) v0 < v′ < v.
In this case,R.read() missed the value1 in REG[v′]. This can only be due to aR.write(v′′)
operation, issued afterR.write(v′) and concurrent withR.read(), such thatv′′ > v′, and that
operation has executedREG[v′′] ← 1, and has then set to0 at least all the registers from
REG[v′′ − 1] until REG[v′].

We are now in the same situation as the one described at the beginning of item 3, wherev0 and
R.write(v′) are replaced byv′ andR.write(v′′). As (a) the number of values betweenv0 andb
is finite and (b) the read operationR.read() terminates, if follows that this operation eventually
terminates in 3a or 3b, which completes the proof of the theorem.

2Theorem 8

A counter-example for atomicity Figure 4.10 shows that, even if all base registers are atomic, the algo-
rithm we just presented (Figure 4.8) does not implement an atomic b-valued register.

Let us assume thatb = 5 and the initial value of the registerR is 3, which means that we initially have
REG[1] = REG[2] = 0, REG[3] = 1 andREG[4] = REG[5] = 0. The writer issues firstR.write(1)
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and thenR.write(2). There are concurrently two read operations as indicated onthe figure. The first read
operation returns value2 while the second one returns value1: there is a new/old inversion. The last line of
the figure depicts a linearization orderS of the read and write operations on the base binary registers. (As
we can see, each base object taken alone is linearizable. This follows from the fact that linearizability is a
local property, see the first chapter).

R.write(2)

REG[2]← 1 REG[1]← 0

R.read()

R.read()

R.write(1)

REG[1] = 0 REG[2] = 1

REG[1] = 1

REG[1]← 1

Figure 4.10: A counter-example for atomicity

4.5.3 From atomic bits to atomicb-valued registers

As just seen, the algorithm of Figure 4.8 does not work if the goal is to build ab-valued atomic register
from atomic bits. Interestingly, a relatively simple modification of its read algorithm makes that possible by
preventing the new/old inversion phenomenon.

Overview The idea consists in decomposing aR.read() operation in two phases. The first phase is the
same as in the read algorithm of Figure 4.8 : base registers are read in ascending order, until an entry equal
to 1 is found; letj be that entry. The second phase traverses the array in the reverse direction (fromj to
1), and determines the smallest entry that contains value1: this is then returned. So, the returned value is
determined by a double scanning of a “meaningful” part of theREG array.

The new algorithm is given in Figure 4.11. To understand the underlying idea, let us consider the first
R.read() operation depicted in Figure 4.10. After it findsREG[2] = 1, the reader changes its scanning
direction. The reader then findsREG[1] = 1 and returns consequently value1. In the figure, the second
read obtains1 in REG[1] and consequently returns1. This shows that, in the presence of concurrency, this
construction does not strive to eagerly return a value. Instead, valuev returned by a read operation has to
be “validated” by an appropriate procedure, namely, all the“preceding” base registersREG[v − 1] until
REG[1] have to be found equal to0 when rereading them.

Theorem 9 Givenb 1WMR atomic bits, the algorithm described in Figure 4.11 implements a 1WMR atomic
b-valued register.

Proof The proof consists in two parts: (1) we first show that the implemented register is regular, and then
(2) we show that it does not allow for new/old inversions. Applying Theorem 10 proves then that the con-

53



operation R.write(v):
REG[v]← 1;
for j from v − 1 step−1 until 1 do REG[j]← 0 end do;
return()

operation R.read() issued bypi:
j up← 1;

(1) while (REG[j up] = 0) do j up← j up + 1 end do;
(2) j ← j up;
(3) for j down from j up− 1 step−1 until 1 do
(4) if (REG[j down] = 1) then j ← j down end if

end do;
return(j)

Figure 4.11: Atomic register: from bits tob-valued register

structed register is a 1WMR atomic register.

Let us first show that the implemented register is regular. Let R.read() be a read operation andj the
value it returns. We consider two cases:

• j = j up (j is determined at line 2).
The value returned is then the same as the one returned by the algorithm described in Figure 4.8. It
follows from theorem 8 that the value read is then either the value of the last preceding write or the
new value of an overlapping write.

• j < j up (j is determined at line 4; let us observe that, due to the construction, the casej > j up
cannot happen).
In that case, the read foundREG[j] = 0 during the ascending loop (line 1), andREG[j] = 1 during
the descending loop (line 4). Due to the atomicity of the baseREG[j] register, this means that a write
operation has writtenREG[j] = 1 between these two readings of that base atomic register. It follows
that the valuej returned has been written by a concurrent write operation.

pw

R.write(v) R.write(v′)

pr

r1 = R.read() r2 = R.read()

Figure 4.12: There is no new/old inversion

To show that there is no new/old inversion, let us consider Figure 4.12. There are two write operations,
and two read operationsr1 andr2 that are concurrent with the second write operation. (The fact that the
read operations are issued by the same process or different processes is unimportant for the proof.) As the
constructed registerR is regular, both read operations can returnv or v′. If the first read operationr1 returns
v, the second read can return eitherv or v′ without entailing a new/old inversion. So, let us consider the
case wherer1 returnsv′. We show that the second readr2 returnsv′′, wherev′′ is v′ or a value written by
a more recent write concurrent with this read. Ifv′′ = v′, then there is no new/old inversion. So, let us

54



considerv′′ 6= v′. As r1 returnsv′, r1 has sequentially readREG[v′] = 1 and thenREG[v′ − 1] = 0 until
REG[1] = 0 (lines 2-4). Moreover,r2 starts afterr1 has terminated (r1 →H r2 in the associated history
H).

1. v′′ < v′. In that case, a write operation has writtenREG[v′′] = 1 afterr1 has readREG[v′′] = 0 (at
line 4) and beforer2 readsREG[v′′] = 1 (at line 2 or 4) with1 ≤ v′′ < v′. It follows that this write
operation is afterR.write(v′) (there is a single sequential writer, andr1 returnsv′). Consequently,
r2 obtains a value newer thanv′, hence newer thanv: there is no new/old inversion.

2. v′′ > v′. In that case,r2 has read1 fromREG[v′′] and then0 from REG[v′] (line 4). Asr1 terminates
(readingREG[v′] = 1 and returningv′) beforer2 starts, and write operations are sequential, it follows
that there is a write operation, issued afterR.write(v′), that has updatedREG[v′] from 1 to 0.

(a) If that operation isR.write(v′′), we conclude that the valuev′′ read byr2 is newer thanv′, and
there is no new/old inversion.

(b) If that operation is notR.write(v′′), it follows that there is another operationR.write(v′′′),
such thatv′′′ > v′, that has updatedREG[v′] from 1 to 0, and that update has been issued after
R.write(v′) (that setREG[v′] to 1), and beforer2 readsREG[v′] = 0.

Moreover,R.write(v′′′) is beforeR.write(v′′) (otherwise, the update ofREG[v′] from 1 to 0
would have been done byR.write(v′′)).

It follows thatR.write(v′′′) is afterR.write(v′) and beforeR.write(v′′), from which we con-
clude thatv′′ is newer thanv′, proving that there is no new/old inversion.

2Theorem 9

4.6 Three (unbounded) atomic register implementations

So far, none of our algorithms implements an atomic registerout of a non-atomic register. (Moreover, the
one that implements atomic registers implements ab-valued register out of a binary atomic on.) In the
following, we present algorithms that implementunboundedatomic registers. Such registers can contain
any number of distinct values.

We present three algorithms. All use the notion ofsequence number. In short, this notion represents a
concept of logical time. The sequence numbers are associated with each write operation and induce a total
order on these operations: the total order is then exploitedto ensure atomicity. These numbers are written
in the base registers, which also means that such registers are unbounded, because the space of sequence
numbers is the set of natural numbers.

More specifically, in the algorithms presented in this section, a base register is made up of several fields,
namely:

• A data part intended to contain the valuev of the constructed high-level registerR.

• A control part containing a sequence number and possibly a process identity. The sequence number
values increase proportionally with the number of write operations, and is consequently bounded.

Two observations are in order before diving into the detailsof these algorithms.
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1. As we pointed out, the high-level register we construct can be unbounded and might contain, at
different points in time, an arbitrary number of distinct values. In fact, the fact that the high-level
register can be unbounded does not mean it has to. This depends on the application that uses this
high-level register and the operations that access it.

2. The base registers are unbounded for they contain arbitrarily large sequence numbers. In fact, there
are techniques to recycle sequence numbers and bound these constructions. These techniques are
however pretty involved and we do not present them here.

4.6.1 1W1R registers: From unbounded regular to atomic

We show in the following how to implement an 1W1R atomic register using a 1W1R regular register. The use
of sequence numbers make such a construction easy and helps in particular prevent the new/old inversion
phenomenon. Preventing this, while preserving regularity, means, by Theorem 10, that the constructed
register is atomic.

The algorithm is described in Figure 4.13. Exactly one base regular registerREG is used in the imple-
mentation of the high-level registerR. The local variablesn at the writer is used to hold sequence numbers.
It is incremented for every new write inR. The scope of the local variableaux used by the reader spans a
read operation; it is made up of two fields: a sequence number (aux.sn) and a value (aux.val).

Each time it writes a valuev in the high-level register,R, the writer writes the pair[sn, v] in the base
regular registerREG. The reader manages two local variables:last sn stores the greatest sequence number
it has even read inREG, andlast val stores the corresponding value. When it wants to readR, the reader
first readsREG, and then compareslast sn with the sequence number it has just read inREG. The value
with the highest sequence number is the one returned by the reader and this prevents new/old inversions.

operation R.write(v):
sn← sn + 1;
REG← [sn, v];
return()

operation R.read():
aux← REG;
if (aux.sn > last sn) then last sn← aux.sn;

last val← aux.val end if ;
return(last val)

Figure 4.13: From regular to atomic: unbounded construction

Theorem 10 Given an unbounded 1W1R regular register, the algorithm described in Figure 4.13 constructs
a 1W1R atomic register.

Proof The proof is similar to the proof of Theorem 10. We associate with each read operationr of the high-
level registerR, the sequence number (denotedsn(r)) of the value returned byr: this is possible as the base
register is regular and consequently a read always returns avalue that has been written with its sequence
number, that value being the last written value or a value concurrently written -if any-. Considering an
arbitrary historyH of registerR, we show thatH is atomic by building an equivalent sequential historyS
that is legal and respects the partial order on the operations defined by→H .
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S is built from the sequence numbers associated with the operations. First, we order all the write
operations according to their sequence numbers. Then, we order each read operation just after the write
operation that has the same sequence number. If two reads operations have the same sequence number, we
order first the one whose invocation event is first. (Rememberthat we consider a 1W1R register)

The historyS is trivially sequential as all the operations are placed oneafter the other. Moreover,S
is equivalent toH as it is made up of the same operations.S is trivially legal as each read follows the
corresponding write operation. We now show thatS respects→H .

• For any two write operationsw1 andw2 we have eitherw1 →H w2 or w2 →H w1. This is because
there is a single writer and it is sequential: as the variablesn is increased by1 between two consecutive
write operations, no two write operations have the same sequence number, and these numbers agree
on the occurrence order of the write operations. As the totalorder on the write operations inS is
determined by their sequence numbers, it consequently follows their total order inH.

• Let op1 be a write or a read operation, andop2 be a read operation such thatop1→H op2. It follows
from the algorithm thatsn(op1) ≤ sn(op2) (wheresn(op) is the sequence number of the operation
op). The ordering rule guarantees thatop1 is ordered beforeop2 in S.

• Let op1 be a read operation, andop2 a write operation. Similarly to the previous item, we then have
sn(op1) < sn(op2), and consequentlyop1 is ordered beforeop2 in S (which concludes the proof).

2Theorem 10

One might think of a naive extension of the previous algorithm to construct a 1WMR atomic register
from base 1W1R regular registers. Indeed, we could, at first glance, consider an algorithm associating one
1W1R regular register per reader, and have the writer writesin all of them, each reader reading its dedicated
register. Unfortunately, a fast reader might see a new concurrently written value, whereas a reader that
comes later sees the old value. This is because the second reader does not know about the sequence number
and the value returned by the first reader. The latter stores them locally. In fact, this can happen even if
the base 1W1R registers are atomic. The construction of a 1WMR atomic register from base 1W1R atomic
registers is addressed in the next section.

4.6.2 Atomic registers: from unbounded 1W1R to 1WMR

We presented in Section 4.4.1 an algorithm that builds a 1WMRsafe/regular register from similar 1W1R
base registers. We also pointed out that the corresponding construction does not build a 1WMR atomic
register even when the base registers are 1W1R atomic (see the counter-example presented in Figure 4.5).

This section describes such an algorithm: assuming 1W1R atomic registers, it shows how to go from
single reader registers to a multi-reader register. This algorithm uses sequence numbers, and requires un-
bounded base registers.

Overview As there are now several possible readers, actuallyn, we make use of several (n) base 1W1R
atomic registers: one per reader. The writer writes in all ofthem. It writes the value as well as a sequence
number. The algorithm is depicted in Figure 4.14.

We prevent new/old inversions (Figure 4.5) by having the readers “help” each other. The helping is
achieved using an arrayHELP [1 : n, 1 : n] of 1W1R atomic registers. Each register contains a pair (se-
quence number, value) created and written by the writer in the base registers. More specifically,HELP [i, j]
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is a 1W1R atomic register written only bypi and read only bypj. It is used as follows to ensure the atomicity
of the high-level 1WMR registerR that is constructed by the algorithm.

• Help the others. Just before returning the valuev it has determined (we discuss how this is achieved
in the second bullet below), readerpi helps every other process (reader)pj by indicating topj the
last valuepi has read (namelyv) and its sequence numbersn. This is achieved by havingpi update
HELP [i, j] with the pair[sn, v]. This, in turn, preventspj from returning in the future a value older
thanv, i.e., a value whose sequence number would be smaller thansn.

• Helped by the others. To determine the value returned by a read operation, a reader pi first computes
the greatest sequence number that it has ever seen in a base register. This computation involves all
1W1R atomic registers thatpi can read, i.e.,REG[i] andHELP [j, i] for anyj. pi. Readerpi then
returns the value that has the greatest sequence numberpi has computed.

The corresponding algorithm is described in Figure 4.14. Variableaux is a local array used by a reader;
its jth entry is used to contain the (sequence number, value) pairthatpj has written inHELP [j, i] in order
to helppi; aux[j].sn andaux[j].val denote the corresponding sequence number and the associated value,
respectively. Similarly,reg is a local variable used by a readerpi to contain the last (sequence number,
value) pair thatpi has read fromREG[i] (reg.sn andreg.val denote the corresponding fields).

RegisterHELP [i, i] is used only bypi, which can consequently keep its value in a local variable. This
means that the 1W1R atomic registerHELP [i, i] can be used to contain the 1W1R atomic registerREG[i].
It follows that the protocol requires exactlyn2 base 1W1R atomic registers.

operation R.write(v):
sn← sn + 1;
for all j in {1, . . . , n} do REG[i]← [sn, v] end do;
return()

operation R.read() issued bypi:
reg ← REG[i];
for all j in {1, . . . , n} do aux[j]← HELP [j, i] end do;
let sn max bemax(reg.sn, aux[1].sn, . . . , aux[n].sn);
let val be reg.val or aux[k].val such that the associated seq number issn max;
for all j in {1, . . . , n} do HELP [i, j]← [sn max, val] end do;
return(val)

Figure 4.14: Atomic register: from one reader to multiple readers (unbounded construction)

Theorem 11 Givenn2 unbounded 1W1R atomic registers, the algorithm described in Figure 4.14 imple-
ments a 1WMR atomic register.

Proof As for Theorem 10, the proof consists in showing that the sequence numbers determine a linearization
of any historyH.

Considering an historyH of the constructed registerR, we first build an equivalent sequential history
S by ordering all the write operations according to their sequence numbers, and then inserting the read
operations as in the proof of Theorem 10. This history is trivially legal as each read operation is ordered
just after the write operation that wrote the value that is read. A similar reasoning similar as the one used in
Theorem 10, but based on the sequence numbers provided by thearraysREG[1 : n] andHELP [1 : n, 1 :
n], shows thatS respects→H . 2Theorem 11
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4.6.3 Atomic registers: from unbounded 1WMR to MWMR

This section shows how to use sequence numbers to build a MWMRatomic register fromn 1WMR atomic
registers (wheren is the number of writers). The algorithm is simpler than the previous one. An array
REG[1 : n] of n 1WMR atomic registers is used in such a way thatpi is the only process that can write
in REG[i], while any process can read it. Each registerREG[i] stores a (sequence number, value) pair.
VariablesX.sn andX.val are again used to denote the sequence number field and the value field of the
registerX, respectively. EachREG[i] is initialized to the same pair, namely,[0, v0] wherev0 is the initial
value ofR.

The problem we solve here consists in allowing the writers tototally order their write operations. To that
end, a write operation first computes the highest sequence number that has been used, and defines the next
value as the sequence number of its write. Unfortunately, this does not prevent two distinct concurrent write
operations from associating the same sequence number with their respective values. A simple way to cope
with this problem consists in associating atimestampwith each value, where a timestamp is a pair made up
of a sequence number plus the identity of the process that issues the corresponding write operation.

The timestamping mechanism can be used to define a total orderon all the timestamps as follows. Let
ts1 = [sn1, i] andts1 = [sn2, j] be any two timestamps. We have:

ts1 < ts2
def
=

(
(sn1 < sn2) ∨ (sn1 = sn2 ∧ i < j)

)
.

The corresponding construction is described in Figure 4.15. The meaning of the additional local variables
that are used is, we believe, clear from the context.

operation R.write(v) issued bypi:
for all j in {1, . . . , n} do reg[j]← REG[j] end do;
let sn max bemax(reg[1].sn, . . . , reg[n].sn) + 1;
REG[i]← [sn max, v];
return()

operation R.read() issued bypi:
for all j in {1, . . . , n} do reg[j]← REG[j] end do;
let k be the process identitysuch that [sn, k] is the greatest times-tamp

among then time-stamps[reg[1].sn, 1], . . . and[reg[n].sn, n];
return(reg[k].val)

Figure 4.15: Atomic register: from one writer to multiple writers (unbounded construction)

Theorem 12 Givenn unbounded 1WMR atomic registers, the algorithm described in Figure 4.15 imple-
ments a MWMR atomic register.

Proof Again, we show that the timestamps define a linearization of any historyH.
Considering an historyH of the constructed registerR, we first build an equivalent sequential historyS

by ordering all the write operations according to their timestamps, then inserting the read operations as in
Theorem 10. This history is trivially legal as each read operation is ordered just after the write operation that
wrote the read value. Finally, a reasoning similar to the oneused in Theorem 10 but based on timestamps
shows thatS respects→H . 2Theorem 12
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4.7 Concluding remark

We have shown in Section 4.6 how to build a MWMR atomic register from unbounded 1W1R regular
registers. All these use sequence numbers. The only transformation from safe to regular that has been
presented concerns the case of binary registers (Section 4.4.2). At least three questions are natural to ask:

• How to implement a 1W1R atomic bit from a bounded number of 1W1R safe bits? This question is
of independent interest and is addressed in Chapter 4.

• How to implement a 1W1R atomic register from a bounded numberof 1W1R safe bits? This question
is also of independent interest and is addressed in Chapter 5.

• How to implement a MWMR atomic register from bounded 1W1R atomic registers. This question is
not addressed in this book.

4.8 Bibliographic notes

The notions of safe, regular and atomic registers have been introduced by Lamport [12].
Theorem 10, and the algorithms described in Figure 4.4, Figure 4.6, Figure 4.7 and Figure 4.8 are due to

Lamport [12]. The algorithm described in Figure 4.11 is due to Vidyasankar [43]. The algorithms described
in Figure 4.14 and 4.15 are due to Vityani and Awerbuch [47].

The wait-free construction of stronger registers from weaker registers has always been an active research
area. The interested reader can consult the following (non-exhaustive!) list where numerous algorithms are
presented an analyzed [48, 49, 50, 51, 52, 40, 41, 42, 44, 45, 46].
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Chapter 5

From safe bits to atomic bits: an optimal
construction

5.1 Introduction

In the previous chapter, we introduced the notions of safe, regular and atomic (linearizable) read/write
objects (also called registers). In the case of 1W1R (one writer one reader) register, assuming that there
is no concurrency between the reader and the writer, the notions of safety, regularity and atomicity are
equivalent. This is no longer true in the presence of concurrency. Several bounded constructions have been
described for concurrent executions. Each construction implements a stronger register from a collection of
weaker base registers. We have seen the following constructions:

• From a safe bit to a regular bit. This construction improves on the quality of the base object with
respect to concurrency. Contrarily to the base safe bit, a read operation on the constructed regular bit
never returns an arbitrary value in presence of concurrent write operations.

• From a bounded number of safe (resp., regular or atomic) bitsto a safe (resp., regular or atomic)
b-valued register. These constructions improve on the quality of each base object as measured by
the number of values it can store. They show that “small” baseobjects can be composed to provide
”bigger” objects that have the same behavior in the presenceof concurrency.

To get a global picture, we miss one bounded construction that improves on the quality in the presence
of concurrency, namely, a construction of an atomic bit fromregular bits. This construction is fundamental,
as an atomic bit is the simplest nontrivial object that can bedefined in terms ofsequentialexecutions. Even
if an execution on an atomic bit contains concurrent accesses, the execution still appears as its sequential
linearization.

In this chapter, we first show that to construct a 1W1R atomic bit, we need at least three regular bits,
two written by the writer and one written by the reader. Then we present an optimal three-bit construction
of an atomic bit.

5.2 A Lower Bound Theorem

In Section 4.6.1 of Chapter 4, we presented the constructionof a 1W1R atomic register from anunbounded
regular register. The base regular register had to be unbounded because the construction was using sequence
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numbers, and the value of the base register was a pair made up of the data value of the register and the
corresponding sequence number. The use of sequence numbersmakes sure that new/old inversions of read
operations never happen.

A fundamental question is the following: Can we build a 1W1R atomic register from a finite number of
regular registers that can store only finitely many values, and can be written only by the writer (of the atomic
register)?

This section first shows that such a construction is impossible, i.e., the reader must also be able to write.
In other words, such a construction must involve two-way communication between the reader and the writer.
Moreover, even if we only want to implement one atomic bit, the writer must be able to write intwo regular
base bits.

5.2.1 Digests and Sequences of Writes

Let A be any finite sequence of values in a given set. Adigestof A is a shorter sequenceB that “mimics”A:
A andB have the same first and last elements; an element appears at most once inB; and two consecutive
elements ofB are also consecutive inA. B is called adigestof A.

As an example letA = v1, v2, v1, v3, v4, v2, v4, v5. The sequenceB = v1, v3, v4, v5 is a digest ofA.
(there can be multiple digests of a sequence).

Every finite sequence has a digest:

Lemma 2 Let A = a1, a2, . . . , an be a finite sequence of values. For any such sequence there exists a
sequenceB = b1, . . . , bm of values such that:

• b1 = a1 ∧ bm = an,

• (bi = bj)⇒ (i = j),

• ∀j : 1 ≤ j < m : ∃i : 1 ≤ i < n : bj = ai ∧ bj+1 = ai+1.

Proof The proof is a trivial induction onn. If n = 1, we haveB = a1. If n > 1, let B = b1, . . . , bm be a
digest ofA = a1, a2, . . . , an. A digest ofa1, a2, . . . , an, an+1 can be constructed as follows:
- If ∀j ∈ {1, . . . ,m} : bj 6= an+1, thenB = b1, . . . , bm, an+1 is a digest ofa1, a2, . . . , an.
- If ∃j ∈ {1, . . . ,m} : bj = an+1, there is a singlej such thatbj = an+1 (this is because any value appears
at most once inB = b1, . . . , bm). It is easy to check thatB = b1, . . . , bj is a digest ofa1, . . . , an, an+1.

2Lemma 2

Consider now an implementation of a bounded atomic 1W1R register R from a collection of base
bounded1W1R regular registers. Clearly, any execution of a write operationw that changes the value
of the implemented register must consist of a sequence of writes on base registers. Such a sequence of
writes triggers a sequence of state changes of the base registers, from the state beforew to the state afterw.

Assuming thatR is initialized to0, let us consider an executionE where the writer indefinitely alternates
R.write(1) andR.write(0). Let wi, i ≥ 1, denotes thei-th R.write(v) operation. This means thatv = 1
wheni is odd andv = 0 wheni is even. Each prefix ofE, denoted byE′, unambiguously determines the
resultingstateof each base objectX, i.e., the value that the reader would obtain if it readX right afterE′,
assuming no concurrent writes. Indeed, since the resultingexecution is sequential, there exists exactly one
reading function and we can reason about the state of each object at any point in the execution.

Each write operationw2i+1 = R.write(1), i = 0, 1, . . ., contains a sequence of writes on the base
registers. Letω1, . . . , ωx be the sequence of base writes generated byw2i+1. Let Ai be the corresponding
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sequence of base-registers states defined as follows: its first elementa0 is the state of the base registers
beforeω1, its second elementa2 is the state of the base registers just afterω1 and beforeω2, etc.; its last
elementax is the state of the base registers afterωx.

Let Bi be a digest derived fromAi (by Lemma 2 such a digest sequence exists).

Lemma 3 There exists a digestB = b0, . . . , by (y ≥ 1) that appears infinitely often inB1, B2, . . ..

Proof First we observe that every digestBi (i = 1, 2, . . .) must consists of at least two elements. Indeed if
Bi is a singletonb0, then the read operation onR applied just beforewi and the read operation onR applied
just afterwi observe the same state of base registersb0. Therefore, the reader cannot decide when exactly
the read operation was applied and must return the same value—a contradiction with the assumption thatwi

changes the value ofR.
Since the base registers are bounded, there are finitely manydifferent states of the base registers that

can be written by the writer. Since a digest is a sequence of states of the registers written by the writer in
which every state appears at most once, we conclude that there can only be finitely many digests. Thus, in
the infinite sequence of digests,B1, B2, . . ., some digestB (of two or more elements) must appear infinitely
often. 2Lemma 3

Note that there is no constraint on the number ofinternal states of the writer. Since there may be no
bound on the number of steps taken within a write operation, all the sequencesAi can be different, and
the writer may never perform the same sequence of base-register operations twice. But the evolution of the
base-register states in the course ofAi can be reduced to its digestBi.

5.2.2 The Impossibility Result and the Lower Bound

Theorem 13 It is not possible to build a 1W1R atomic bit from a finite number of regular registers that can
take a finite number of values and are written only by the writer.

Proof By contradiction, assume that it is possible to build a 1W1R atomic bit R from a finite setS of
regular registers, each with a finite value domain, in which the reader does not update base registers.

An operationr = R.read() performed by the reader is implemented as a sequence of read operations on
base registers. Without loss of generality, assume thatr readsall base registers. Consider again the execution
E in which the writer performs write operationsw1, w2, . . ., alternatingR.write(1) andR.write(0).

Since the reader does not update base registers, we can insert the complete execution ofr between every
two steps inE without affecting the steps of the writer. Since the base registers are regular, the value read
in a base registerX by the reader performingr after a prefix ofE is unambiguously defined by the latest
value written toX before the beginning ofr. Let λ(r) denote the state of all base registers observed byr.

By Lemma 3, there exists a digestB = b0, . . . , by (y ≥ 1) that appears infinitely often inB1, B2, . . .,
whereBi is a digest ofw2i+1. Since each state in{b0, . . . , by} appears inE infinitely often, we can construct
an executionE′ by inserting inE a sequence of read operationsr0, . . . , ry such that for eachj = 0, . . . , y,
λ(rj) = by−j. In other words, inE′, the reader observes the states of base registers evolving downwards
from by to b0.

By induction, we show that inE′, eachrj (j = 0, . . . , y) must return1. Initially, sinceλ(r0) = by and
by is the state of the base registers right after someR.write(1) is complete,r0 must return1. Inductively,
suppose thatrj (for somej, 0 ≤ j ≤ y − 1) returns1 in E′.

Consider read operationsrj andrj+1 (j = 0, . . . , y − 1). Recall thatλ(rj) = by−j andλ(rj+1) =
by−j−1. Since digestB appears inB1, B2, . . . infinitely often, E′ contains infinitely many base-register
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R.write(1) operation

λ(rj) = by−j λ(rj+1) = by−j−1

from by−j−1 to by−j

rj rj+1

Figure 5.1: Two read operationsrj andrj + 1 concurrent withR.write(1)

writes by which the writer changes the state of base registers from by−j−1 to by−j. Let X be the base
register changed by these writes.

SinceX is regular, we can construct an executionE′′ which is indistinguishable to the reader fromE′,
whererj are concurrent with a base-register write performed withinR.write(1) in which the writer changes
the state of the base registers fromby−j−1 to by − j (Figure 5.1).

By the induction hypothesis,rj returns1 in E′ and, thus, inE′′. Since the implemented registerR is
atomic andrj returns the concurrently written value1 in E′′, rj+1 must also return1 in E′′. But the reader
cannot distinguishE′ andE′′ and, thus,rj+1 returns1 also inE′.

Inductively, ry must return1 in E′. But λ(ry) = b0, whereb0 is the state of base registers right after
someR.write(0) is complete. Thus,ry must return0—a contradiction. 2Theorem 13

Therefore, to implement a 1W1R atomic register from boundedregular registers, we must establish two-
way communication between the writer and the reader. Intuitively, the reader must inform the writer that it
is aware of the latest written value, which requires at leastone base bit that can be written by the reader and
read by the writer. But the writer must be able to react to the information read from this bit. In other words:

Theorem 14 In any implementation a 1W1R atomic bit from regular bits, the writer must be able to write
to at least 2 regular bits.

Proof Suppose, by contradiction, that there exists an implementation of a 1W1R atomic bitR in which the
writer can write to exactly one base bitX.

Note that every write operation onR that changes the value ofX and does not overlap with any read
operation must change the state ofX. Without loss of generality assume that the first write operation
w1 = R.write(1) performed by the writer in the absence of the reader changes the value ofX from 0 to 1
(the corresponding digest is0, 1).

Consider an extension of this execution in which the reader performsr1 = R.read() right after the end
of w1. Clearly,r1 must return1. Now addw2 = R.write(0) right after the end ofr1. Since the state ofX
at the beginning ofw2 is 1, the only digest generated byw2 is 1, 0.

Now addr2 = R.read() right after the end ofw2, and letE be the resulting execution. Nowr2 must
return0 in E. But sinceX is regular,E is indistinguishable to the reader from an execution in which r1 and
r2 take place within the interval ofw1 and thus both must return1—a contradiction. 2Theorem 14

As we have seen in the previous chapter, there is a trivial bounded algorithm that constructs a regular bit
from a safe bit. This algorithm only requires one additionallocal variable at the writer. The combination of
this algorithm with Theorem 14 implies:
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Corollary 1 The construction of a 1W1R atomic bit from safe bits requiresat least 3 1W1R safe bits, two
written by the writer and one written by the reader.

As the construction presented in the next section uses exactly 3 1W1R regular bits to build an atomic
bit, it is optimal in the number of base safe bits.

5.3 From three safe bits to an atomic bit

Now we present an optimal construction of a high level 1W1R atomic bitR from three base 1W1R safe bits.
The high level bitR is assumed to be initialized to0. It is also assumed that eachR.write(v) operation
invoked by the writer changes the value ofR. This is done without loss of generality, as the writer ofR
can locally keep a copyv′ of the last written value, and apply the nextR.write(v) operation only when it
modifies the current value ofR.

The construction ofR is presented in an incremental way.

5.3.1 Base architecture of the construction

The three base registers are initialized to0. Then, as we will see, the read and write algorithms defining the
construction, are such that, any write applied to a base registerX changes its value. So, its successive values
are0, then1, then0, etc. Consequently, to simplify the presentation, a write operation on a base registerX,
is denoted “changeX”. As any two consecutive write operations on a base bitX write different values, it
follows thatX behaves as regular register.

The 3 base safe bits used in the construction of the high levelatomic registerR are the following:

• REG: the safe bit that, intuitively, contains the value of the atomic bit that is constructed. It is written
by the writer and read by the reader.

• WR: the safe bit written by the writer to pass control information to the reader.

• RR: the safe bit written by the reader to pass control information to the writer.

5.3.2 Handshaking mechanism and the write operation

As we saw in the previous section, the reader should inform the writer when it read a new valuev in
the implemented register. Otherwise, the uninformed writer may subsequently repeat the same digest of
state transitions executingR.write(v) so that the reader would be subject to new/old inversion. Therefore,
whenever the writer is informed that a previously written value is read by the reader, it should change the
execution so that critical digests are not repeated.

The basic idea of the construction is to use the control bitsWR andRR to implement thehandshaking
mechanism. Intuitively, the writer informs the reader about a new value by changing the value ofWR so
thatWR 6= RR. Respectively, the reader informs the writer that the new value is read by changing the value
of RR so thatWR = RR. With these conventions, we obtain the following handshaking protocol between
the writer and the reader:

• After the writer has changed the value of the base registerREG, if it observesWR = RR, it changes
the value ofWR.

As we can see, setting the predicateWR = RR equal to false is the way used by the writer to signal
that a new value has been written inREG. The resulting is described in Figure 5.2.
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operation R.write(v): %Change the value ofR %
i changeREG ;
ii if WR = RR then changeWR end if ; % Strive to establishWR 6= RR %

return()

Figure 5.2: TheR.write(v) operation

• Before readingREG , the reader changes the value ofRR, if it observes thatWR 6= RR. This
signaling is used by the writer to updateWR when it discovers that the previous value has been read.

As we are going to see in the rest of this chapter, the exchangeof signals throughWR andRR is also used
by the reader to check if the value it has found inREG can be returned.

5.3.3 An incremental construction of the read operation

The reader’s algorithm is much more involved than the writer’s algorithm. To make it easier to understand,
this section presents the reader’s code in an incremental way, from simpler versions to more involved ones.
In each stage of the construction, we exhibit scenarios in which a simpler version fails, which motivates a
change of the protocol.

The construction: step 1 We start with the simplest construction in which the reader establishesRR =
WR and returns the value found inREG .

3 if WR 6= RR then changeRR end if ; % Strive to establishWR = RR %
4 val ← REG;
5 return(val)

We can immediately see that this version does not really use the control information: the value returned
by the read operation does not depend on the states ofRR andWR. Consequently, this version is subject
to new/old inversions: suppose that while the writer changes the value ofREG from 0 to 1 (line ii in
Figure 5.2), the reader performs two read operations. The first read returns1 (the “new” value ofR) and the
second read returns0 (the “old” value), i.e., we obtain a new/old inversion.

The construction: step 2 An obvious way to prevent the new/old inversion described inthe previous step
is to allow the reader to return the current value ofREG only if it observes that the writer has updatedWR

to makeWR 6= RR since the previous read operation.

1 if WR = RR then return(val) end if ;
3′ changeRR; % Strive to establishWR = RR %
4 val ← REG;
5 return(val)

Here we assume that the local variableval initially contains the initial value ofR (0). Checking whether
WR 6= RR before changingRR in line 3′ looks unnecessary, since the reader does not touch the shared
memory between readingWR in line 1 and in line 3, so we dropped it for the moment.
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Unfortunately, we still have a problem with this construction. When a read is executed concurrently
with a write, it may happen that the read returns a concurrently written value but a subsequent read finds
RR 6= WR and returns an old value found inREG .

Indeed, consider the following scenario (Figure 5.3):

1. w1 = R.write(1) completes.

2. r1 readsWR, findsWR 6= RR and changesRR.

3. w2 = R.write(0) begins, changesREG to 0, readsRR, findsWR = RR, changesWR, restoring
the predicateWR 6= RR, and completes.

4. w3 = R.write(1) begins and starts changingREG from 0 to 1.

5. r1 concurrently readsREG and returns the new value1

6. r2 = R.read() begins, findsRR 6= WR, readsREG and returns the old value0 (which is perfectly
possible since the write operation onREG performed byw3 is not yet finished).

In other words, we obtain ta new-old inversion for read operationsr1 andr2.

Reader

Writer

changeREG

return 0

read1 in REG

RR 6= WR

read0 in REGRR 6= WR

changeRR

r2r1 return 1

w1=write(1) w2=write(0) w3=write(1)

Figure 5.3: Counter example to step 2 of the construction: new-old inversion forr1 andr2

The construction: step 3 The problem with the scenario above is that a read operation is too quick to
return the new value ofREG without noticing that the writer has meanwhile changedWR. A subsequent
read operation may observeRR = WR and thus return the value read inREG (line 4) which may, in case
of a slow concurrent write, still be the old value.

One solution to circumvent this is to evaluateREG before changingRR. If the predicateRR = WR

does not hold afterRR was changed (line 3′) andREG was read again (line 4), then the reader returns the
older (conservative) value ofREG .

1 if WR = RR then return(val) end if ;
2 aux← REG; % Conservative value %
3′ changeRR; % Strive to establishWR = RR %
4 val ← REG;
5 if WR = RR then return(val) end if
7 return(aux)
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Unfortunately, there is still a problem here. The variableval evaluated in line 4 may be too conservative
to be returned by a subsequent read operation that findsRR = WR in line 1.

Again, suppose thatw1 = R.write(1) is followed a concurrent execution ofr1 = R.read() andw2 =
R.write(0) as follows (Figure 5.4):

1. w1 = R.write(1) completes.

2. w2 = R.write(0) begins and starts changingREG from 1 to 0.

3. r1 findsWR 6= RR, reads0 from REG and stores it inaux (line 2), changesRR, reads1 from REG

and stores it inval (the write operation onREG performed byw2 is still going on).

4. w2 completes its write onREG , findsRR = WR and starts changingWR.

5. r1 finds WR 6= RR (line 5), concludes that there is a concurrent write operation and returns the
“conservative” value0 (read in line 2).

6. r2 = R.read() begins, findsRR = WR (the write operation onWR performed byw2 is still going
on), and returns1 previously evaluated in line 4 ofr1.

That is,r1 returned the new (concurrently written) value0 while r2 returned the old value1.

Reader

Writer

r1

w1=write(1) w2=write(0)

change REG

RR6=WR change RR

read 0 read 1

RR=WR change WR

RR6=WR

r2 return 1return 0

to aux to val

RR=WR

Figure 5.4: Counter example to step 3 of the construction: new-old inversion forr1 andr2

The construction: step 4 Intuitively, the problem with the algorithm above is thatr1 did not realize that
the “conservative” value evaluated in line 2 is in fact the concurrently written value, while the “new” value
evaluated in line 4 is outdated. To fix this, before the readerdecides to be conservative and return in line 7,
we add one more read ofREG to update the local variableval. This way, a subsequent read would also
return the new value.

operation R.read():
1 if WR = RR then return(val) end if ;
2 aux← REG;
3′ changeRR;
4 val← REG;
5 if WR = RR then return(val) end if ;
6 val← REG;
7 return(aux)

68



But still there is a problem here. ChangingRR in line 3′ without previously checking ifWR = RR may
create an illusion to the reader that it has established the predicateRR = WR, while in fact the predicate
was invalidated by a concurrent write.

Consider the following execution (Figure 5.5):

1. w1 = R.write(1) begins, changesREG to 1, findsRR = WR, and starts changingWR to 1.

2. r1 = R.read() begins, observesRR 6= WR in line 1, reads1 from REG in line 2, changesRR to 1,
reads1 from REG in line 4, and returns1 in line 5.

3. r2 = R.read() begins and findsWR = RR (the write onWR performed byw1 is still going on).

4. w1 finishes changingWR to 1 and completes.

5. w2 = R.write(0) begins and starts changingREG to 0.

6. r2 reads0 in REG , (unconditionally) changesRR back to0, findsWR 6= RR, reads1 in REG in
line 6 (the write onREG performed byw2 is still going on), and returns the conservative value0 in
line 7.

7. r3 = R.read() begins, observesRR 6= WR in line 1, reads1 REG , changesRR to 1, reads1 from
REG again (recall that the write onREG performed byw2 is still going on) and returns the old value
1 in line 5.

Again, we have a new-old inversion:r2 returns the value concurrently written byw2 while r3 returns
the old value.

Reader

Writer

r1

w1=write(1)

RR6=WR

change WR

r3

read 1

change RR

read 1

RR=WR

return 1 r2

change REG

read 0
to aux RR6=WR

change RR RR6=WR

return 1return 0

w2=write(0)

RR6=WR

Figure 5.5: Counter example to step 4 of the construction: new-old inversion forr2 andr3

The construction: last step The complete read algorithm is presented in Figure 5.6. As wesaw in this
chapter, safe base registers allow for a multitude of possible execution scenarios, so an intuitively correct
implementation could be flawed because of an overlooked case. To be convinced that our construction is
indeed correct, we provide a rigorous proof below.

5.3.4 Proof of the construction

Theorem 15 Let H be an execution history of the 1W1R registerR constructed by the algorithm in Fig-
ures 5.2 and 5.6. ThenH is linearizable.
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operation R.read():
1 if WR = RR then return(val) end if ;
2 aux← REG;
3 if WR 6= RR then changeRR end if ;
4 val← REG;
5 if WR = RR then return(val) end if ;
6 val← REG;
7 return(aux)

Figure 5.6: TheR.read() operation

Proof Let H be an execution history. By Theorem 4,to show thatH is linearizable (atomic), it is sufficient
to show that there exists a reading functionπ satisfying the assertionsA0, A1 andA2.

In order to distinguish the operationsR.read() andR.write(v), denoted byr andw, from the read
and write operations on the base registers (e.g., “changeRR”, “ aux ← REG”, etc.), the latter ones are
calledactions. The history defined from the action invocation and responseevents is denotedL (<L denotes
the total order on its events and→L the corresponding relation induced on its operations; without loss of
generality,<L is assumed to contain all the invocation and response eventsdefiningH).

Moreover,r being a read operation andloc the local variable (aux or val) whose value is returned byr
(in line 1, 5 or 7),ρr denotes the last read action “loc← REG” executed beforer returns. More explicitly,
we have:

• If r returns in line 7,ρr is the read action “aux← REG” executed in line 2 ofr,

• If r returns in line 5,ρr is is the read action “val ← REG” executed in line 4 ofr, and finally

• If r returns in line 1,ρr is is the read action “val ← REG” executed in line 4 or 6 of some previous
read operation.

For each read actionρr we can determine the corresponding write action, denotedφ(ρr) and defined as
the latest write action that writes the value returned byr anddoes notsucceedρr in L.

Finally, given a read operationr and its associated read actionρr, we defineπ(r) to be the write opera-
tion that includes the write actionφ(ρr). This means that the value returned by the read operationr has been
written in the base registerREG by the “changeREG” action of the write operationπ(r). For notational
convenience we writea ∈ A whena is an action of the operationA.

Proof ofA0.

Let r be a complete read operation inH. By the definition ofπ, the invocation of the write action
φ(ρr) occurs before the response ofρr and, thus, the response ofr in L, i.e.,inv[π(ρr)] <L resp[r]. Thus,
inv[π(r)] <L inv[π(ρr)] <L resp[r] and¬(resp[r] <L inv[π(r)]).

By contradiction, suppose thatA0 is violated, i.e.,r →H π(r). Thus, at the action event level,
resp[r] <L inv[π(ρr)])—a contradiction. Consequently,π satisfiesA0.

Proof ofA1.
Since there is only one writer, all writes are totally ordered andw →H π(r) is equivalent to¬(π(r)→H w).

By contradiction, suppose that there is a write operationw 6= π(r) such thatπ(r) →H w →H r. If
there are several such write operations, letw be the last one beforer, i.e.,∄ w′: w →H w′ →H r.
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We first claim that, in such a context,ρr cannot be a read action of the read operationr (i.e.,ρr /∈ r).
Proof of the claim. (see Figure 5.7). Recall thatφ(ρr) ∈ π(r) (by definition). Letω be the “change
REG” action of the operationw (ω ∈ w). Combined with the case assumptionπ(r) →H w, we obtain
φ(ρr) →L ω. By the definition ofφ(ρr), we have¬(φ(ρr) →L ρr) and, thus,¬(ω →L ρr). Therefore,
inv[ρr] <L resp[ω]. Asω ∈ w andw →H r, we haveinv[ρr] <L resp[w] <L inv[r]. Asρr started before
r, and both are executed by the same process, we haveρr /∈ r. End of the proof of the claim.

Sinceρr /∈ r, by the algorithm in Figure 5.6, the read operationr returns a value in line 1, which means
that it has previously seenWR = RR. On the other hand, after the writer has executedω within π(r), it read
RR in order to setWR different fromRR if they were seen equal. Asw→H r and∄ w′: w →H w′ →H r
(assumption), it follows thatRR has been modified before the read operationr starts. Moreover,RR can
only be modified by a read operation in line 3. Letr′ be that read operation; as there is a single process
executingR.read(), we haver′ →H r.
Now we claim thatρr /∈ r′.
Proof of the claim: Let r′′ be the read operation that containsρr. We showr′′ 6= r′. We observe that
(Figure 5.7):
- If r′′ updatesRR, it does it in line 3, i.e., before executingρr (in line 4 or 6),
- inv[ρr] <L resp[ω] (this has been shown above; it is indicated by a dotted arrow in Figure 5.7),
- w readsRR after having executedω (code of the write operation).
It follows from these observations that, ifr′′ writes intoRR, it does it beforew readsRR. Hence,r′′ cannot
change the value ofRR (to establishRR = WR) afterw has readRR or while it is reading it (to establish
RR 6= WR). Therefore,r′′ 6= r′ and, thus,ρr /∈ r′. End of the proof of the claim.

As the reader modifiesRR within r′, it also executes line 4 ofr′ (val ← REG) before executingr (this
follows from the code of the read operation). But, asρr /∈ r′, this read ofREG action withinr′ contradicts
the definition ofρr (according whichρr is the last action “val ← REG” executed beforer starts), which
completes the proof of the assertionA1.

ω

π(r)

write RR

r′

readRR

w

ρr

r
r′′

Figure 5.7:ρr belongs neither tor nor tor′

Proof ofA2.
The proof is again by contradiction. Suppose that there exist r1 andr2, two complete read operations inH,
such thatr1 →H r2 andπ(r2) →H π(r1). Without loss of generality, let us assume that, for a givenr2,
r1 is the first such read operation. This means that ifr1 returns in line 5 or 7,ρr1 is a read action belonging
to r1, and if r1 returns at line 1, thenρr1 is a read action in the immediately preceding read operation.
Moreover, asπ(r2) 6= π(r1), we haveρr1 6= ρr2. So, we have eitherρr1 →L ρr2 or ρr2 →L ρr1.

• ρr2 →L ρr1.
As ρr1 precedes or belongs tor1, andr1 →H r2, we haveresp[ρr1] <L inv[r2]. Combining this
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with the case assumption we obtainρr2 →L ρr1 →L r2, which contradicts the fact thatρr2 is the last
“ loc← REG” action executed beforer2 started, whereloc is val or aux. So, the caseρr2 →L ρr1 is
not possible.

• ρr1 →L ρr2.
By definitionπ(ρr1) ∈ π(r1) andπ(ρr2) ∈ π(r2). Asπ(r2)→H π(r1), we haveπ(ρr2)→L π(ρr1).

π(ρr2) π(ρr1)

ρr2ρr1

resp[ρr1] inv[ρr2] resp[π(ρr1)]

WR is not modified

inv[π(ρr1)]

Figure 5.8: A new/old inversion on the regular registerREG

Thus we obtainπ(ρr2) →L π(ρr1) andρr1 →L ρr2 (Figure 5.8) which implies a new/old inversion
for the base regular registerREG . Therefore, bothρr1 andρr2 have to overlapπ(ρr1) in order to
have a new/old inversion. Figure 5.8):inv[π(ρr1)] <L resp[ρ1] andinv[ρ2] <L resp[π(ρr1)]. As
π(ρr1) is a base action that updatesREG , and as it is the same process that updatesREG andWR,
this means that the value of the base registerWR does not change while it is updatingREG , from
which we conclude that:

Property P: WR does not change betweenresp[ρ1] andinv[ρ2]

We consider three cases according to the line at whichr1 returns.

– r1 returns in line 7.
Then,ρr1 is “aux← REG” in line 2 of r1. We have the following:
- Sinceρr1 →L ρr2 andr1 returns in line 7,ρr2 can only be the read in line 6 ofr1 or a later
read action.
- Sincer1 executes all the actions of the read operation, in line 3 it makesRR equal toWR if
they were not. On another side, as it returns in line 7,r1 necessarily seesRR different from
WR in line 5 (otherwise, it would have returned in line 5).
It follows from these two observations thatWR has been modified between line 2 (execution of
ρr1) and line 6 ofr1 (that is or precedesρr2). This contradicts property P above.

– r1 returns in line 5.
Then,ρr1 is “val ← REG” in line 4 of r1, andr1 seesRR = WR in line 5. Sinceρr1 →L ρr2,
r2 does not return in line 1 (forr2 to return in line 1, we need to haveRR = WR at line 1 ofr2,
which means that we would then haveρr1 = ρr2). Thus,r2 seesRR 6= WR when it executes
line 1, andρr2 is in line 2 or line 4 ofr2. It follows thatWR has been modified betweenρr1 and
ρr2—a contradiction with propertyP .
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– r1 returns in line 1.
In that case,ρr1 is line 4 or line 6 of the read operation that precedesr1. The reasoning is the
same as in the previous case. Sinceρr1 →L ρr2, r2 does not return in line 1, from which we
conclude that it seesRR 6= WR when it executed line 1. It follows thatWR has been modified
betweenρr1 andρr2, which contradicts propertyP and concludes the proof.

2Theorem 15

5.3.5 Cost of the algorithms

The cost of theR.read() andR.write(v) operations is measured by the the maximal and minimal numbers
of accesses to the base registers. Let us remind that the writer (resp., reader) does not readWR (resp.,RR)
as it keeps a local copy of that register.

• R.write(v): maximal cost: 3; minimal cost: 2.

• R.read(): maximal cost: 7; minimal cost: 1.

The minimal cost is realized when the same type of operation (i.e., read or write) is repeatedly executed
while the operation of the other type is not invoked.

Let us remark that we have assumed that ifR.write(v) and R.write(v′) are two consecutive write
operations, we havev 6= v′. This means that if the upper layer issues two consecutive write operations
with v = v′, the cost of the second one is0, as it is skipped and consequently there is no accesses to base
registers.

5.4 Bibliographic notes

Tromp 1989

Lamport 86 (1W2R, but very inefficient)
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